1
|
Naranjo MEG, Rodrigues-Soares F, Peñas-Lledó EM, Tarazona-Santos E, Fariñas H, Rodeiro I, Terán E, Grazina M, Moya GE, López-López M, Sarmiento AP, Calzadilla LR, Ramírez-Roa R, Ortiz-López R, Estévez-Carrizo FE, Sosa-Macías M, Barrantes R, LLerena A. Interethnic Variability in CYP2D6, CYP2C9, and CYP2C19 Genes and Predicted Drug Metabolism Phenotypes Among 6060 Ibero- and Native Americans: RIBEF-CEIBA Consortium Report on Population Pharmacogenomics. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 22:575-588. [PMID: 30183544 DOI: 10.1089/omi.2018.0114] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Pharmacogenetic variation in Latin Americans is understudied, which sets a barrier for the goal of global precision medicine. The RIBEF-CEIBA Network Consortium was established to characterize interindividual and between population variations in CYP2D6, CYP2C9, and CYP2C19 drug metabolizing enzyme genotypes, which were subsequently utilized to catalog their "predicted drug metabolism phenotypes" across Native American and Ibero American populations. Importantly, we report in this study, a total of 6060 healthy individuals from Ibero-America who were classified according to their self-reported ancestry: 1395 Native Americans, 2571 Admixed Latin Americans, 96 Afro-Latin Americans, 287 white Latin Americans (from Cuba), 1537 Iberians, and 174 Argentinean Ashkenazi Jews. Moreover, Native Americans were grouped into North-, Central-, and South Amerindians (from Mexico, Costa Rica, and Peru, respectively). All subjects were studied for the most common and functional CYP2D6, CYP2C9, and CYP2C19 allelic variants, and grouped as genotype-predicted poor or ultrarapid metabolizer phenotypes (gPMs and gUMs, respectively). Native Americans showed differences from each ethnic group in at least two alleles of CYP2D6, CYP2C9, and CYP2C19. Native Americans had higher frequencies of wild-type alleles for all genes, and lower frequency of CYP2D6*41, CYP2C9*2, and CYP2C19*17 (p < 0.05). Native Americans also showed less CYP2C19 gUMs than the rest of the population sample. In addition, differences within Native Americans (mostly North vs. South) were also found. The interethnic differences described supports the need for population-specific personalized and precision medicine programs for Native Americans. To the best of our knowledge, this is the largest study carried out in Native Americans and other Ibero-American populations analyzing CYP2D6, CYP2C9, and CYP2C19 genetic polymorphisms. Population pharmacogenomics is a nascent field of global health and warrants further research and education.
Collapse
Affiliation(s)
- María-Eugenia G Naranjo
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,2 Universidad de Extremadura , Badajoz, Spain
| | - Fernanda Rodrigues-Soares
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,3 Universidade Federal de Minas Gerais , Belo Horizonte, Brazil .,4 Faculdade Uninassau , Manaus, Brazil
| | - Eva M Peñas-Lledó
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,2 Universidad de Extremadura , Badajoz, Spain
| | - Eduardo Tarazona-Santos
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,3 Universidade Federal de Minas Gerais , Belo Horizonte, Brazil .,5 PRISMA , Lima, Peru
| | - Humberto Fariñas
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,2 Universidad de Extremadura , Badajoz, Spain
| | - Idania Rodeiro
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,6 Instituto de Ciencias del Mar , La Habana, Cuba
| | - Enrique Terán
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,7 Universidad San Francisco de Quito , Quito, Ecuador
| | - Manuela Grazina
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,8 UC, CNC-Center for Neuroscience and Cell Biology, FMUC-Faculty of Medicine, University of Coimbra , Coimbra, Portugal
| | - Graciela E Moya
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,9 Universidad Católica de Argentina , Buenos Aires, Argentina
| | - Marisol López-López
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,10 Universidad Autónoma Metropolitana , Ciudad de México, Mexico
| | - Alba P Sarmiento
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,11 Pontifica Universidad Javeriana , Bogotá, Colombia
| | - Luis R Calzadilla
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,12 Centro Comunitario de SaludMental de la Habana Vieja, La Habana, Cuba
| | - Ronald Ramírez-Roa
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,13 Universidad Nacional Autónoma de Nicaragua , León, Nicaragua
| | - Rocío Ortiz-López
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,14 Tecnológico de Monterrey , Monterrey, Mexico
| | - Francisco E Estévez-Carrizo
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,15 Universidad de Montevideo , Montevideo, Uruguay
| | - Martha Sosa-Macías
