1
|
Köksal Z, Børsting C, Bailliet G, Burgos G, Carvalho E, Casas-Vargas A, Castillo A, Gomes MB, Martínez B, Ossa H, Parolin ML, Quiroz A, Toscanini U, Usaquén W, Velázquez IF, Vullo C, Gusmão L, Pereira V. Application of Targeted Y-Chromosomal Capture Enrichment to Increase the Resolution of Native American Haplogroup Q. Hum Mutat 2024; 2024:3046495. [PMID: 40225924 PMCID: PMC11918922 DOI: 10.1155/2024/3046495] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 04/17/2024] [Accepted: 07/15/2024] [Indexed: 04/15/2025]
Abstract
Y-chromosomal haplogroups and the Y-SNPs defining them are relevant for the exploration of male lineages, inference of paternal ancestry, and reconstruction of migration pathways, to name a few. Currently, over 300,000 Y-SNPs have been reported, defining 20 main haplogroups. However, ascertainment bias in the investigations has led to some haplogroups being overlooked, which hinders a representative depiction of certain populations and their migration events. For migration pattern analyses of the first settlers of the Americas, the Native American main founding lineage Q-M3 needs to be further investigated to allow clear genetic differentiation of individuals of different ethnogeographic origins. To increase the resolution within this haplogroup, a total of 7.45 Mb of the Y chromosome of 59 admixed South Americans of haplogroup Q was targeted for sequencing using hybridization capture enrichment. Data were combined with 218 publicly available sequences of Central and South Americans of haplogroup Q. After rigorous data processing, variants not meeting the quality criteria were excluded and 4128 reliable Y-SNPs were reported. A total of 2224 Y-SNPs had previously unknown positions in the phylogenetic tree, and 1291 of these are novel. The phylogenetic relationships between the Y-SNPs were established using the software SNPtotree in order to report a redesigned phylogenetic tree containing 300 branches, defined by 3400 Y-SNPs. The new tree introduces 117 previously undescribed branches and is the most comprehensive phylogenetic tree of the Native American haplogroup Q lineages to date. The 214 sequences were assigned to 135 different low- to high-resolution branches, while in the previous phylogenetic tree, only 195 sequences could be sorted into 14 low-resolution branches with the same quality criteria. The improved genetic differentiation of subhaplogroup Q-M3 has a great potential to resolve migration patterns of Native Americans.
Collapse
Affiliation(s)
- Zehra Köksal
- Section of Forensic GeneticsDepartment of Forensic MedicineFaculty of Health and Medical SciencesUniversity of Copenhagen, Copenhagen, Denmark
| | - Claus Børsting
- Section of Forensic GeneticsDepartment of Forensic MedicineFaculty of Health and Medical SciencesUniversity of Copenhagen, Copenhagen, Denmark
| | - Graciela Bailliet
- Instituto Multidisciplinario de Biología CelularUniversidad Nacional de La PlataCCT-CONICET-La PlataCIC, La Plata, Argentina
| | - Germán Burgos
- One Health Global Research GroupFacultad de MedicinaUniversidad de Las Américas (UDLA), Quito, Ecuador
- Grupo de Medicina XenómicaUniversidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Elizeu Carvalho
- DNA Diagnostic Laboratory (LDD)State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Andrea Casas-Vargas
- Grupo de Genética de Poblaciones e IdentificaciónInstituto de GenéticaUniversidad Nacional de Colombia, Bogotá, Colombia
| | - Adriana Castillo
- Department of Basic SciencesUniversidad Industrial de Santander (UIS), Bucaramanga, Colombia
| | - Marilia Brito Gomes
- Department of Internal MedicineDiabetes UnitState University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Beatriz Martínez
- Instituto de Investigaciones InmunológicasUniversidad de Cartagena, Cartagena, Colombia
| | - Humberto Ossa
- Department of HematologyInstituto de PrevisiónLaboratório de Genética y Biología Molecular, Asunción, Paraguay
- Facultad de CienciasPontificia Universidad Javeriana, Bogotá, Colombia
| | - María Laura Parolin
- Instituto de Diversidad y Evolución Austral (IDEAus)Centro Nacional PatagónicoCONICET, Puerto Madryn, Argentina
| | | | - Ulises Toscanini
- Primer Centro Argentino de Inmunogenética (PRICAI)Fundación Favaloro, Buenos Aires, Argentina
| | - William Usaquén
- Grupo de Genética de Poblaciones e IdentificaciónInstituto de GenéticaUniversidad Nacional de Colombia, Bogotá, Colombia
| | - Irina F. Velázquez
- Instituto de Diversidad y Evolución Austral (IDEAus)Centro Nacional PatagónicoCONICET, Puerto Madryn, Argentina
| | - Carlos Vullo
- DNA Forensic LaboratoryEquipo Argentino de Antropología Forense (EAAF), Córdoba, Argentina
| | - Leonor Gusmão
- DNA Diagnostic Laboratory (LDD)State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Vania Pereira
- Section of Forensic GeneticsDepartment of Forensic MedicineFaculty of Health and Medical SciencesUniversity of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Espitia Fajardo M, Rivera Franco N, Braga Y, Barreto G. New Y-SNPs in QM3 indigenous populations of Colombia. PLoS One 2023; 18:e0294516. [PMID: 38055663 PMCID: PMC10699635 DOI: 10.1371/journal.pone.0294516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/01/2023] [Indexed: 12/08/2023] Open
Abstract
In evolutionary studies of human populations based on the Y chromosome, the majority of Native Americans belong to the QM3 lineage. Therefore, to study the history of groups inhabiting northern South America, it is necessary to have a higher resolution of the tree. The objective of this work was to identify new SNPs of the QM3 lineage that would allow the evaluation of the phylogenetic relationships between Andean and Amazonian populations of Colombia. Sequences previously obtained from two Y chromosomes of Amazonian populations were used, from which 13 potential SNPs were selected and typed in 171 Amazonian samples from the Vaupés region and in 60 samples from the Pasto, Nasa, Embera, Arhuaco and Kogüi ethnic groups of the Andean region. In addition, the main SNPs/markers (L56, L54, M346, M848, Z780, CTS11780) defining autochthonous Q lineages were typed, along with others defined by different SNPs/markers as reported in the literature (CTS11357, SA05, Z19319, Z5915, and Z19384). It was found that all the new SNPs are present in the Amazonian samples and only 2 of them are shared with the Embera, Nasa and Pasto, but none with the Kogüi and Arhuaco from the northern Andes, in the Colombian Caribbean. Combining the 13 variants of the present study with 14 previously reported and using TMRCA, a new QM3 tree proposal is generated. This method makes it possible to increase the number of sublineages of QM3 with a higher resolution and to detect differences between the different populations of Vaupés in the Amazon, as in the case of the Kubeos and Pisamiras, the latter of which is in grave danger of extinction. These new sublineages are useful for microevolutionary studies of the Amerindian populations of South America.
