1
|
Davis MJ, Bertram CD. Control of lymphatic pacemaking and pumping by mechanobiological signals. J Physiol 2025; 603:3307-3327. [PMID: 40464668 DOI: 10.1113/jp288477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/23/2025] [Indexed: 06/11/2025] Open
Abstract
The spontaneous, phasic contractions of collecting lymphatic vessels are critical for lymph transport and interstitial fluid homeostasis. Phasic contractions are initiated by action potentials in lymphatic muscle and conduct along the vessel to trigger contraction waves. Contractions are regulated by pressure and shear stress (SS), but only limited aspects of that regulation are understood. Numerical models predict that pressure promotes retrograde propagation of contraction waves, whereas nitric oxide (NO) production associated with phasic contractions (pulsatile NO) promotes antegrade conduction and extends the pressure range over which contractions propel lymph. These predictions were tested using 3-4-valve segments of rat mesenteric lymphatic vessels using pressure myography and protocols that imposed forward flow, elevated inflow pressure (Pin) or elevated outflow pressure (Pout), each with/without intact NO signalling. NO bioavailability and flow-induced responses were enhanced by l-arginine supplementation. Spatiotemporal maps generated from video images were used to quantify the direction and extent of contraction wave conduction. Our results show that (1) contraction waves are normally biased towards retrograde conduction at equal Pin/Pout levels. (2) Pin elevation promotes antegrade conduction, whereas Pout elevation promotes retrograde conduction. (3) Imposed flow is inhibitory, reducing contraction amplitude and frequency and limiting the extent of contraction wave conduction without a significant effect on conduction direction. (4) Pulsatile NO does not significantly influence the conduction direction or extend the pressure range over which spontaneous contractions occur. Our findings support the idea that pressure is the dominant regulator of lymphatic pacemaking and pumping, with pulsatile NO having only minimal influence. KEY POINTS: The degree to which spontaneous, phasic contractions of lymphatic collecting vessels are regulated by pressure and shear stress is not fully understood. Numeric models predict that nitric oxide (NO) production associated with phasic contractions (pulsatile NO) promotes antegrade conduction of contraction waves, whereas pressure elevation promotes retrograde conduction; pulsatile NO production is also thought to extend the pressure range over which phasic contractions occur. Ex vivo methods were used to control pressure/flow in 3-4 valve segments of collecting lymphatics from rat mesentery, with preserved or inhibited NO signalling. The relatively long vessel segments limited the absolute levels of imposed flow/SS, so l-arginine supplementation was used to enhance NO bioavailability. Our findings support a scheme whereby pressure is by far the dominant mechanism determining the pacemaking site of lymphatic collectors, and challenge existing dogma about the importance of pulsatile NO production in regulating their behaviour.
Collapse
Affiliation(s)
- M J Davis
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO, USA
| | - C D Bertram
- School of Mathematics & Statistics, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
2
|
Schulz ME, Akerstrom VL, Song K, Broyhill SE, Li M, Lambert MD, Goldberg TB, Kataru RP, Shin J, Braun SE, Norton CE, Czepielewski RS, Mehrara BJ, Domeier TL, Zawieja SD, Castorena-Gonzalez JA. Regulation of Collecting Lymphatic Vessel Contractile Function by TRPV4 Channels. Arterioscler Thromb Vasc Biol 2025. [PMID: 40371469 DOI: 10.1161/atvbaha.124.322100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 05/01/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND Dysregulation of TRPV4 (transient receptor potential vanilloid 4)-mediated signaling has been associated with inflammation and tissue fibrosis, both of which are key features in the pathophysiology of lymphatic system diseases; however, the expression and functional roles of lymphatic TRPV4 channels remain largely unexplored. METHODS We generated a single-cell RNA sequencing