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,16 Instituto Politécnico Nacional , Durango, Mexico
| | - Ramiro Barrantes
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,17 Universidad de Costa Rica , San José, Costa Rica
| | - Adrián LLerena
- 1 RIBEF Ibero-American Network of Pharmacogenetics and Pharmacogenomics , Badajoz, Spain .,2 Universidad de Extremadura , Badajoz, Spain
| | | |
Collapse
|
2
|
de Azevedo S, Bortolini MC, Bonatto SL, Hünemeier T, Santos FR, González-José R. Ancient remains and the first peopling of the Americas: Reassessing the Hoyo Negro skull. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2015; 158:514-21. [PMID: 26174009 DOI: 10.1002/ajpa.22801] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 06/05/2015] [Accepted: 06/10/2015] [Indexed: 11/10/2022]
Abstract
OBJECTIVE A noticeably well-preserved ∼12.500 years-old skeleton from the Hoyo Negro cave, Yucatán, México, was recently reported, along with its archaeological, genetic and skeletal characteristics. Based exclusively on an anatomical description of the skull (HN5/48), Chatters and colleagues stated that this specimen can be assigned to a set of ancient remains that differ from modern Native Americans, the so called "Paleoamericans". Here, we aim to further explore the morphological affinities of this specimen with a set of comparative cranial samples covering ancient and modern periods from Asia and the Americas. METHODS Images published in the original article were analyzed using geometric morphometrics methods. Shape variables were used to perform Principal Component and Discriminant analysis against the reference samples. RESULTS Even thought the Principal Component Analysis suggests that the Hoyo Negro skull falls in a subregion of the morphospace occupied by both "Paleoamericans" and some modern Native Americans, the Discriminant analyses suggest greater affinity with a modern Native American sample. DISCUSSION These results reinforce the idea that the original population that first occupied the New World carried high levels of within-group variation, which we have suggested previously on a synthetic model for the settlement of the Americas. Our results also highlight the importance of developing formal classificatory test before deriving settlement hypothesis purely based on macroscopic descriptions.
Collapse
Affiliation(s)
- Soledad de Azevedo
- Centro Nacional Patagónico, Consejo Nacional de Investigaciones Científicas y Técnicas, Bvd. Brown 2915, U9120ACD, Puerto Madryn, Argentina
| | - Maria C Bortolini
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, RS, Brazil
| | - Sandro L Bonatto
- Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul. Av. Ipiranga 6681, 90610-001, Porto Alegre, RS, Brazil
| | - Tábita Hünemeier
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, RS, Brazil
| | - Fabrício R Santos
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-910, Belo Horizonte, MG, Brazil
| | - Rolando González-José
- Centro Nacional Patagónico, Consejo Nacional de Investigaciones Científicas y Técnicas, Bvd. Brown 2915, U9120ACD, Puerto Madryn, Argentina
| |
Collapse
|
3
|
Rangel-Villalobos H, Sanchez-Gutierrez VM, Botello-Ruiz M, Salazar-Flores J, Martínez-Cortes G, Munoz-Valle JF, Phillips C. Evaluation of forensic and anthropological potential of D9S1120 in Mestizos and Amerindian populations from Mexico. Croat Med J 2013; 53:423-31. [PMID: 23100204 PMCID: PMC3490453 DOI: 10.3325/cmj.2012.53.423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Aim To carry out a deeper forensic and anthropological evaluation of the short tandem repeat (STR) D9S1120 in five Mestizo populations and eight Amerindian groups from Mexico. Methods We amplified the STR D9S1120 based on primers and conditions described by Phillips et al, followed by capillary electrophoresis in the genetic analyzer ABI Prism 310. Genotypes were analyzed with the GeneMapper ID software. In each population we estimated statistical parameters of forensic importance and Hardy-Weinberg equilibrium. Heterozygosity and FST-values were compared with those previously obtained with nine STRs of the Combined DNA Index System (CODIS-STRs). Results Amerindian and Mestizo populations showed high frequencies of the allele 9 and 16, respectively. Population structure analysis (AMOVA) showed a significant differentiation between Amerindian groups (FST = 2.81%; P < 0.0001), larger than between Mestizos (FST = 0.44%; P = 0.187). D9S1120 showed less genetic diversity but better population differentiation estimates than CODIS-STRs between Amerindian groups and between Amerindians and Mestizos, but not between Mestizo groups. Conclusion This study evaluated the ability of D9S1120 to be used for human identification purposes and demonstrated its anthropological potential to differentiate Mestizos and Amerindian populations.