Collapse
Affiliation(s)
- Marisol Espitia Fajardo
- Laboratory of Human Molecular Genetics, Biology Department, Universidad del Valle, Cali, Colombia
| | - Nelson Rivera Franco
- Laboratory of Human Molecular Genetics, Biology Department, Universidad del Valle, Cali, Colombia
| | - Yamid Braga
- Laboratory of Human Molecular Genetics, Biology Department, Universidad del Valle, Cali, Colombia
- Research Group in Biology, Languages and History, IMGB, Corpodihva, Mitú, Colombia
| | - Guillermo Barreto
- Laboratory of Human Molecular Genetics, Biology Department, Universidad del Valle, Cali, Colombia
| |
Collapse
|
3
|
Paz Sepúlveda PB, Mayordomo AC, Sala C, Sosa EJ, Zaiat JJ, Cuello M, Schwab M, Rodríguez Golpe D, Aquilano E, Santos MR, Dipierri JE, Alfaro Gómez EL, Bravi CM, Muzzio M, Bailliet G. Human Y chromosome sequences from Q Haplogroup reveal a South American settlement pre-18,000 years ago and a profound genomic impact during the Younger Dryas. PLoS One 2022; 17:e0271971. [PMID: 35976870 PMCID: PMC9385064 DOI: 10.1371/journal.pone.0271971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
The settlement of the Americas has been the focus of incessant debate for more than 100 years, and open questions regarding the timing and spatial patterns of colonization still remain today. Phylogenetic studies with complete human Y chromosome sequences are used as a highly informative tool to investigate the history of human populations in a given time frame. To study the phylogenetic relationships of Native American lineages and infer the settlement history of the Americas, we analyzed Y chromosome Q Haplogroup, which is a Pan-American haplogroup and represents practically all Native American lineages in Mesoamerica and South America. We built a phylogenetic tree for Q Haplogroup based on 102 whole Y chromosome sequences, of which 13 new Argentine sequences were provided by our group. Moreover, 1,072 new single nucleotide polymorphisms (SNPs) that contribute to its resolution and diversity were identified. Q-M848 is known to be the most frequent autochthonous sub-haplogroup of the Americas. The present is the first genomic study of Q Haplogroup in which current knowledge on Q-M848 sub-lineages is contrasted with the historical, archaeological and linguistic data available. The divergence times, spatial structure and the SNPs found here as novel for Q-Z780, a less frequent sub-haplogroup autochthonous of the Americas, provide genetic support for a South American settlement before 18,000 years ago. We analyzed how environmental events that occurred during the Younger Dryas period may have affected Native American lineages, and found that this event may have caused a substantial loss of lineages. This could explain the current low frequency of Q-Z780 (also perhaps of Q-F4674, a third possible sub-haplogroup autochthonous of the Americas). These environmental events could have acted as a driving force for expansion and diversification of the Q-M848 sub-lineages, which show a spatial structure that developed during the Younger Dryas period.
Collapse
Affiliation(s)
- Paula B. Paz Sepúlveda
- Instituto Multidisciplinario de Biología Celular, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Comisión de Investigaciones Científicas, La Plata, Buenos Aires, Argentina
| | - Andrea Constanza Mayordomo
- Instituto Multidisciplinario de Biología Celular, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Comisión de Investigaciones Científicas, La Plata, Buenos Aires, Argentina
- Programa de Cáncer Hereditario, Hospital Italiano de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Camila Sala
- Instituto Multidisciplinario de Biología Celular, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Comisión de Investigaciones Científicas, La Plata, Buenos Aires, Argentina
| | - Ezequiel Jorge Sosa
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Jonathan Javier Zaiat
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Mariela Cuello
- Instituto Multidisciplinario de Biología Celular, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Comisión de Investigaciones Científicas, La Plata, Buenos Aires, Argentina
| | - Marisol Schwab
- Instituto Multidisciplinario de Biología Celular, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Comisión de Investigaciones Científicas, La Plata, Buenos Aires, Argentina
| | - Daniela Rodríguez Golpe
- Instituto Multidisciplinario de Biología Celular, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Comisión de Investigaciones Científicas, La Plata, Buenos Aires, Argentina
| | - Eliana Aquilano
- Instituto Multidisciplinario de Biología Celular, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Comisión de Investigaciones Científicas, La Plata, Buenos Aires, Argentina
| | - María Rita Santos
- Instituto Multidisciplinario de Biología Celular, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Comisión de Investigaciones Científicas, La Plata, Buenos Aires, Argentina
| | - José Edgardo Dipierri
- Instituto de Biología de la Altura, Facultad de Humanidades y Ciencias Sociales, Universidad Nacional de Jujuy, San Salvador de Jujuy, Jujuy, Argentina
| | - Emma L. Alfaro Gómez
- Instituto de Biología de la Altura, Facultad de Humanidades y Ciencias Sociales, Universidad Nacional de Jujuy, San Salvador de Jujuy, Jujuy, Argentina
- Instituto de Ecorregiones Andinas, Universidad Nacional de Jujuy, San Salvador de Jujuy, Jujuy, Argentina
| | - Claudio M. Bravi
- Instituto Multidisciplinario de Biología Celular, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Comisión de Investigaciones Científicas, La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Marina Muzzio
- Instituto Multidisciplinario de Biología Celular, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Comisión de Investigaciones Científicas, La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Graciela Bailliet
- Instituto Multidisciplinario de Biología Celular, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Comisión de Investigaciones Científicas, La Plata, Buenos Aires, Argentina
| |
Collapse
|
4
|
Reyes-Madrid M, Flores-Alvarado S, Pezo-Valderrama P, Orellana-Soto M, Apata M, Moraga M, de Saint Pierre M. An approach on the migratory processes in the north of Chile based on Y chromosome analysis. Am J Hum Biol 2022; 34:e23736. [PMID: 35263492 DOI: 10.1002/ajhb.23736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/23/2021] [Accepted: 02/12/2022] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES Northern Chile is an area characterized by a complex cultural and demographic trajectory. During the last few centuries, this complex trajectory has become the destination of intra- and intercontinental migratory waves. In this study, we analyzed the Y chromosome to evaluate how migratory and admixture patterns have affected the genetic composition of the populations in northern Chile compared with other populations of the country. METHODS A total of 311 people from urban (Antofagasta and Calama), rural (Azapa and Camarones), and Native (Aymara and Atacameño) populations from northern Chile were characterized by 26 SNPs and the STR DYS393 of the Y chromosome, along with 69 individuals from Native populations (Mapuche, Pehuenche, and Huilliche) from southern Chile. In addition to characterizing the paternal lineages, multivariate analyses were performed to compare with published data from other Chilean populations. RESULTS Both the Antofagasta and Calama populations show differences compared with the rest of the Chilean population. On one side, Antofagasta shows a high diversity of non-Amerindian lineages, including the highest value for haplogroup I (12%) for all Chileans populations. Otherwise, Calama has the highest value of any Chilean urban population (31.9%) for Amerindian lineages, including the only Q-M3 sub-lineage detected in the entire sample. Regarding the Native population, Aymara presents the highest percentage of Q-M3 (94.4%). CONCLUSIONS The Y chromosome haplogroup distribution allowed us to identify recent migratory processes typical of the northern populations studied. These have shaped the demographic and cultural dynamics of local and migrant groups in the territory.