dataset from microdissected mouse collecting lymphatic vessels to characterize the expression of Trpv4. Using a novel Trpv4fx/fx mouse strain and the Cre-lines Prox1-CreERT2 and LysM-Cre we assessed the role of TRPV4 channels in lymphatic endothelial cells and peri-lymphatic myeloid cells, respectively. Confocal microscopy and extensive functional experimentation on isolated and pressurized lymphatics, including measurements of intracellular calcium activity, were used to validate our single-cell RNA sequencing findings and to elucidate the underlying mechanisms. Clinical significance was assessed using biopsies from patients with breast cancer-related lymphedema. RESULTS We characterized the single-cell transcriptome of collecting lymphatic vessels and surrounding tissues. Trpv4 was highly enriched in lymphatic endothelial cells and in a subset of Lyve1+ (lymphatic vessel endothelial hyaluronan receptor 1) macrophages displaying a tissue-resident profile. In clinical samples, breast cancer-related lymphedema was associated with increased infiltration of macrophages coexpressing LYVE1 and TRPV4. Pharmacological activation of TRPV4 channels led to contractile dysregulation in isolated collecting lymphatics. The response was multiphasic, including initial vasospasm and subsequent vasodilation and inhibition of contractions, which was associated with the activation of TXA2Rs (thromboxane A2 receptors) in lymphatic muscle cells by secreted prostanoids from TRPV4+ myeloid cells, and increased nitric oxide (and perhaps other vasodilatory prostanoids) from lymphatic endothelial cells. The TXA2R-mediated vasospasm resulted from increased mobilization of calcium from intracellular stores through inositol trisphosphate receptors and store-operated calcium entry. CONCLUSIONS Our results uncovered a novel mechanism of lymphatic contractile dysregulation mediated by the crosstalk between TRPV4-expressing myeloid cells, including LYVE1+ macrophages, and lymphatic muscle cells or lymphatic endothelial cells. These findings highlight potentially important roles of TRPV4 channels in lymphatic dysfunction associated with inflammation, including secondary lymphedema.
Collapse
Affiliation(s)
- Mary E Schulz
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA. (M.E.S., V.L.A., T.B.G., S.E. Braun, J.A.C.-G.)
| | - Victoria L Akerstrom
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA. (M.E.S., V.L.A., T.B.G., S.E. Braun, J.A.C.-G.)
| | - Kejing Song
- Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA. (K.S.)
| | - Sarah E Broyhill
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia (S.E. Broyhill, M.L., M.D.L., C.E.N., T.L.D., S.D.Z.)
| | - Min Li
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia (S.E. Broyhill, M.L., M.D.L., C.E.N., T.L.D., S.D.Z.)
| | - Michelle D Lambert
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia (S.E. Broyhill, M.L., M.D.L., C.E.N., T.L.D., S.D.Z.)
| | - Tatia B Goldberg
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA. (M.E.S., V.L.A., T.B.G., S.E. Braun, J.A.C.-G.)
| | - Raghu P Kataru
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY (R.P.K., J.S., B.J.M.)
| | - Jinyeon Shin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY (R.P.K., J.S., B.J.M.)
| | - Stephen E Braun
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA. (M.E.S., V.L.A., T.B.G., S.E. Braun, J.A.C.-G.)
- Tulane National Primate Research Center, Covington, LA (S.E. Braun)
| | - Charles E Norton
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia (S.E. Broyhill, M.L., M.D.L., C.E.N., T.L.D., S.D.Z.)
| | - Rafael S Czepielewski
- Immunology Center of Georgia, Georgia Cancer Center, Department of Physiology, Medical College of Georgia, Augusta University (R.S.C.)
| | - Babak J Mehrara
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY (R.P.K., J.S., B.J.M.)
| | - Timothy L Domeier
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia (S.E. Broyhill, M.L., M.D.L., C.E.N., T.L.D., S.D.Z.)
| | - Scott D Zawieja
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia (S.E. Broyhill, M.L., M.D.L., C.E.N., T.L.D., S.D.Z.)
| | - Jorge A Castorena-Gonzalez
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA. (M.E.S., V.L.A., T.B.G., S.E. Braun, J.A.C.-G.)