Collapse
Affiliation(s)
- Hector Rangel-Villalobos
- Instituto de Investigacion en Genetica Molecular, Centro Universitario de la Ciénega, Universidad de Guadalajara (CUCI-UdeG), Av. Universidad 1115, Col Paso Blanco, Ocotlan, Jal., Mexico.
| | | | | | | | | | | | | |
Collapse
|
4
|
Y-chromosome analysis reveals genetic divergence and new founding native lineages in Athapaskan- and Eskimoan-speaking populations. Proc Natl Acad Sci U S A 2012; 109:8471-6. [PMID: 22586127 DOI: 10.1073/pnas.1118760109] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
For decades, the peopling of the Americas has been explored through the analysis of uniparentally inherited genetic systems in Native American populations and the comparison of these genetic data with current linguistic groupings. In northern North America, two language families predominate: Eskimo-Aleut and Na-Dene. Although the genetic evidence from nuclear and mtDNA loci suggest that speakers of these language families share a distinct biological origin, this model has not been examined using data from paternally inherited Y chromosomes. To test this hypothesis and elucidate the migration histories of Eskimoan- and Athapaskan-speaking populations, we analyzed Y-chromosomal data from Inuvialuit, Gwich'in, and Tłįch populations living in the Northwest Territories of Canada. Over 100 biallelic markers and 19 chromosome short tandem repeats (STRs) were genotyped to produce a high-resolution dataset of Y chromosomes from these groups. Among these markers is an SNP discovered in the Inuvialuit that differentiates them from other Aboriginal and Native American populations. The data suggest that Canadian Eskimoan- and Athapaskan-speaking populations are genetically distinct from one another and that the formation of these groups was the result of two population expansions that occurred after the initial movement of people into the Americas. In addition, the population history of Athapaskan speakers is complex, with the Tłįch being distinct from other Athapaskan groups. The high-resolution biallelic data also make clear that Y-chromosomal diversity among the first Native Americans was greater than previously recognized.
Collapse
|
5
|
Kumar S, Bellis C, Zlojutro M, Melton PE, Blangero J, Curran JE. Large scale mitochondrial sequencing in Mexican Americans suggests a reappraisal of Native American origins. BMC Evol Biol 2011; 11:293. [PMID: 21978175 PMCID: PMC3217880 DOI: 10.1186/1471-2148-11-293] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 10/07/2011] [Indexed: 01/07/2023] Open
Abstract
Background The Asian origin of Native Americans is largely accepted. However uncertainties persist regarding the source population(s) within Asia, the divergence and arrival time(s) of the founder groups, the number of expansion events, and migration routes into the New World. mtDNA data, presented over the past two decades, have been used to suggest a single-migration model for which the Beringian land mass plays an important role. Results In our analysis of 568 mitochondrial genomes, the coalescent age estimates of shared roots between Native American and Siberian-Asian lineages, calculated using two different mutation rates, are A4 (27.5 ± 6.8 kya/22.7 ± 7.4 kya), C1 (21.4 ± 2.7 kya/16.4 ± 1.5 kya), C4 (21.0 ± 4.6 kya/20.0 ± 6.4 kya), and D4e1 (24.1 ± 9.0 kya/17.9 ± 10.0 kya). The coalescent age estimates of pan-American haplogroups calculated using the same two mutation rates (A2:19.5 ± 1.3 kya/16.1 ± 1.5 kya, B2:20.8 ± 2.0 kya/18.1 ± 2.4 kya, C1:21.4 ± 2.7 kya/16.4 ± 1.5 kya and D1:17.2 ± 2.0 kya/14.9 ± 2.2 kya) and estimates of population expansions within America (~21-16 kya), support the pre-Clovis occupation of the New World. The phylogeography of sublineages within American haplogroups A2, B2, D1 and the C1b, C1c andC1d subhaplogroups of C1 are complex and largely specific to geographical North, Central and South America. However some sub-branches (B2b, C1b, C1c, C1d and D1f) already existed in American founder haplogroups before expansion into the America. Conclusions Our results suggest that Native American founders diverged from their Siberian-Asian progenitors sometime during the last glacial maximum (LGM) and expanded into America soon after the LGM peak (~20-16 kya). The phylogeography of haplogroup C1 suggest that this American founder haplogroup differentiated in Siberia-Asia. The situation is less clear for haplogroup B2, however haplogroups A2 and D1 may have differentiated soon after the Native American founders divergence. A moderate population bottle neck in American founder populations just before the expansion most plausibly resulted in few founder types in America. The similar estimates of the diversity indices and Bayesian skyline analysis in North America, Central America and South America suggest almost simultaneous (~ 2.0 ky from South to North America) colonization of these geographical regions with rapid population expansion differentiating into more or less regional branches across the pan-American haplogroups.