Collapse
Affiliation(s)
- Margarita Reyes-Madrid
- Departamento de Antropología, Facultad de Ciencias Sociales, Universidad de Chile, Santiago, Chile
| | - Sandra Flores-Alvarado
- Programa de Bioestadística, Instituto de Salud Pública, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | - Michael Orellana-Soto
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mario Apata
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mauricio Moraga
- Departamento de Antropología, Facultad de Ciencias Sociales, Universidad de Chile, Santiago, Chile.,Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Michelle de Saint Pierre
- Departamento de Antropología, Facultad de Ciencias Sociales, Universidad de Chile, Santiago, Chile
| |
Collapse
|
5
|
Joerin-Luque IA, Augusto DG, Calonga-Solís V, de Almeida RC, Lopes CVG, Petzl-Erler ML, Beltrame MH. Uniparental markers reveal new insights on subcontinental ancestry and sex-biased admixture in Brazil. Mol Genet Genomics 2022; 297:419-435. [DOI: 10.1007/s00438-022-01857-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
|
6
|
Gómez R, Vilar MG, Meraz-Ríos MA, Véliz D, Zúñiga G, Hernández-Tobías EA, Figueroa-Corona MDP, Owings AC, Gaieski JB, Schurr TG. Y chromosome diversity in Aztlan descendants and its implications for the history of Central Mexico. iScience 2021; 24:102487. [PMID: 34036249 PMCID: PMC8138773 DOI: 10.1016/j.isci.2021.102487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/08/2020] [Accepted: 04/27/2021] [Indexed: 11/16/2022] Open
Abstract
Native Mexican populations are crucial for understanding the genetic ancestry of Aztec descendants and coexisting ethnolinguistic groups in the Valley of Mexico and elucidating the population dynamics of the prehistoric colonization of the Americas. Mesoamerican societies were multicultural in nature and also experienced significant admixture during Spanish colonization of the region. Despite these facts, Native Mexican Y chromosome diversity has been greatly understudied. To further elucidate their genetic history, we conducted a high-resolution Y chromosome analysis with Chichimecas, Nahuas, Otomies, Popolocas, Tepehuas, and Totonacas using 19 Y-short tandem repeat and 21 single nucleotide polymorphism loci. We detected enormous paternal genetic diversity in these groups, with haplogroups Q-MEH2, Q-M3, Q-Z768, Q-L663, Q-Z780, and Q-PV3 being identified. These data affirmed the southward colonization of the Americas via Beringia and connected Native Mexicans with indigenous populations from South-Central Siberia and Canada. They also suggested that multiple population dispersals gave rise to Y chromosome diversity in these populations. Enormous Y chromosome diversity observed in Native Mexican populations. Haplogroups Q-MEH2, Q-M3, Q-Z768, Q-L663, Q-Z780, and Q-PV3 were identified. Patterns of Y chromosome diversity not shaped by ethnicity, geography, or language. Multiple population dispersals contributed to Y chromosome diversity in Mexico.
Collapse
Affiliation(s)
- Rocío Gómez
- Departamento de Toxicología, CINVESTAV-IPN, Mexico City 07360, Mexico
| | - Miguel G Vilar
- Department of Anthropology, University of Pennsylvania, Philadelphia, PA 19104-6398, USA.,National Geographic Society, Washington, DC 20005, USA
| | | | - David Véliz
- Departamento de Ciencias Ecológicas, Instituto de Ecología y Biodiversidad, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile.,Núcleo Milenio de Ecología y Manejo Sustentable de Islas Oceánicas, Departamento de Biología Marina, Universidad Católica del Norte, Coquimbo 1781421, Chile
| | - Gerardo Zúñiga
- Departamento de Zoología, Laboratorio de Variación Biológica y Evolución, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | | | | | - Amanda C Owings
- Department of Anthropology, University of Pennsylvania, Philadelphia, PA 19104-6398, USA
| | - Jill B Gaieski
- Department of Anthropology, University of Pennsylvania, Philadelphia, PA 19104-6398, USA
| | - Theodore G Schurr
- Department of Anthropology, University of Pennsylvania, Philadelphia, PA 19104-6398, USA
| | | |
Collapse
|
7
|
Sun J, Ma PC, Cheng HZ, Wang CZ, Li YL, Cui YQ, Yao HB, Wen SQ, Wei LH. Post-last glacial maximum expansion of Y-chromosome haplogroup C2a-L1373 in northern Asia and its implications for the origin of Native Americans. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 174:363-374. [PMID: 33241578 DOI: 10.1002/ajpa.24173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 10/10/2020] [Accepted: 11/04/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Subbranches of Y-chromosome haplogroup C2a-L1373 are founding paternal lineages in northern Asia and Native American populations. Our objective was to investigate C2a-L1373 differentiation in northern Asia and its implications for Native American origins. MATERIALS AND METHODS Sequences of rare subbranches (n = 43) and ancient individuals (n = 37) of C2a-L1373 (including P39 and MPB373), were used to construct phylogenetic trees with age estimation by BEAST software. RESULTS C2a-L1373 expanded rapidly approximately 17.7,000-14.3,000 years ago (kya) after the last glacial maximum (LGM), generating numerous sublineages which became founding paternal lineages of modern northern Asian and Native American populations (C2a-P39 and C2a-MPB373). The divergence pattern supports possible initiation of differentiation in low latitude regions of northern Asia and northward diffusion after the LGM. There is a substantial gap between the divergence times of C2a-MPB373 (approximately 22.4 or 17.7 kya) and C2a-P39 (approximately 14.3 kya), indicating two possible migration waves. DISCUSSION We discussed the decreasing time interval of "Beringian standstill" (2.5 ky or smaller) and its reduced significance. We also discussed the multiple possibilities for the peopling of the Americas: the "Long-term Beringian standstill model," the "Short-term Beringian standstill model," and the "Multiple waves of migration model." Our results support the argument from ancient DNA analyses that the direct ancestor group of Native Americans is an admixture of "Ancient Northern Siberians" and Paleolithic communities from the Amur region, which appeared during the post-LGM era, rather than ancient populations in greater Beringia, or an adjacent region, before the LGM.