| |
Collapse
|
3
|
Hancock EJ, Macaskill C, Zawieja SD, Davis MJ, Bertram CD. Modelling pacemaker oscillations in lymphatic muscle cells: lengthened action potentials by two distinct system effects. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241714. [PMID: 39780965 PMCID: PMC11706657 DOI: 10.1098/rsos.241714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025]
Abstract
Lymphatic system failures contribute to cardiovascular and various other diseases. A critical function of the lymphatic vascular system is the active pumping of fluid from the interstitium back into the blood circulation by periodic contractions of lymphatic muscle cells (LMCs) in the vessel walls. As in cardiac pacemaking, these periodic contractions can be interpreted as occurring due to linked pacemaker oscillations in the LMC membrane potential (M-clock) and calcium concentration (C-clock). We previously reported a minimal model of synchronized dual-clock-driven oscillations. While this qualitatively replicated the period of oscillations under different conditions, it did not replicate the action potential shape as it varied under those conditions, particularly as regards the extent or lack of a systolic plateau. Here, we modify the model to replicate the plateau behaviour. Using phase-plane analysis we show two qualitatively different dynamical mechanisms that could account for plateau formation, one largely M-clock-driven, the other largely C-clock-driven. The second case occurs with the introduction of a ryanodine receptor; in both cases, we find improved predictions for calcium levels. With enhanced fidelity to the experimental data, the improved model has the potential to help determine opportunities for pharmacological treatment of lymphatic system pumping defects.
Collapse
Affiliation(s)
- Edward J. Hancock
- School of Mathematics & Statistics, University of Sydney, Sydney, New South Wales2006, Australia
| | - Charlie Macaskill
- School of Mathematics & Statistics, University of Sydney, Sydney, New South Wales2006, Australia
| | - Scott D. Zawieja
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO65212, USA
| | - Michael J. Davis
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO65212, USA
| | - Christopher D. Bertram
- School of Mathematics & Statistics, University of Sydney, Sydney, New South Wales2006, Australia
| |
Collapse
|
4
|
Arroyo-Ataz G, Jones D. Overview of Lymphatic Muscle Cells in Development, Physiology, and Disease. Microcirculation 2024; 31:e12887. [PMID: 39329178 PMCID: PMC11560633 DOI: 10.1111/micc.12887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/27/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
Lymphatic muscle cells (LMCs) are indispensable for proper functioning of the lymphatic system, as they provide the driving force for lymph transport. Recent studies have advanced our understanding of the molecular mechanisms that regulate LMCs, which control rhythmic contraction and vessel tone of lymphatic vessels-traits also found in cardiac and vascular smooth muscle. In this review, we discuss the molecular pathways that orchestrate LMC-mediated contractility and summarize current knowledge about their developmental origin, which may shed light on the distinct contractile characteristics of LMCs. Further, we highlight the growing evidence implicating LMC dysregulation in the pathogenesis of lymphedema and other diseases related to lymphatic vessel dysfunction. Given the limited number and efficacy of existing therapies to treat lymphedema, LMCs present a promising focus for identifying novel therapeutic targets aimed at improving lymphatic vessel contractility. Here, we discuss LMCs in health and disease, as well as therapeutic strategies aimed at targeting them to improve lymphatic vessel function.
Collapse
Affiliation(s)
- Guillermo Arroyo-Ataz
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, 670 Albany Street, Boston, Massachusetts 02118, USA
| | - Dennis Jones
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, 670 Albany Street, Boston, Massachusetts 02118, USA
| |
Collapse
|
5
|
Arreola J, López-Romero AE, Huerta M, Guzmán-Hernández ML, Pérez-Cornejo P. Insights into the function and regulation of the calcium-activated chloride channel TMEM16A. Cell Calcium 2024; 121:102891. [PMID: 38772195 DOI: 10.1016/j.ceca.2024.102891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/23/2024]
Abstract
The TMEM16A channel, a member of the TMEM16 protein family comprising chloride (Cl-) channels and lipid scramblases, is activated by the free intracellular Ca2+ increments produced by inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release after GqPCRs or Ca2+ entry through cationic channels. It is a ubiquitous transmembrane protein that participates in multiple physiological functions essential to mammals' lives. TMEM16A structure contains two identical 10-segment monomers joined at their transmembrane segment 10. Each monomer harbours one independent hourglass-shaped pore gated by Ca2+ ligation to an orthosteric site adjacent to the pore and controlled by two gates. The orthosteric site is created by assembling negatively charged glutamate side chains near the pore´s cytosolic end. When empty, this site generates an electrostatic barrier that controls channel rectification. In addition, an isoleucine-triad forms a hydrophobic gate at the boundary of the cytosolic vestibule and the inner side of the neck. When the cytosolic Ca2+ rises, one or two Ca2+ ions bind to the orthosteric site in a voltage (V)-dependent manner, thus neutralising the electrostatic barrier and triggering an allosteric gating mechanism propagating via transmembrane segment 6 to the hydrophobic gate. These coordinated events lead to pore opening, allowing the Cl- flux to ensure the physiological response. The Ca2+-dependent function of TMEM16A is highly regulated. Anions with higher permeability than Cl- facilitate V dependence by increasing the Ca2+ sensitivity, intracellular protons can replace Ca2+ and induce channel opening, and phosphatidylinositol 4,5-bisphosphate bound to four cytosolic sites likely maintains Ca2+ sensitivity. Additional regulation is afforded by cytosolic proteins, most likely by phosphorylation and protein-protein interaction mechanisms.