Collapse
Affiliation(s)
- Satish Kumar
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, 78227, USA.
| | | | | | | | | | | |
Collapse
|
6
|
de Azevedo S, Nocera A, Paschetta C, Castillo L, González M, González-José R. Evaluating microevolutionary models for the early settlement of the New World: the importance of recurrent gene flow with Asia. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2011; 146:539-52. [PMID: 21805463 DOI: 10.1002/ajpa.21564] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 05/03/2011] [Indexed: 11/05/2022]
Abstract
Different scenarios attempting to describe the initial phases of the human dispersal from Asia into the New World have been proposed during the last two decades. However, some aspects concerning the population affinities among early and modern Asians and Native Americans remain controversial. Specifically, contradictory views based mainly on partial evidence such as skull morphology or molecular genetics have led to hypotheses such as the "Two Waves/Components" and "Single Wave" or "Out of Beringia" model, respectively. Alternatively, an integrative scenario considering both morphological and molecular variation has been proposed and named as the "Recurrent Gene Flow" hypothesis. This scenario considers a single origin for all the Native Americans, and local, within-continent evolution plus the persistence of contact among Circum-Arctic groups. Here we analyze 2D geometric morphometric data to evaluate the associations between observed craniometric distance matrix and different geographic design matrices reflecting distinct scenarios for the peopling of the New World using basic and partial Mantel tests. Additionally, we calculated the rate of morphological differentiation between Early and Late American samples under the different settlement scenarios and compared our findings to the predicted morphological differentiation under neutral conditions. Also, we incorporated in our analyses some variants of the classical Single Wave and Two Waves models as well as the Recurrent Gene Flow model. Our results suggest a better explanatory performance of the Recurrent Gene Flow model, and provide additional insights concerning affinities among Asian and Native American Circum-Arctic groups.
Collapse
Affiliation(s)
- Soledad de Azevedo
- Centro Nacional Patagónico, Consejo Nacional de Investigaciones Científicas y Técnicas. Bvd. Brown 2915. U9120ACD. Puerto Madryn, Argentina
| | | | | | | | | | | |
Collapse
|
7
|
KIR gene diversity in Mexican mestizos of San Luis Potosí. Immunogenetics 2011; 63:561-75. [DOI: 10.1007/s00251-011-0540-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 05/19/2011] [Indexed: 10/18/2022]
|
8
|
Malhi RS, Gonzalez-Oliver A, Schroeder KB, Kemp BM, Greenberg JA, Dobrowski SZ, Smith DG, Resendez A, Karafet T, Hammer M, Zegura S, Brovko T. Distribution of Y chromosomes among native North Americans: a study of Athapaskan population history. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2009; 137:412-24. [PMID: 18618732 DOI: 10.1002/ajpa.20883] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this study, 231 Y chromosomes from 12 populations were typed for four diagnostic single nucleotide polymorphisms (SNPs) to determine haplogroup membership and 43 Y chromosomes from three of these populations were typed for eight short tandem repeats (STRs) to determine haplotypes. These data were combined with previously published data, amounting to 724 Y chromosomes from 26 populations in North America, and analyzed to investigate the geographic distribution of Y chromosomes among native North Americans and to test the Southern Athapaskan migration hypothesis. The results suggest that European admixture has significantly altered the distribution of Y chromosomes in North America and because of this caution should be taken when inferring prehistoric population events in North America using Y chromosome data alone. However, consistent with studies of other genetic systems, we are still able to identify close relationships among Y chromosomes in Athapaskans from the Subarctic and the Southwest, suggesting that a small number of proto-Apachean migrants from the Subarctic founded the Southwest Athapaskan populations.
Collapse
Affiliation(s)
- Ripan Singh Malhi
- Department of Anthropology, University of Illinois Urbana-Champaign, IL 61801, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The initial peopling of the Americas has proved one of the most challenging episodes in reconstructing global prehistory, challenging because researchers struggle with the vagaries of early archaeological site preservation, and debates continue over the date and place of human entry, the rapidity and direction of dispersion, and the variety of cultural responses to climatic change during the terminal Pleistocene period. Despite many recent advances in our understanding of these issues, especially in the areas of genetics and new archaeological discoveries, the field continues facing limitations in the sampling and quality of data, the research problems defined, and the epistemologies and theories applied. Theoretical development of first American studies has been uneven, and its contribution to global issues of early human migration has been restricted. This essay discusses what is known and not known about the process of the first peopling of the Americas from the perspective of archaeology, genetics, and bioanthropology. Some approaches to fill voids in data, methods, and the broader conceptualization of the process also are considered.