Collapse
Affiliation(s)
- Jin Sun
- Department of Anthropology and Ethnology, Institute of Anthropology, Xiamen University, Xiamen, China
- Xingyi Normal University for Nationalities, Xingyi, China
| | - Peng-Cheng Ma
- School of Life Sciences, Jilin University, Changchun, China
| | - Hui-Zhen Cheng
- Department of Anthropology and Ethnology, Institute of Anthropology, Xiamen University, Xiamen, China
| | - Chi-Zao Wang
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yong-Lan Li
- School of Ethnology and Anthropology, Inner Mongolia Normal University, Hohhot, China
| | - Yin-Qiu Cui
- School of Life Sciences, Jilin University, Changchun, China
| | - Hong-Bin Yao
- Key Laboratory of Evidence Science of Gansu Province, Gansu University of Political Science and Law, Lanzhou, China
| | - Shao-Qing Wen
- Institute of Archaeological Science, Fudan University, Shanghai, China
- B&R International Joint Laboratory for Eurasian Anthropology, Fudan University, Shanghai, China
| | - Lan-Hai Wei
- Department of Anthropology and Ethnology, Institute of Anthropology, Xiamen University, Xiamen, China
- B&R International Joint Laboratory for Eurasian Anthropology, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Mogollón Olivares F, Moncada Madero J, Casas-Vargas A, Zea Montoya S, Suárez Medellín D, Gusmão L, Usaquén W. Contrasting the ancestry patterns of three distinct population groups from the northernmost region of South America. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 173:437-447. [PMID: 32856314 DOI: 10.1002/ajpa.24130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 01/15/2023]
Abstract
Colombia, located in the north of the South American subcontinent is a country of great interest for population genetic studies given its high ethnic and cultural diversity represented by the admixed population, 102 indigenous peoples and African descent populations. In this study, an analysis of the genetic structure and ancestry was performed based on 46 ancestry informative INDEL markers (AIM-INDELs) and considering the genealogical and demographic variables of 451 unrelated individuals belonging to nine Native American, two African American, and four multiple ancestry populations. Measures of genetic diversity, ancestry components, and genetic substructure were analyzed to build a population model typical of the northernmost part of the South American continent. The model suggests three types of populations: Native American, African American, and multiple ancestry. The results support hypotheses posed by other authors about issues like the peopling of South America and the existence of two types of Native American ancestry. This last finding could be crucial for future research on the peopling of Colombia and South America in that a single origin of all indigenous communities should not be assumed. It then would be necessary to consider other events that could explain their genetic variability and complexity throughout the continent.
Collapse
Affiliation(s)
| | - Julie Moncada Madero
- Population Genetics and Identification Group, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Andrea Casas-Vargas
- Population Genetics and Identification Group, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Sara Zea Montoya
- Population Genetics and Identification Group, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Dayana Suárez Medellín
- Population Genetics and Identification Group, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Leonor Gusmão
- DNA Diagnostic Laboratory, Universidade do Estado de Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - William Usaquén
- Population Genetics and Identification Group, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
9
|
Vargas-Robles D, Morales N, Rodríguez I, Nieves T, Godoy-Vitorino F, Alcaraz LD, Pérez ME, Ravel J, Forney LJ, Domínguez-Bello MG. Changes in the vaginal microbiota across a gradient of urbanization. Sci Rep 2020; 10:12487. [PMID: 32719372 PMCID: PMC7385657 DOI: 10.1038/s41598-020-69111-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 06/17/2020] [Indexed: 12/27/2022] Open
Abstract
The vaginal microbiota of healthy women typically has low diversity, which increases after perturbations. Among these, lifestyle associated with certain sexual and antimicrobial practices may be associated with higher diversity. To test this hypothesis, we characterized the vaginal microbiota in the cervicovaginal and introital sites in sexually active Amerindians (N = 82) spanning urbanization, and in urban mestizos (N = 29), in the Venezuelan Amazonas. HPV status was also considered. Sampling was performed in an urban gradient from remote villages to a town, and women were individually classified by the degree of urbanization (low, medium, and high). Amerindian cervicovaginal and introital microbiota diversity were not associated with major changes in urbanization or ethnicity. There was a non-significant trend of increased diversity with urbanization, with a few taxa found overrepresented in urban Amerindians (Brevibacterium linens and Peptoniphilus lacrimalis) or mestizos (Mobiluncus mulieris and Prevotella sp.). Among all women, cervicovaginal and introital samples clustered, respectively, in four and two community state types (CSTs), where most profiles were dominated by Lactobacillus iners, Gardnerella vaginalis or were highly diverse profiles. HPV status did not associate with microbial diversity. In conclusion, no association was found between urban level and the vaginal microbiome in Amerindian women, and little difference was found between ethnicities. L. iners and high diversity profiles, associated with vaginal health outcomes, prevail in these populations.
Collapse
Affiliation(s)
- Daniela Vargas-Robles
- Department of Biology, University of Puerto Rico, San Juan, PR, USA.,Servicio Autónomo Centro Amazónico de Investigación y Control de Enfermedades Tropicales Simón Bolívar, MPPS, Puerto Ayacucho, Venezuela
| | - Natalia Morales
- Servicio Autónomo Centro Amazónico de Investigación y Control de Enfermedades Tropicales Simón Bolívar, MPPS, Puerto Ayacucho, Venezuela
| | - Iveth Rodríguez
- Ministerio del Poder Popular Para La Salud, Caracas, Venezuela
| | - Tahidid Nieves
- Servicio Autónomo Centro Amazónico de Investigación y Control de Enfermedades Tropicales Simón Bolívar, MPPS, Puerto Ayacucho, Venezuela
| | - Filipa Godoy-Vitorino
- Department of Microbiology & Medical Zoology, School of Medicine, University of Puerto Rico, San Juan, PR, USA
| | - Luis David Alcaraz
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María-Eglée Pérez
- Department of Mathematics, University of Puerto Rico, San Juan, PR, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, USA
| | - Larry J Forney
- Department of Biological Sciences and the Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, USA
| | - María Gloria Domínguez-Bello
- Department of Medicine, New York University School of Medicine, New York, USA. .,Departments of Biochemistry and Microbiology and of Anthropology, Rutgers University, New Brunswick, USA.
| |
Collapse
|
10
|
Mountford HS, Villanueva P, Fernández MA, Jara L, De Barbieri Z, Carvajal-Carmona LG, Cazier JB, Newbury DF. The Genetic Population Structure of Robinson Crusoe Island, Chile. Front Genet 2020; 11:669. [PMID: 32676101 PMCID: PMC7333314 DOI: 10.3389/fgene.2020.00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/02/2020] [Indexed: 11/30/2022] Open
Abstract
Studies examining genetic conditions common in Latin America are highly underrepresented in the scientific literature. Understanding of the population structure is limited, particularly Chile, in part due to the lack of available population specific data. An important first-step in elucidating disease mechanisms in Latin America countries is to understand the genetic structure of isolated populations. Robinson Crusoe Island (RCI) is a small land mass off the coast of Chile. The current population of over 900 inhabitants are primarily descended from a small number of founders who colonized the island in the late 1800s. Extensive genealogical records can trace the ancestry of almost the entire population. We perform a comprehensive genetic analysis to investigate the ancestry of the island population, examining ancestral mitochondrial and Y chromosome haplogroups, as well as autosomal admixture. Mitochondrial and Y chromosome haplogroups indicated a substantial European genetic contribution to the current RCI population. Analysis of the mitochondrial haplogroups found in the present-day population revealed that 79.1% of islanders carried European haplogroups, compared to 60.0% of the mainland Chilean controls from Santiago. Both groups showed a substantially lower contribution of indigenous haplogroups than expected. Analysis of the Y chromosome haplogroups also showed predominantly European haplogroups detected in 92.3% of male islanders and 86.7% of mainland Chilean controls. Using the near-complete genealogical data collected from the RCI population, we successfully inferred the ancestral haplogroups of 16/23 founder individuals, revealing genetic ancestry from Northern and Southern Europe. As mitochondrial and Y investigations only provide information for direct maternal and paternal lineages, we expanded this to investigate genetic admixture using the autosomes. Admixture analysis identified substantial indigenous genetic admixture in the RCI population (46.9%), higher than that found in the Santiago mainland Chilean controls (43.4%), but lower than a more representative Chilean population (Chile_GRU) (49.1%). Our study revealed the Robinson Crusoe Island population show a substantial genetic contribution for indigenous Chileans, similar to the level reported in mainland Chileans. However, direct maternal and paternal haplogroup analysis revealed strong European genetic contributions consistent with the history of the Island.
