1
|
Greer-Short A, Greenwood A, Leon EC, Qureshi TN, von Kraut K, Wong J, Tsui JH, Reid CA, Cheng Z, Easter E, Yang J, Ho J, Steltzer S, Budan A, Cho M, Chandrakumar R, Cisne-Thompson O, Feathers C, Chung TW, Rodriguez N, Jones S, Alleyne-Levy C, Liu J, Jing F, Prince WS, Lin J, Ivey KN, Tingley WG, Hoey T, Lombardi LM. AAV9-mediated MYBPC3 gene therapy with optimized expression cassette enhances cardiac function and survival in MYBPC3 cardiomyopathy models. Nat Commun 2025; 16:2196. [PMID: 40038304 PMCID: PMC11880196 DOI: 10.1038/s41467-025-57481-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 02/24/2025] [Indexed: 03/06/2025] Open
Abstract
Hypertrophic cardiomyopathy (HCM) affects approximately 600,000 people in the United States. Loss-of-function mutations in Myosin Binding Protein C3, MYBPC3, are the most common genetic cause of HCM, with the majority of mutations resulting in haploinsufficiency. To restore cardiac MYBPC3, we use an adeno-associated virus (AAV9) vector and engineer an optimized expression cassette with a minimal promoter and cis-regulatory elements (TN-201) to enhance packaging efficiency and cardiomyocyte expression. Rather than simply preventing cardiac dysfunction preclinically, we demonstrate in a symptomatic MYBPC3-deficient murine model the ability of AAV gene therapy to reverse cardiac hypertrophy and systolic dysfunction, improve diastolic dysfunction, and prolong survival. Dose-ranging efficacy studies exhibit restoration of wild-type MYBPC3 protein levels and saturation of cardiac improvement at the clinically relevant dose of 3E13 vg/kg, outperforming a previously published construct. These findings suggest that TN-201 may offer therapeutic benefits in MYBPC3-associated cardiomyopathy, pending further validation in clinical settings.
Collapse
Affiliation(s)
| | | | - Elena C Leon
- Tenaya Therapeutics, South San Francisco, CA, USA
| | | | | | - Justin Wong
- Tenaya Therapeutics, South San Francisco, CA, USA
| | | | | | - Ze Cheng
- Tenaya Therapeutics, South San Francisco, CA, USA
| | | | - Jin Yang
- Tenaya Therapeutics, South San Francisco, CA, USA
| | - Jaclyn Ho
- Tenaya Therapeutics, South San Francisco, CA, USA
| | | | - Ana Budan
- Tenaya Therapeutics, South San Francisco, CA, USA
| | - Marie Cho
- Tenaya Therapeutics, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | - Jun Liu
- Tenaya Therapeutics, South San Francisco, CA, USA
| | - Frank Jing
- Tenaya Therapeutics, South San Francisco, CA, USA
| | | | - JianMin Lin
- Tenaya Therapeutics, South San Francisco, CA, USA
| | | | | | - Timothy Hoey
- Tenaya Therapeutics, South San Francisco, CA, USA
| | | |
Collapse
|
2
|
Greenman AC, Sadler RL, Harris SP. Autoinhibition of cMyBP-C by its middle domains. J Mol Cell Cardiol 2025; 200:82-92. [PMID: 39923987 PMCID: PMC11963209 DOI: 10.1016/j.yjmcc.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/06/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Cardiac myosin binding protein-C (cMyBP-C) is a sarcomere regulatory protein consisting of 11 well-folded immunoglobulin-like (Ig-like) and fibronectin type-III domains with the individual domains numbered C0-C10. Despite progress in understanding the functions of the N' and C'-terminal ends of the protein, our understanding of the functional effects of the middle domains (C3-C4-C5-C6-C7) is still limited. Here we aimed to determine the functional significance of the middle domains by replacing endogenous cMyBP-C with recombinant proteins with and without the middle domains using our "cut and paste" SpyC3 mouse model. Specifically, we deleted domains C3-C7 or substituted these domains with unrelated Ig-like domains from titin to behave as inert "spacer" domains. Replacement with the spacer constructs resulted in a significant increase in myofilament calcium sensitivity, an almost instantaneous redevelopment of tension after a slack re-stretch protocol, and altered stretch activation responses, suggesting that the middle domains are functionally relevant and normally exert inhibitory effects on force development. We also investigated the significance of a potentially flexible linker between domains C4 and C5 and a unique 28 amino acid loop insertion in C5. Whereas deletion of the C5 loop had no effect on force, deletion of the linker between C4 and C5 had comparable effects to deletion of domains C3-C7. Taken together, these data indicate that the middle domains play an important role in limiting the activating effects of the C0-C2 domains and that the C4C5 linker contributes to these effects.