Collapse
|
10
|
González-José R, Bortolini MC, Santos FR, Bonatto SL. The peopling of America: craniofacial shape variation on a continental scale and its interpretation from an interdisciplinary view. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2008; 137:175-87. [PMID: 18481303 DOI: 10.1002/ajpa.20854] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Twenty-two years ago, Greenberg, Turner and Zegura (Curr. Anthropol. 27,477-495, 1986) suggested a multidisciplinary model for the human settlement of the New World. Since their synthesis, several studies based mainly on partial evidence such as skull morphology and molecular genetics have presented competing, apparently mutually exclusive, settlement hypotheses. These contradictory views are represented by the genetic-based Single Wave or Out of Beringia models and the cranial morphology-based Two Components/Stocks model. Here, we present a geometric morphometric analysis of 576 late Pleistocene/early Holocene and modern skulls suggesting that the classical Paleoamerican and Mongoloid craniofacial patterns should be viewed as extremes of a continuous morphological variation. Our results also suggest that recent contact among Asian and American circumarctic populations took place during the Holocene. These results along with data from other fields are synthesized in a model for the settlement of the New World that considers, in an integrative and parsimonious way, evidence coming from genetics and physical anthropology. This model takes into account a founder population occupying Beringia during the last glaciation characterized by high craniofacial diversity, founder mtDNA and Y-chromosome lineages and some private autosomal alleles. After a Beringian population expansion, which could have occurred concomitant with their entry into America, more recent circumarctic gene flow would have enabled the dispersion of northeast Asian-derived characters and some particular genetic lineages from East Asia to America and vice versa.
Collapse
Affiliation(s)
- Rolando González-José
- Centro Nacional Patagónico, Consejo Nacional de Investigaciones Científicas y Técnicas, U9120ACF Puerto Madryn, Argentina.
| | | | | | | |
Collapse
|
11
|
Fagundes NJ, Kanitz R, Eckert R, Valls AC, Bogo MR, Salzano FM, Smith DG, Silva WA, Zago MA, Ribeiro-dos-Santos AK, Santos SE, Petzl-Erler ML, Bonatto SL. Mitochondrial population genomics supports a single pre-Clovis origin with a coastal route for the peopling of the Americas. Am J Hum Genet 2008; 82:583-92. [PMID: 18313026 PMCID: PMC2427228 DOI: 10.1016/j.ajhg.2007.11.013] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 11/13/2007] [Accepted: 11/29/2007] [Indexed: 11/24/2022] Open
Abstract
It is well accepted that the Americas were the last continents reached by modern humans, most likely through Beringia. However, the precise time and mode of the colonization of the New World remain hotly disputed issues. Native American populations exhibit almost exclusively five mitochondrial DNA (mtDNA) haplogroups (A-D and X). Haplogroups A-D are also frequent in Asia, suggesting a northeastern Asian origin of these lineages. However, the differential pattern of distribution and frequency of haplogroup X led some to suggest that it may represent an independent migration to the Americas. Here we show, by using 86 complete mitochondrial genomes, that all Native American haplogroups, including haplogroup X, were part of a single founding population, thereby refuting multiple-migration models. A detailed demographic history of the mtDNA sequences estimated with a Bayesian coalescent method indicates a complex model for the peopling of the Americas, in which the initial differentiation from Asian populations ended with a moderate bottleneck in Beringia during the last glacial maximum (LGM), around approximately 23,000 to approximately 19,000 years ago. Toward the end of the LGM, a strong population expansion started approximately 18,000 and finished approximately 15,000 years ago. These results support a pre-Clovis occupation of the New World, suggesting a rapid settlement of the continent along a Pacific coastal route.