Collapse
Affiliation(s)
- Hayley S Mountford
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Pía Villanueva
- Department of Speech Language and Hearing Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.,Human Genetics Division, Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - María Angélica Fernández
- Department of Speech Language and Hearing Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Lilian Jara
- Human Genetics Division, Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Zulema De Barbieri
- Directorate of Academic Development, Academic Vice-Rectory, Research and Postgraduate, Saint Thomas University, Santiago, Chile
| | - Luis G Carvajal-Carmona
- Department of Biochemistry and Molecular Medicine, School of Medicine Genome Center, University of California, Davis, Davis, CA, United States
| | - Jean-Baptiste Cazier
- Centre for Computational Biology, University of Birmingham, Birmingham, United Kingdom.,Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Dianne F Newbury
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| |
Collapse
|
11
|
Castagnola J, Cano H, Hulaniuk ML, Trinks J, Corach D, Caputo M. Inferring the genetic structure of Northwestern Argentina by uniparental SNP typing. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2019. [DOI: 10.1016/j.fsigss.2019.09.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Alonso Morales LA, Casas-Vargas A, Rojas Castro M, Resque R, Ribeiro-dos-Santos ÂK, Santos S, Gusmão L, Usaquén W. Paternal portrait of populations of the middle Magdalena River region (Tolima and Huila, Colombia): New insights on the peopling of Central America and northernmost South America. PLoS One 2018; 13:e0207130. [PMID: 30439976 PMCID: PMC6237345 DOI: 10.1371/journal.pone.0207130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/25/2018] [Indexed: 11/18/2022] Open
Abstract
The valley of the Magdalena River is one of the main population pathways in Colombia. The gene pool and spatial configuration of human groups in this territory have been outlined throughout three historical stages: the Native pre-Hispanic world, Spanish colonization, and XIX century migrations. This research was designed with the goal of characterizing the diversity and distribution pattern of Y-chromosome lineages that are currently present in the Tolima and Huila departments (middle Magdalena River region). Historic cartography was used to identify the main geographic sites where the paternal lineages belonging to this area have gathered. Twelve municipalities were chosen, and a survey that included genealogical information was administered. Samples collected from 83 male volunteers were analyzed for 48 Y-SNPs and 17 Y-STRs. The results showed a highly diverse region characterized by the presence of 16 sublineages within the major clades R, Q, J, G, T and E and revealed that 93% (n = 77) of haplotypes were different. Among these haplogroups, European-specific R1b-M269 lineages were the most representative (57.83%), with six different subhaplogroups and 43 unique haplotypes. Native American paternal ancestry was also detected based on the presence of the Q1a2-M3*(xM19, M194, M199) and Q1a2-M346*(xM3) lineages. Interestingly, all Q1a2-M346*(xM3) samples (n = 7, with five different haplotypes) carried allele six at the DYS391 locus. This allele has a worldwide frequency of 0.169% and was recently associated with a new Native subhaplogroup. An in-depth phylogenetic analysis of these samples suggests the Tolima and Huila region to be the principal area in all Central and South America where this particular Native lineage is found. This lineage has been present in the region for at least 1,809 (+/- 0,5345) years.
Collapse
Affiliation(s)
- Luz Angela Alonso Morales
- Populations Genetics and Identification Group, Institute of Genetics, Universidad Nacional de Colombia, Bogotá, Colombia
- * E-mail: (LAAM); (WU)
| | - Andrea Casas-Vargas
- Populations Genetics and Identification Group, Institute of Genetics, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Madelyn Rojas Castro
- Populations Genetics and Identification Group, Institute of Genetics, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Rafael Resque
- Laboratório de Toxicologia e Química Farmacêutica, Departamento de Ciências da Saúde e Biológicas, Universidade Federal do Amapá, Macapá, Brazil
| | - Ândrea Kelly Ribeiro-dos-Santos
- Human and Medical Genetics Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará - UFPA), Belém, state of Pará (PA), Brazil
| | - Sidney Santos
- Human and Medical Genetics Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará - UFPA), Belém, state of Pará (PA), Brazil
| | - Leonor Gusmão
- DNA Diagnostic Laboratory (LDD), Institute of Biology, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - William Usaquén
- Populations Genetics and Identification Group, Institute of Genetics, Universidad Nacional de Colombia, Bogotá, Colombia
- * E-mail: (LAAM); (WU)
| |
Collapse
|
13
|
High Rate of Infection by Only Oncogenic Human Papillomavirus in Amerindians. mSphere 2018; 3:3/3/e00176-18. [PMID: 29720524 PMCID: PMC5932372 DOI: 10.1128/msphere.00176-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 04/12/2018] [Indexed: 01/01/2023] Open
Abstract
The role of HPV type distribution on the disparity of cervical cancer (CC) incidence between human populations remains unknown. The incidence of CC in the Amazonas State of Venezuela is higher than the national average. In this study, we determined the diversity of known HPV types (the viral agent of CC) in Amerindian and mestizo women living in the Venezuelan Amazonas State. Understanding the ecological diversity of HPV in populations undergoing lifestyle transformations has important implication on public health measures for cervical cancer prevention. Human papillomavirus (HPV), an etiological agent of cervical cancer (CC), has infected humans since ancient times. Amerindians are the furthest migrants out of Africa, and they reached the Americas more than 14,000 years ago. Some groups still remain isolated, and some migrate to towns, forming a gradient spanning urbanization. We hypothesized that, by virtue of their history, lifestyle, and isolation from the global society, remote Amerindian women have lower HPV diversity than do urban women (Amerindian or mestizo). Here we determined the diversity of the 25 most relevant cervical HPV types in 82 Amerindians spanning urbanization (low, medium, and high, consistent with the exposure to urban lifestyles of the town of Puerto Ayacucho in the Venezuelan Amazonas State), and in 29 urban mestizos from the town. Cervical, anal, oral, and introitus samples were taken, and HPVs were typed using reverse DNA hybridization. A total of 23 HPV types were detected, including 11 oncogenic or high-risk types, most associated with CC. Cervical HPV prevalence was 75%, with no differences by group, but Amerindians from low and medium urbanization level had significantly lower HPV diversity than mestizos did. In Amerindians, but not in mestizos, infections by only high-risk HPVs were higher than coinfections or by exclusively low-risk HPVs. Cervical abnormalities only were observed in Amerindians (9/82), consistent with their high HPV infection. The lower cervical HPV diversity in more isolated Amerindians is consistent with their lower exposure to the global pool, and transculturation to urban lifestyles could have implications on HPV ecology, infection, and virulence. IMPORTANCE The role of HPV type distribution on the disparity of cervical cancer (CC) incidence between human populations remains unknown. The incidence of CC in the Amazonas State of Venezuela is higher than the national average. In this study, we determined the diversity of known HPV types (the viral agent of CC) in Amerindian and mestizo women living in the Venezuelan Amazonas State. Understanding the ecological diversity of HPV in populations undergoing lifestyle transformations has important implication on public health measures for CC prevention.