Collapse
Affiliation(s)
| | - Rachel L Sadler
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
3
|
Wood PT, Seffrood MM, Colson BA, Stelzer JE. cMyBP-C in hypertrophic cardiomyopathy: gene therapy and small-molecule innovations. Front Cardiovasc Med 2025; 12:1550649. [PMID: 40134985 PMCID: PMC11935118 DOI: 10.3389/fcvm.2025.1550649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/13/2025] [Indexed: 03/27/2025] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetic disorder in the heart caused by variants in sarcomeric proteins that disrupt myocardial function, leading to hypercontractility, hypertrophy, and fibrosis. Optimal cardiac function relies on the precise coordination of thin and thick filament proteins that control the timing, magnitude of cellular force generation and relaxation, and in vivo systolic and diastolic function. Sarcomeric proteins, such as cardiac myosin binding protein C (cMyBP-C) play a crucial role in myocardial contractile function by modulating actomyosin interactions. Genetic variants in cMyBP-C are a frequent cause of HCM, highlighting its importance in cardiac health. This review explores the molecular mechanisms underpinning HCM and the rapidly advancing field of HCM translational research, including gene therapy and small-molecule interventions targeting sarcomere function. We will highlight novel approaches, including gene therapy using recombinant AAV vectors and small-molecule drugs targeting sarcomere function.
Collapse
Affiliation(s)
- Patrick T. Wood
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Morgan M. Seffrood
- Department of Cellular & Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | - Brett A. Colson
- Department of Cellular & Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | - Julian E. Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
4
|
Kochurova AM, Beldiia EA, Nefedova VV, Yampolskaya DS, Koubassova NA, Kleymenov SY, Antonets JY, Ryabkova NS, Katrukha IA, Bershitsky SY, Matyushenko AM, Kopylova GV, Shchepkin DV. The D75N and P161S Mutations in the C0-C2 Fragment of cMyBP-C Associated with Hypertrophic Cardiomyopathy Disturb the Thin Filament Activation, Nucleotide Exchange in Myosin, and Actin-Myosin Interaction. Int J Mol Sci 2024; 25:11195. [PMID: 39456977 PMCID: PMC11508426 DOI: 10.3390/ijms252011195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
About half of the mutations that lead to hypertrophic cardiomyopathy (HCM) occur in the MYBPC3 gene. However, the molecular mechanisms of pathogenicity of point mutations in cardiac myosin-binding protein C (cMyBP-C) remain poorly understood. In this study, we examined the effects of the D75N and P161S substitutions in the C0 and C1 domains of cMyBP-C on the structural and functional properties of the C0-C1-m-C2 fragment (C0-C2). Differential scanning calorimetry revealed that these mutations disorder the tertiary structure of the C0-C2 molecule. Functionally, the D75N mutation reduced the maximum sliding velocity of regulated thin filaments in an in vitro motility assay, while the P161S mutation increased it. Both mutations significantly reduced the calcium sensitivity of the actin-myosin interaction and impaired thin filament activation by cross-bridges. D75N and P161S C0-C2 fragments substantially decreased the sliding velocity of the F-actin-tropomyosin filament. ADP dose-dependently reduced filament sliding velocity in the presence of WT and P161S fragments, but the velocity remained unchanged with the D75N fragment. We suppose that the D75N mutation alters nucleotide exchange kinetics by decreasing ADP affinity to the ATPase pocket and slowing the myosin cycle. Our molecular dynamics simulations mean that the D75N mutation affects myosin S1 function. Both mutations impair cardiac contractility by disrupting thin filament activation. The results offer new insights into the HCM pathogenesis caused by missense mutations in N-terminal domains of cMyBP-C, highlighting the distinct effects of D75N and P161S mutations on cardiac contractile function.
Collapse
Affiliation(s)
- Anastasia M. Kochurova
- Institute of Immunology and Physiology of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia (D.V.S.)
| | - Evgenia A. Beldiia
- Institute of Immunology and Physiology of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia (D.V.S.)
| | - Victoria V. Nefedova
- Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Daria S. Yampolskaya
- Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | | | - Sergey Y. Kleymenov
- Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Julia Y. Antonets
- Institute of Immunology and Physiology of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia (D.V.S.)
| | - Natalia S. Ryabkova
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- HyTest Ltd., 20520 Turku, Finland
| | - Ivan A. Katrukha
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- HyTest Ltd., 20520 Turku, Finland
| | - Sergey Y. Bershitsky
- Institute of Immunology and Physiology of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia (D.V.S.)
| | | | - Galina V. Kopylova
- Institute of Immunology and Physiology of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia (D.V.S.)
| | - Daniil V. Shchepkin
- Institute of Immunology and Physiology of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia (D.V.S.)
| |
Collapse
|
5
|
Doh CY, Schmidt AV, Chinthalapudi K, Stelzer JE. Bringing into focus the central domains C3-C6 of myosin binding protein C. Front Physiol 2024; 15:1370539. [PMID: 38487262 PMCID: PMC10937550 DOI: 10.3389/fphys.2024.1370539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
Myosin binding protein C (MyBPC) is a multi-domain protein with each region having a distinct functional role in muscle contraction. The central domains of MyBPC have often been overlooked due to their unclear roles. However, recent research shows promise in understanding their potential structural and regulatory functions. Understanding the central region of MyBPC is important because it may have specialized function that can be used as drug targets or for disease-specific therapies. In this review, we provide a brief overview of the evolution of our understanding of the central domains of MyBPC in regard to its domain structures, arrangement and dynamics, interaction partners, hypothesized functions, disease-causing mutations, and post-translational modifications. We highlight key research studies that have helped advance our understanding of the central region. Lastly, we discuss gaps in our current understanding and potential avenues to further research and discovery.
Collapse
Affiliation(s)
- Chang Yoon Doh
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Alexandra V. Schmidt
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Krishna Chinthalapudi
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Julian E. Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|