Collapse
Affiliation(s)
- Nelson J.R. Fagundes
- Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, 91619-900, Brazil
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil
| | - Ricardo Kanitz
- Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, 91619-900, Brazil
| | - Roberta Eckert
- Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, 91619-900, Brazil
| | - Ana C.S. Valls
- Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, 91619-900, Brazil
| | - Mauricio R. Bogo
- Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, 91619-900, Brazil
| | - Francisco M. Salzano
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil
| | - David Glenn Smith
- Molecular Anthropology Laboratory, Department of Anthropology, University of California, Davis, Davis, CA 95616, USA
| | - Wilson A. Silva
- Faculdade de Medicina, Universidade de São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Marco A. Zago
- Faculdade de Medicina, Universidade de São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | | | - Sidney E.B. Santos
- Departamento de Patologia, Universidade Federal do Pará, Belém, PA, 66075-970, Brazil
| | | | - Sandro L. Bonatto
- Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, 91619-900, Brazil
| |
Collapse
|
12
|
Wang S, Lewis CM, Jakobsson M, Ramachandran S, Ray N, Bedoya G, Rojas W, Parra MV, Molina JA, Gallo C, Mazzotti G, Poletti G, Hill K, Hurtado AM, Labuda D, Klitz W, Barrantes R, Bortolini MC, Salzano FM, Petzl-Erler ML, Tsuneto LT, Llop E, Rothhammer F, Excoffier L, Feldman MW, Rosenberg NA, Ruiz-Linares A. Genetic variation and population structure in native Americans. PLoS Genet 2007; 3:e185. [PMID: 18039031 PMCID: PMC2082466 DOI: 10.1371/journal.pgen.0030185] [Citation(s) in RCA: 347] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Accepted: 09/10/2007] [Indexed: 01/04/2023] Open
Abstract
We examined genetic diversity and population structure in the American landmass using 678 autosomal microsatellite markers genotyped in 422 individuals representing 24 Native American populations sampled from North, Central, and South America. These data were analyzed jointly with similar data available in 54 other indigenous populations worldwide, including an additional five Native American groups. The Native American populations have lower genetic diversity and greater differentiation than populations from other continental regions. We observe gradients both of decreasing genetic diversity as a function of geographic distance from the Bering Strait and of decreasing genetic similarity to Siberians--signals of the southward dispersal of human populations from the northwestern tip of the Americas. We also observe evidence of: (1) a higher level of diversity and lower level of population structure in western South America compared to eastern South America, (2) a relative lack of differentiation between Mesoamerican and Andean populations, (3) a scenario in which coastal routes were easier for migrating peoples to traverse in comparison with inland routes, and (4) a partial agreement on a local scale between genetic similarity and the linguistic classification of populations. These findings offer new insights into the process of population dispersal and differentiation during the peopling of the Americas.
Collapse
Affiliation(s)
- Sijia Wang
- The Galton Laboratory, Department of Biology, University College London, London, United Kingdom
| | - Cecil M Lewis
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Mattias Jakobsson
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- Center for Computational Medicine and Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sohini Ramachandran
- Department of Biological Sciences, Stanford University, Stanford, California, United States of America
| | - Nicolas Ray
- Computational and Molecular Population Genetics Lab, University of Bern, Bern, Switzerland
| | - Gabriel Bedoya
- Laboratorio de Genética Molecular, Universidad de Antioquia, Medellín, Colombia
| | - Winston Rojas
- Laboratorio de Genética Molecular, Universidad de Antioquia, Medellín, Colombia
| | - Maria V Parra
- Laboratorio de Genética Molecular, Universidad de Antioquia, Medellín, Colombia
| | - Julio A Molina
- Center for Neurobehavioral Genetics, University of California Los Angeles, Los Angeles, United States of America
| | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Guido Mazzotti
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Giovanni Poletti
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Kim Hill
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Ana M Hurtado
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Damian Labuda
- Département de Pédiatrie, CHU Sainte-Justine, Université de Montréal, Montréal, Quebec, Canada
| | - William Klitz
- School of Public Health, University of California Berkeley, Berkeley, California, United States of America
- Public Health Institute, Oakland, California, United States of America
| | - Ramiro Barrantes
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
| | - Maria Cátira Bortolini
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Francisco M Salzano
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Luiza T Tsuneto
- Departamento de Genética, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Elena Llop
- Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Francisco Rothhammer
- Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile
| | - Laurent Excoffier
- Computational and Molecular Population Genetics Lab, University of Bern, Bern, Switzerland
| | - Marcus W Feldman
- Department of Biological Sciences, Stanford University, Stanford, California, United States of America
| | - Noah A Rosenberg
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- Center for Computational Medicine and Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Andrés Ruiz-Linares
- The Galton Laboratory, Department of Biology, University College London, London, United Kingdom
| |
Collapse
|
13
|
Battilana J, Fagundes NJR, Heller AH, Goldani A, Freitas LB, Tarazona-Santos E, Munkhbat B, Munkhtuvshin N, Krylov M, Benevolenskaia L, Arnett FC, Batzer MA, Deininger PL, Salzano FM, Bonatto SL. Alu insertion polymorphisms in Native Americans and related Asian populations. Ann Hum Biol 2006; 33:142-60. [PMID: 16684689 DOI: 10.1080/03014460500487347] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Alu insertions provide useful markers for the study of inter-population affinities and historical processes, but data on these systems are not numerous in Native Americans and related populations. AIM The study aimed to answer the following questions: (a) do the population relationships found agree with ethnic, historical and geographical data? and (b) what can heterozygote levels and associated results inform us about the events that led to the colonization of the New World? SUBJECTS AND METHODS Twelve Alu insertion polymorphisms were studied in 330 individuals belonging to South American Native, Siberian and Mongolian populations. These data were integrated with those from 526 persons, to ascertain the relationships between Asian, Northern Arctic and Amerindian populations. RESULTS A decreasing trend concerning heterozygosities and amount of gene flow was observed in the three sets, in the order indicated above. Most results indicated the validity of these subdivisions. However, no clear structure could be observed within South American Natives, indicating the importance of dispersive (genetic drift, founder effects) factors in their differentiation. CONCLUSIONS The answers to the questions are: (a) yes; and (b) an initial moderate bottleneck, intensified by more recent historical events (isolation and inbreeding), can explain the current Amerindian pattern of diversity.