Collapse
|
14
|
Huang YZ, Pamjav H, Flegontov P, Stenzl V, Wen SQ, Tong XZ, Wang CC, Wang LX, Wei LH, Gao JY, Jin L, Li H. Dispersals of the Siberian Y-chromosome haplogroup Q in Eurasia. Mol Genet Genomics 2018; 293:107-117. [PMID: 28884289 PMCID: PMC5846874 DOI: 10.1007/s00438-017-1363-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/27/2017] [Indexed: 12/17/2022]
Abstract
The human Y-chromosome has proven to be a powerful tool for tracing the paternal history of human populations and genealogical ancestors. The human Y-chromosome haplogroup Q is the most frequent haplogroup in the Americas. Previous studies have traced the origin of haplogroup Q to the region around Central Asia and Southern Siberia. Although the diversity of haplogroup Q in the Americas has been studied in detail, investigations on the diffusion of haplogroup Q in Eurasia and Africa are still limited. In this study, we collected 39 samples from China and Russia, investigated 432 samples from previous studies of haplogroup Q, and analyzed the single nucleotide polymorphism (SNP) subclades Q1a1a1-M120, Q1a2a1-L54, Q1a1b-M25, Q1a2-M346, Q1a2a1a2-L804, Q1a2b2-F1161, Q1b1a-M378, and Q1b1a1-L245. Through NETWORK and BATWING analyses, we found that the subclades of haplogroup Q continued to disperse from Central Asia and Southern Siberia during the past 10,000 years. Apart from its migration through the Beringia to the Americas, haplogroup Q also moved from Asia to the south and to the west during the Neolithic period, and subsequently to the whole of Eurasia and part of Africa.
Collapse
Affiliation(s)
- Yun-Zhi Huang
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Horolma Pamjav
- National Center of Forensic Experts and Research, Budapest, 1087, Hungary
| | - Pavel Flegontov
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 71000, Ostrava, Czech Republic
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russian Federation
| | - Vlastimil Stenzl
- Institute of Criminalistics, Police of the Czech Republic, 17089, Prague, Czech Republic
| | - Shao-Qing Wen
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xin-Zhu Tong
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Chuan-Chao Wang
- Department of Anthropology and Ethnology, Xiamen University, Xiamen, 361005, China
| | - Ling-Xiang Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Lan-Hai Wei
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Institut National des Langues et Civilisations Orientales, 75013, Paris, France
| | - Jing-Yi Gao
- Faculty of Arts and Humanities, University of Tartu, 50090, Tartu, Estonia
- Faculty of Central European Studies, Beijing International Studies University, Beijing, 100024, China
| | - Li Jin
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Hui Li
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
15
|
|
16
|
Bampi GB, Bisso-Machado R, Hünemeier T, Gheno TC, Furtado GV, Veliz-Otani D, Cornejo-Olivas M, Mazzeti P, Bortolini MC, Jardim LB, Saraiva-Pereira ML. Haplotype Study in SCA10 Families Provides Further Evidence for a Common Ancestral Origin of the Mutation. Neuromolecular Med 2017; 19:501-509. [PMID: 28905220 DOI: 10.1007/s12017-017-8464-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 08/29/2017] [Indexed: 12/11/2022]
Abstract
Spinocerebellar ataxia type 10 (SCA10) is an autosomal dominant neurodegenerative disorder characterized by progressive cerebellar ataxia and epilepsy. The disease is caused by a pentanucleotide ATTCT expansion in intron 9 of the ATXN10 gene on chromosome 22q13.3. SCA10 has shown a geographical distribution throughout America with a likely degree of Amerindian ancestry from different countries so far. Currently available data suggest that SCA10 mutation might have spread out early during the peopling of the Americas. However, the ancestral origin of SCA10 mutation remains under speculation. Samples of SCA10 patients from two Latin American countries were analysed, being 16 families from Brazil (29 patients) and 21 families from Peru (27 patients) as well as 49 healthy individuals from Indigenous Quechua population and 51 healthy Brazilian individuals. Four polymorphic markers spanning a region of 5.2 cM harbouring the ATTCT expansion were used to define the haplotypes, which were genotyped by different approaches. Our data have shown that 19-CGGC-14 shared haplotype was found in 47% of Brazilian and in 63% of Peruvian families. Frequencies from both groups are not statistically different from Quechua controls (57%), but they are statistically different from Brazilian controls (12%) (p < 0.001). The most frequent expanded haplotype in Quechuas, 19-15-CGGC-14-10, is found in 50% of Brazilian and in 65% of Peruvian patients with SCA10. These findings bring valuable evidence that ATTCT expansion may have arisen in a Native American chromosome.
Collapse
Affiliation(s)
- Giovana B Bampi
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, Porto Alegre, Rio Grande do Sul, 90035-903, Brazil.,Laboratory of Genetics Identification - Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Rafael Bisso-Machado
- Centro Universitario de Tacuarembó, Universidad de la República, Tacuarembó, Uruguay
| | - Tábita Hünemeier
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Tailise C Gheno
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, Porto Alegre, Rio Grande do Sul, 90035-903, Brazil.,Laboratory of Genetics Identification - Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Gabriel V Furtado
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, Porto Alegre, Rio Grande do Sul, 90035-903, Brazil.,Laboratory of Genetics Identification - Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Diego Veliz-Otani
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurologicas, Lima, Peru
| | - Mario Cornejo-Olivas
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurologicas, Lima, Peru
| | - Pillar Mazzeti
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurologicas, Lima, Peru
| | | | - Laura B Jardim
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, Porto Alegre, Rio Grande do Sul, 90035-903, Brazil.,Laboratory of Genetics Identification - Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Internal Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Luiza Saraiva-Pereira
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. .,Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, Porto Alegre, Rio Grande do Sul, 90035-903, Brazil. .,Laboratory of Genetics Identification - Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil. .,Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | | |
Collapse
|
17
|
Di Corcia T, Sanchez Mellado C, Davila Francia TJ, Ferri G, Sarno S, Luiselli D, Rickards O. East of the Andes: The genetic profile of the Peruvian Amazon populations. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 163:328-338. [PMID: 28343372 DOI: 10.1002/ajpa.23209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 11/08/2016] [Accepted: 02/28/2017] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Assuming that the differences between the Andes and the Amazon rainforest at environmental and historical levels have influenced the distribution patterns of genes, languages, and cultures, the maternal and paternal genetic reconstruction of the Peruvian Amazon populations was used to test the relationships within and between these two extreme environments. MATERIALS AND METHODS We analyzed four Peruvian Amazon communities (Ashaninka, Huambisa, Cashibo, and Shipibo) for both Y chromosome (17 STRs and 8 SNPs) and mtDNA data (control region sequences, two diagnostic sites of the coding region, and one INDEL), and we studied their variability against the rest of South America. RESULTS We detected a high degree of genetic diversity in the Peruvian Amazon people, both for mtDNA than for Y chromosome, excepting for Cashibo people, who seem to have had no exchanges with their neighbors, in contrast with the others communities. The genetic structure follows the divide between the Andes and the Amazon, but we found a certain degree of gene flow between these two environments, as particularly emerged with the Y chromosome descent cluster's (DCs) analysis. DISCUSSION The Peruvian Amazon is home to an array of populations with differential rates of genetic exchanges with their neighbors and with the Andean people, depending on their peculiar demographic histories. We highlighted some successful Y chromosome lineages expansions originated in Peru during the pre-Columbian history which involved both Andeans and Amazon Arawak people, showing that at least a part of the Amazon rainforest did not remain isolated from those exchanges.