Collapse
Affiliation(s)
- Jorge Arreola
- Jorge Arreola, Physics Institute of Universidad Autónoma de San Luis Potosí. Av. Parque Chapultepec 1570, Privadas del Pedregal, 78295 San Luis Potosí, SLP., Mexico.
| | - Ana Elena López-Romero
- Jorge Arreola, Physics Institute of Universidad Autónoma de San Luis Potosí. Av. Parque Chapultepec 1570, Privadas del Pedregal, 78295 San Luis Potosí, SLP., Mexico
| | - Miriam Huerta
- Jorge Arreola, Physics Institute of Universidad Autónoma de San Luis Potosí. Av. Parque Chapultepec 1570, Privadas del Pedregal, 78295 San Luis Potosí, SLP., Mexico
| | - María Luisa Guzmán-Hernández
- Catedrática CONAHCYT, Department of Physiology and Biophysics, School of Medicine, Universidad Autónoma de San Luis Potosí. Ave. V. Carranza 2905, Los Filtros, San Luis Potosí, SLP 78210, Mexico
| | - Patricia Pérez-Cornejo
- Department of Physiology and Biophysics, School of Medicine, Universidad Autónoma de San Luis Potosí. Ave. V. Carranza 2905, Los Filtros, San Luis Potosí, SLP 78210, Mexico
| |
Collapse
|
6
|
Harlow RC, Pea GA, Broyhill SE, Patro A, Bromert KH, Stewart RH, Heaps CL, Castorena-Gonzalez JA, Dongaonkar RM, Zawieja SD. Loss of anoctamin 1 reveals a subtle role for BK channels in lymphatic muscle action potentials. J Physiol 2024; 602:3351-3373. [PMID: 38704841 PMCID: PMC11250503 DOI: 10.1113/jp285459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
Ca2+ signalling plays a crucial role in determining lymphatic muscle cell excitability and contractility through its interaction with the Ca2+-activated Cl- channel anoctamin 1 (ANO1). In contrast, the large-conductance (BK) Ca2+-activated K+ channel (KCa) and other KCa channels have prominent vasodilatory actions by hyperpolarizing vascular smooth muscle cells. Here, we assessed the expression and contribution of the KCa family to mouse and rat lymphatic collecting vessel contractile function. The BK channel was the only KCa channel consistently expressed in fluorescence-activated cell sorting-purified mouse lymphatic muscle cell lymphatic muscle cells. We used a pharmacological inhibitor of BK channels, iberiotoxin, and small-conductance Ca2+-activated K+ channels, apamin, to inhibit KCa channels acutely in ex vivo isobaric myography experiments and intracellular membrane potential recordings. In basal conditions, BK channel inhibition had little to no effect on either mouse inguinal-axillary lymphatic vessel (MIALV) or rat mesenteric lymphatic vessel contractions or action potentials (APs). We also tested BK channel inhibition under loss of ANO1 either by genetic ablation (Myh11CreERT2-Ano1 fl/fl, Ano1ismKO) or by pharmacological inhibition with Ani9. In both Ano1ismKO MIALVs and Ani9-pretreated MIALVs, inhibition of BK channels increased contraction amplitude, increased peak AP and broadened the peak of the AP spike. In rat mesenteric lymphatic vessels, BK channel inhibition also abolished the characteristic post-spike notch, which was exaggerated with ANO1 inhibition, and significantly increased the peak potential and broadened the AP spike. We conclude that BK channels are present and functional on mouse and rat lymphatic muscle cells but are otherwise masked by the dominance of ANO1. KEY POINTS: Mouse and rat lymphatic muscle cells express functional BK channels. BK channels make little contribution to either rat or mouse lymphatic collecting vessel contractile function in basal conditions across a physiological pressure range. ANO1 limits the peak membrane potential achieved in the action potential and sets a plateau potential limiting the voltage-dependent activation of BK. BK channels are activated when ANO1 is absent or blocked and slightly impair contractile strength by reducing the peak membrane potential achieved in the action potential spike and accelerating the post-spike repolarization.