Collapse
Affiliation(s)
- Jaqueline Battilana
- Centro de Biologia Genômica e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Faculdade de Biociências, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hey J. On the number of New World founders: a population genetic portrait of the peopling of the Americas. PLoS Biol 2005; 3:e193. [PMID: 15898833 PMCID: PMC1131883 DOI: 10.1371/journal.pbio.0030193] [Citation(s) in RCA: 270] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Accepted: 03/25/2005] [Indexed: 12/03/2022] Open
Abstract
The founding of New World populations by Asian peoples is the focus of considerable archaeological and genetic research, and there persist important questions on when and how these events occurred. Genetic data offer great potential for the study of human population history, but there are significant challenges in discerning distinct demographic processes. A new method for the study of diverging populations was applied to questions on the founding and history of Amerind-speaking Native American populations. The model permits estimation of founding population sizes, changes in population size, time of population formation, and gene flow. Analyses of data from nine loci are consistent with the general portrait that has emerged from archaeological and other kinds of evidence. The estimated effective size of the founding population for the New World is fewer than 80 individuals, approximately 1% of the effective size of the estimated ancestral Asian population. By adding a splitting parameter to population divergence models it becomes possible to develop detailed portraits of human demographic history. Analyses of Asian and New World data support a model of a recent founding of the New World by a population of quite small effective size.
Collapse
Affiliation(s)
- Jody Hey
- Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA.
| |
Collapse
|
15
|
Dugoujon JM, Hazout S, Loirat F, Mourrieras B, Crouau-Roy B, Sanchez-Mazas A. GM haplotype diversity of 82 populations over the world suggests a centrifugal model of human migrations. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2004; 125:175-92. [PMID: 15365983 DOI: 10.1002/ajpa.10405] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This study investigates the GM genetic relationships of 82 human populations, among which 10 represent original data, within and among the main broad geographic areas of the world. Different approaches are used: multidimensional scaling analysis and test for isolation by distance, to assess the correlation between genetic variation and spatial distributions; analysis of variance, to investigate the genetic structure at different hierarchical levels of population subdivision; genetic similarity map (geographic map distorted by available genetic information), to identify regions of high and low genetic variation; and minimal spanning network, to point out possible migration routes across continental areas. The results show that the GM polymorphism is characterized by one of the highest amounts of genetic variation observed so far among populations of different continents (Fct=0.3915, P < 0.0001). GM diversity can be explained by a model of isolation by distance (IBD) at most continental levels, with a particularly significant fit to IBD for the Middle East and Europe. Five peripheral regions of the world (Europe, west and south sub-Saharan Africa, Southeast Asia, and America) exhibit a low level of genetic diversity both within and among populations. By contrast, East and North African, Southwest Asian, and Northeast Asian populations are highly diverse and interconnected genetically by large genetic distances. Therefore, the observed GM variation can be explained by a "centrifugal model" of modern humans peopling history, involving ancient dispersals across a large intercontinental area spanning from East Africa to Northeast Asia, followed by recent migrations in peripheral geographic regions.
Collapse
Affiliation(s)
- Jean-Michel Dugoujon
- Laboratory of Anthropobiology, Anthropology Center, UMR 8555 CNRS, 31000 Toulouse, France
| | | | | | | | | | | |
Collapse
|
16
|
Bandelt HJ, Herrnstadt C, Yao YG, Kong QP, Kivisild T, Rengo C, Scozzari R, Richards M, Villems R, Macaulay V, Howell N, Torroni A, Zhang YP. Identification of Native American founder mtDNAs through the analysis of complete mtDNA sequences: some caveats. Ann Hum Genet 2004; 67:512-24. [PMID: 14641239 DOI: 10.1046/j.1469-1809.2003.00049.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study, a detailed analysis of both previously published and new data was performed to determine whether complete, or almost complete, mtDNA sequences can resolve the long-debated issue of which Asian mtDNAs were founder sequences for the Native American mtDNA pool. Unfortunately, we now know that coding region data and their analysis are not without problems. To obtain and report reasonably correct sequences does not seem to be a trivial task, and to discriminate between Asian and Native American mtDNA ancestries may be more complex than previously believed. It is essential to take into account the effects of mutational hot spots in both the control and coding regions, so that the number of apparent Native American mtDNA founder sequences is not erroneously inflated. As we report here, a careful analysis of all available data indicates that there is very little evidence that more than five founder mtDNA sequences entered Beringia before the Last Glacial Maximum and left their traces in the current Native American mtDNA pool.