Collapse
Affiliation(s)
- T Di Corcia
- Department of Biology, University of Rome "Tor Vergata,", Via della Ricerca Scientifica n. 1, Roma, 00173, Italy
| | - C Sanchez Mellado
- Faculty of Intercultural Education and Humanity, National Intercultural University of Amazon, Yarinacocha, Coronel Portillo, Ucayali, 25000, Peru
| | - T J Davila Francia
- Faculty of Intercultural Education and Humanity, National Intercultural University of Amazon, Yarinacocha, Coronel Portillo, Ucayali, 25000, Peru
| | - G Ferri
- Department of Diagnostic and Clinical Medicine and Public Health, University of Modena and Reggio Emilia, Modena, 41124, Italy
| | - S Sarno
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, 40126, Italy
| | - D Luiselli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, 40126, Italy
| | - O Rickards
- Department of Biology, University of Rome "Tor Vergata,", Via della Ricerca Scientifica n. 1, Roma, 00173, Italy
| |
Collapse
|
18
|
Wendt FR, Churchill JD, Novroski NM, King JL, Ng J, Oldt RF, McCulloh KL, Weise JA, Smith DG, Kanthaswamy S, Budowle B. Genetic analysis of the Yavapai Native Americans from West-Central Arizona using the Illumina MiSeq FGx™ forensic genomics system. Forensic Sci Int Genet 2016; 24:18-23. [DOI: 10.1016/j.fsigen.2016.05.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/10/2016] [Accepted: 05/14/2016] [Indexed: 01/17/2023]
|
19
|
Muñoz AM, Velásquez CM, Bedoya G. Cardio-metabolic parameters are associated with genetic admixture estimates in a pediatric population from Colombia. BMC Genet 2016; 17:93. [PMID: 27350247 PMCID: PMC4924275 DOI: 10.1186/s12863-016-0402-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 06/17/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND There are different genetic patterns for cardio-metabolic parameters among different populations. Additionally, it has been found that ancestral genetic components (the proportion of Amerindian, European and African) in admixed Latin American populations influence an individual's susceptibility to cardio-metabolic disorders. The aim of this study was to evaluate the effect of ancestral genetic composition on a series of cardio-metabolic risk factors in a young admixed population from Colombia. RESULTS In a sample of 853 Colombian youth, 10 to 18 years old, the mean European contribution was 66.6 % (range: 41-82 %), the mean African contribution was 14 % (range: 4-48 %), and the mean Amerindian contribution was 19.4 % (range: 10-35 %) using a panel of 40 autosomal ancestry-informative markers (AIMs). We assessed the degree of association between ancestral African, Amerindian and European genetic components and measures of body mass index, waist circumference, fasting glucose, fasting insulin, insulin resistance, triglycerides, high-density lipoprotein, and systolic and diastolic blood pressure. Two of the nine measures assessed presented a nominal significant association with ancestral components after adjusting for confounding variables: triglyceride levels were associated with the Amerindian component (OR = 1.06, 98.3 % CI = 1.01-1.11, P = 0.002) and systolic blood pressure was associated with the European component (OR = 0.93, 98.3 % CI = 0.87 to 0.99, P = 0.008) and the African component (OR = 1.07, CI = 1.01-1.14 P = 0.008), although it was not significant following a global Bonferroni correction. Additionally, insulin levels and insulin resistance showed associations with the African component. CONCLUSIONS Our findings support the idea that an Amerindian ancestral component may act as a risk factor for high triglyceride levels. In addition, an African ancestral component confers a risk for high systolic blood pressure, and a European ancestry serves as a protective factor for this condition in a young admixed population from Colombia. However, these results should be confirmed in a larger population.
Collapse
Affiliation(s)
- Angélica M Muñoz
- Research Group on Food and Human Nutrition, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellín, Colombia. .,Laboratorio 413, Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellín, Colombia.
| | - Claudia M Velásquez
- Research Group on Food and Human Nutrition, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellín, Colombia
| | - Gabriel Bedoya
- Research Group on Molecular Genetic (GENMOL), Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellín, Colombia
| |
Collapse
|
20
|
Foulds HJA, Rodgers CD, Duncan V, Ferguson LJ. A systematic review and meta-analysis of screen time behaviour among North American indigenous populations. Obes Rev 2016; 17:455-66. [PMID: 26990323 DOI: 10.1111/obr.12389] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 11/29/2022]
Abstract
Screen time (computer, television, video game and smartphone/tablet activity) is associated with increased obesity and other health risks. This systematic review evaluates screen time among North American Indigenous populations and compares it with that of North American Europeans. Electronic databases (e.g. MEDLINE and EMBASE) were searched, and citations cross-referenced. Included articles reported screen time among First Nations/American Indians, Métis, Inuit/Alaskan Natives or Native Hawaiians. From 788 citations evaluated, 40 identified articles report television, video game, computer and/or overall screen time. Overall screen time was 3.65 ± 1.26 h day(-1) (n = 2,242, 8 articles) among Indigenous children/youth and 3.61 ± 2.95 h day(-1) (n = 155, 1 article) among adults. Among children/youth, 66.0% (n = 11 256, 9 articles) reported less than 2 h day(-1) of television screen time, while only 52.8% (n = 2,458, 1 article) of adults reported this volume. Screen time was generally greater among male population, youth, First Nations/American Indians and overweight/obese individuals. Indigenous children/youth reported greater overall screen time than North American Europeans (4.81 ± 2.84 h day(-1) , n = 1,182 vs. 3.40 ± 2.81 h day(-1) , n = 2,785; 3 articles; p < 0.0001). Screen time is common among North American Indigenous populations. Further research evaluating interventions to reduce screen time and chronic disease risks is required.