Collapse
Affiliation(s)
- Rebecca C Harlow
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Grace A Pea
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO, USA
| | - Sarah E Broyhill
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO, USA
| | - Advaya Patro
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO, USA
| | - Karen H Bromert
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO, USA
| | - Randolph H Stewart
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Cristine L Heaps
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | | | - Ranjeet M Dongaonkar
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Scott D Zawieja
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
7
|
Schulz ME, Akerstrom VL, Song K, Broyhill SE, Li M, Lambert MD, Goldberg TB, Kataru RP, Shin J, Braun SE, Norton CE, Czepielewski RS, Mehrara BJ, Domeier TL, Zawieja SD, Castorena-Gonzalez JA. TRPV4-Expressing Tissue-Resident Macrophages Regulate the Function of Collecting Lymphatic Vessels via Thromboxane A2 Receptors in Lymphatic Muscle Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595189. [PMID: 38826322 PMCID: PMC11142127 DOI: 10.1101/2024.05.21.595189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Rationale TRPV4 channels are critical regulators of blood vascular function and have been shown to be dysregulated in many disease conditions in association with inflammation and tissue fibrosis. These are key features in the pathophysiology of lymphatic system diseases, including lymphedema and lipedema; however, the role of TRPV4 channels in the lymphatic system remains largely unexplored. TRPV4 channels are calcium permeable, non-selective cation channels that are activated by diverse stimuli, including shear stress, stretch, temperature, and cell metabolites, which may regulate lymphatic contractile function. Objective To characterize the expression of TRPV4 channels in collecting lymphatic vessels and to determine the extent to which these channels regulate the contractile function of lymphatics. Methods and Results Pressure myography on intact, isolated, and cannulated lymphatic vessels showed that pharmacological activation of TRPV4 channels with GSK1016790A (GSK101) led to contractile dysregulation. The response to GSK101 was multiphasic and included, 1) initial robust constriction that was sustained for ≥1 minute and in some instances remained for ≥4 minutes; and 2) subsequent vasodilation and partial or complete inhibition of lymphatic contractions associated with release of nitric oxide. The functional response to activation of TRPV4 channels displayed differences across lymphatics from four anatomical regions, but these differences were consistent across different species (mouse, rat, and non-human primate). Importantly, similar responses were observed following activation of TRPV4 channels in arterioles. The initial and sustained constriction was prevented with the COX inhibitor, indomethacin. We generated a controlled and spatially defined single-cell RNA sequencing (scRNAseq) dataset from intact and microdissected collecting lymphatic vessels. Our data uncovered a subset of macrophages displaying the highest expression of Trpv4 compared to other cell types within and surrounding the lymphatic vessel wall. These macrophages displayed a transcriptomic profile consistent with that of tissue-resident macrophages (TRMs), including differential expression of Lyve1 , Cd163 , Folr2 , Mrc1 , Ccl8 , Apoe , Cd209f , Cd209d , and Cd209g ; and at least half of these macrophages also expressed Timd4. This subset of macrophages also highly expressed Txa2s , which encodes the thromboxane A2 (TXA2) synthase. Inhibition of TXA2 receptors (TXA2Rs) prevented TRPV4-mediated contractile dysregulation. TXA2R activation on LMCs caused an increase in mobilization of calcium from intracellular stores through Ip3 receptors which promoted store operated calcium entry and vasoconstriction. Conclusions Clinical studies have linked cancer-related lymphedema with an increased infiltration of macrophages. While these macrophages have known anti-inflammatory and pro-lymphangiogenic roles, as well as promote tissue repair, our results point to detrimental effects to the pumping capacity of collecting lymphatic vessels mediated by activation of TRPV4 channels in macrophages. Pharmacological targeting of TRPV4 channels in LYVE1-expressing macrophages or pharmacological targeting of TXA2Rs may offer novel therapeutic strategies to improve lymphatic pumping function and lymph transport in lymphedema.