Collapse
Affiliation(s)
- H-J Bandelt
- Fachbereich Mathematik, Universität Hamburg, Hamburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bortolini MC, Salzano FM, Thomas MG, Stuart S, Nasanen SPK, Bau CHD, Hutz MH, Layrisse Z, Petzl-Erler ML, Tsuneto LT, Hill K, Hurtado AM, Castro-de-Guerra D, Torres MM, Groot H, Michalski R, Nymadawa P, Bedoya G, Bradman N, Labuda D, Ruiz-Linares A. Y-chromosome evidence for differing ancient demographic histories in the Americas. Am J Hum Genet 2003; 73:524-39. [PMID: 12900798 PMCID: PMC1180678 DOI: 10.1086/377588] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2003] [Accepted: 06/18/2003] [Indexed: 11/03/2022] Open
Abstract
To scrutinize the male ancestry of extant Native American populations, we examined eight biallelic and six microsatellite polymorphisms from the nonrecombining portion of the Y chromosome, in 438 individuals from 24 Native American populations (1 Na Dené and 23 South Amerinds) and in 404 Mongolians. One of the biallelic markers typed is a recently identified mutation (M242) characterizing a novel founder Native American haplogroup. The distribution, relatedness, and diversity of Y lineages in Native Americans indicate a differentiated male ancestry for populations from North and South America, strongly supporting a diverse demographic history for populations from these areas. These data are consistent with the occurrence of two major male migrations from southern/central Siberia to the Americas (with the second migration being restricted to North America) and a shared ancestry in central Asia for some of the initial migrants to Europe and the Americas. The microsatellite diversity and distribution of a Y lineage specific to South America (Q-M19) indicates that certain Amerind populations have been isolated since the initial colonization of the region, suggesting an early onset for tribalization of Native Americans. Age estimates based on Y-chromosome microsatellite diversity place the initial settlement of the American continent at approximately 14,000 years ago, in relative agreement with the age of well-established archaeological evidence.
Collapse
|
18
|
García-Bour J, Pérez-Pérez A, Alvarez S, Fernández E, López-Parra AM, Arroyo-Pardo E, Turbón D. Early population differentiation in extinct aborigines from Tierra del Fuego-Patagonia: Ancient mtDNA sequences and Y-Chromosome STR characterization. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2003; 123:361-70. [PMID: 15022364 DOI: 10.1002/ajpa.10337] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ancient mtDNA was successfully recovered from 24 skeletal samples of a total of 60 ancient individuals from Patagonia-Tierra del Fuego, dated to 100-400 years BP, for which consistent amplifications and two-strand sequences were obtained. Y-chromosome STRs (DYS434, DYS437, DYS439, DYS393, DYS391, DYS390, DYS19, DYS389I, DYS389II, and DYS388) and the biallelic system DYS199 were also amplified, Y-STR alleles could be characterized in nine cases, with an average of 4.1 loci per sample correctly typed. In two samples of the same ethnic group (Aonikenk), an identical and complete eight-loci haplotype was recovered. The DYS199 biallelic system was used as a control of contamination by modern DNA and, along with DYS19, as a marker of American origin. The analysis of both mtDNA and Y-STRs revealed DNA from Amerindian ancestry. The observed polymorphisms are consistent with the hypothesis that the ancient Fuegians are close to populations from south-central Chile and Argentina, but their high nucleotide diversity and the frequency of single lineages strongly support early genetic differentiation of the Fuegians through combined processes of population bottleneck, isolation, and/or migration, followed by strong genetic drift. This suggests an early genetic diversification of the Fuegians right after their arrival at the southernmost extreme of South America.
Collapse
Affiliation(s)
- Jaume García-Bour
- Secció d'Antropologia, Departament de Biologia Animal, Universitat de Barcelona, E-08028 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Until recently, the Y chromosome seemed to fulfil the role of juvenile delinquent among human chromosomes--rich in junk, poor in useful attributes, reluctant to socialize with its neighbours and with an inescapable tendency to degenerate. The availability of the near-complete chromosome sequence, plus many new polymorphisms, a highly resolved phylogeny and insights into its mutation processes, now provide new avenues for investigating human evolution. Y-chromosome research is growing up.
Collapse
Affiliation(s)
- Mark A Jobling
- Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH, UK.
| | | |
Collapse
|
20
|
|