Collapse
|
8
|
Davis MJ, Zawieja SD. Pacemaking in the lymphatic system. J Physiol 2024. [PMID: 38520402 DOI: 10.1113/jp284752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/08/2024] [Indexed: 03/25/2024] Open
Abstract
Lymphatic collecting vessels exhibit spontaneous phasic contractions that are critical for lymph propulsion and tissue fluid homeostasis. This rhythmic activity is driven by action potentials conducted across the lymphatic muscle cell (LMC) layer to produce entrained contractions. The contraction frequency of a lymphatic collecting vessel displays exquisite mechanosensitivity, with a dynamic range from <1 to >20 contractions per minute. A myogenic pacemaker mechanism intrinsic to the LMCs was initially postulated to account for pressure-dependent chronotropy. Further interrogation into the cellular constituents of the lymphatic vessel wall identified non-muscle cell populations that shared some characteristics with interstitial cells of Cajal, which have pacemaker functions in the gastrointestinal and lower urinary tracts, thus raising the possibility of a non-muscle cell pacemaker. However, recent genetic knockout studies in mice support LMCs and a myogenic origin of the pacemaker activity. LMCs exhibit stochastic, but pressure-sensitive, sarcoplasmic reticulum calcium release (puffs and waves) from IP3R1 receptors, which couple to the calcium-activated chloride channel Anoctamin 1, causing depolarisation. The resulting electrical activity integrates across the highly coupled lymphatic muscle electrical syncytia through connexin 45 to modulate diastolic depolarisation. However, multiple other cation channels may also contribute to the ionic pacemaking cycle. Upon reaching threshold, a voltage-gated calcium channel-dependent action potential fires, resulting in a nearly synchronous calcium global calcium flash within the LMC layer to drive an entrained contraction. This review summarizes the key ion channels potentially responsible for the pressure-dependent chronotropy of lymphatic collecting vessels and various mechanisms of IP3R1 regulation that could contribute to frequency tuning.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Scott D Zawieja
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, USA
| |
Collapse
|
9
|
Hancock EJ, Zawieja SD, Macaskill C, Davis MJ, Bertram CD. A dual-clock-driven model of lymphatic muscle cell pacemaking to emulate knock-out of Ano1 or IP3R. J Gen Physiol 2023; 155:e202313355. [PMID: 37851028 PMCID: PMC10585120 DOI: 10.1085/jgp.202313355] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/14/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023] Open
Abstract
Lymphatic system defects are involved in a wide range of diseases, including obesity, cardiovascular disease, and neurological disorders, such as Alzheimer's disease. Fluid return through the lymphatic vascular system is primarily provided by contractions of muscle cells in the walls of lymphatic vessels, which are in turn driven by electrochemical oscillations that cause rhythmic action potentials and associated surges in intracellular calcium ion concentration. There is an incomplete understanding of the mechanisms involved in these repeated events, restricting the development of pharmacological treatments for dysfunction. Previously, we proposed a model where autonomous oscillations in the membrane potential (M-clock) drove passive oscillations in the calcium concentration (C-clock). In this paper, to model more accurately what is known about the underlying physiology, we extend this model to the case where the M-clock and the C-clock oscillators are both active but coupled together, thus both driving the action potentials. This extension results from modifications to the model's description of the IP3 receptor, a key C-clock mechanism. The synchronised dual-driving clock behaviour enables the model to match IP3 receptor knock-out data, thus resolving an issue with previous models. We also use phase-plane analysis to explain the mechanisms of coupling of the dual clocks. The model has the potential to help determine mechanisms and find targets for pharmacological treatment of some causes of lymphoedema.
Collapse
Affiliation(s)
- Edward J. Hancock
- School of Mathematics and Statistics, University of Sydney, Sydney, Australia
| | - Scott D. Zawieja
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Charlie Macaskill
- School of Mathematics and Statistics, University of Sydney, Sydney, Australia
| | - Michael J. Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | | |
Collapse
|
10
|
Blei F. Update December 2023. Lymphat Res Biol 2023; 21:614-640. [PMID: 38149917 DOI: 10.1089/lrb.2023.29154.fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Affiliation(s)
- Francine Blei
- Hassenfeld Children's Hospital at NYU Langone, The Laurence D. and Lori Weider Fink Children's Ambulatory Care Center, New York, New York, USA
| |
Collapse
|