Collapse
Affiliation(s)
- H J A Foulds
- College of Kinesiology, University of Saskatchewan, Saskatoon, Canada
| | - C D Rodgers
- College of Kinesiology, University of Saskatchewan, Saskatoon, Canada
| | - V Duncan
- Health Sciences Library, University of Saskatchewan, Saskatoon, Canada
| | - L J Ferguson
- College of Kinesiology, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
21
|
Resque R, Gusmão L, Geppert M, Roewer L, Palha T, Alvarez L, Ribeiro-dos-Santos Â, Santos S. Male Lineages in Brazil: Intercontinental Admixture and Stratification of the European Background. PLoS One 2016; 11:e0152573. [PMID: 27046235 PMCID: PMC4821637 DOI: 10.1371/journal.pone.0152573] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 03/16/2016] [Indexed: 12/27/2022] Open
Abstract
The non-recombining nature of the Y chromosome and the well-established phylogeny of Y-specific Single Nucleotide Polymorphisms (Y-SNPs) make them useful for defining haplogroups with high geographical specificity; therefore, they are more apt than the Y-STRs to detect population stratification in admixed populations from diverse continental origins. Different Y-SNP typing strategies have been described to address issues of population history and movements within geographic territories of interest. In this study, we investigated a set of 41 Y-SNPs in 1217 unrelated males from the five Brazilian geopolitical regions, aiming to disclose the genetic structure of male lineages in the country. A population comparison based on pairwise FST genetic distances did not reveal statistically significant differences in haplogroup frequency distributions among populations from the different regions. The genetic differences observed among regions were, however, consistent with the colonization history of the country. The sample from the Northern region presented the highest Native American ancestry (8.4%), whereas the more pronounced African contribution could be observed in the Northeastern population (15.1%). The Central-Western and Southern samples showed the higher European contributions (95.7% and 93.6%, respectively). The Southeastern region presented significant European (86.1%) and African (12.0%) contributions. The subtyping of the most frequent European lineage in Brazil (R1b1a-M269) allowed differences in the genetic European background of the five Brazilian regions to be investigated for the first time.
Collapse
Affiliation(s)
- Rafael Resque
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil.,Laboratório de Toxicologia e Química Farmacêutica, Departamento de Ciências da Saúde e Biológicas, Universidade Federal do Amapá, Macapá, Brazil
| | - Leonor Gusmão
- DNA Diagnostic Laboratory (LDD), Institute of Biology, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil.,IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Maria Geppert
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lutz Roewer
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Teresinha Palha
- Laboratório de Genética Forense, Instituto de Criminalística, Centro de Perícias Científicas Renato Chaves, Belém, Pará, Brasil
| | - Luis Alvarez
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ândrea Ribeiro-dos-Santos
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil.,Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Brazil
| | - Sidney Santos
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil.,Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
22
|
New native South American Y chromosome lineages. J Hum Genet 2016; 61:593-603. [PMID: 27030145 DOI: 10.1038/jhg.2016.26] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/23/2016] [Accepted: 02/22/2016] [Indexed: 11/09/2022]
Abstract
Many single-nucleotide polymorphisms (SNPs) in the non-recombining region of the human Y chromosome have been described in the last decade. High-coverage sequencing has helped to characterize new SNPs, which has in turn increased the level of detail in paternal phylogenies. However, these paternal lineages still provide insufficient information on population history and demography, especially for Native Americans. The present study aimed to identify informative paternal sublineages derived from the main founder lineage of the Americas-haplogroup Q-L54-in a sample of 1841 native South Americans. For this purpose, we used a Y-chromosomal genotyping multiplex platform and conventional genotyping methods to validate 34 new SNPs that were identified in the present study by sequencing, together with many Y-SNPs previously described in the literature. We updated the haplogroup Q phylogeny and identified two new Q-M3 and three new Q-L54*(xM3) sublineages defined by five informative SNPs, designated SA04, SA05, SA02, SA03 and SA29. Within the Q-M3, sublineage Q-SA04 was mostly found in individuals from ethnic groups belonging to the Tukanoan linguistic family in the northwest Amazon, whereas sublineage Q-SA05 was found in Peruvian and Bolivian Amazon ethnic groups. Within Q-L54*, the derived sublineages Q-SA03 and Q-SA02 were exclusively found among Coyaima individuals (Cariban linguistic family) from Colombia, while Q-SA29 was found only in Maxacali individuals (Jean linguistic family) from southeast Brazil. Furthermore, we validated the usefulness of several published SNPs among indigenous South Americans. This new Y chromosome haplogroup Q phylogeny offers an informative paternal genealogy to investigate the pre-Columbian history of South America.Journal of Human Genetics advance online publication, 31 March 2016; doi:10.1038/jhg.2016.26.
Collapse
|
23
|
Cabana GS, Lewis CM, Tito RY, Covey RA, Cáceres AM, Cruz AFDL, Durand D, Housman G, Hulsey BI, Iannacone GC, López PW, Martínez R, Medina Á, Dávila OO, Pinto KPO, Santillán SIP, Domínguez PR, Rubel M, Smith HF, Smith SE, Massa VRDC, Lizárraga B, Stone AC. Population genetic structure of traditional populations in the Peruvian Central Andes and implications for South American population history. Hum Biol 2015; 86:147-65. [PMID: 25836744 DOI: 10.13110/humanbiology.86.3.0147] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Molecular-based characterizations of Andean peoples are traditionally conducted in the service of elucidating continent-level evolutionary processes in South America. Consequently, genetic variation among "western" Andean populations is often represented in relation to variation among "eastern" Amazon and Orinoco River Basin populations. This west-east contrast in patterns of population genetic variation is typically attributed to large-scale phenomena, such as dual founder colonization events or differing long-term microevolutionary histories. However, alternative explanations that consider the nature and causes of population genetic diversity within the Andean region remain underexplored. Here we examine population genetic diversity in the Peruvian Central Andes using data from the mtDNA first hypervariable region and Y-chromosome short tandem repeats among 17 newly sampled populations and 15 published samples. Using this geographically comprehensive data set, we first reassessed the currently accepted pattern of western versus eastern population genetic structure, which our results ultimately reject: mtDNA population diversities were lower, rather than higher, within Andean versus eastern populations, and only highland Y-chromosomes exhibited significantly higher within-population diversities compared with eastern groups. Multiple populations, including several highland samples, exhibited low genetic diversities for both genetic systems. Second, we explored whether the implementation of Inca state and Spanish colonial policies starting at about ad 1400 could have substantially restructured population genetic variation and consequently constitute a primary explanation for the extant pattern of population diversity in the Peruvian Central Andes. Our results suggest that Peruvian Central Andean population structure cannot be parsimoniously explained as the sole outcome of combined Inca and Spanish policies on the region's population demography: highland populations differed from coastal and lowland populations in mtDNA genetic structure only; highland groups also showed strong evidence of female-biased gene flow and/or effective sizes relative to other Peruvian ecozones. Taken together, these findings indicate that population genetic structure in the Peruvian Central Andes is considerably more complex than previously reported and that characterizations of and explanations for genetic variation may be best pursued within more localized regions and defined time periods.
Collapse
Affiliation(s)
- Graciela S Cabana
- 1 Department of Anthropology, University of Tennessee, Knoxville, Tennessee
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
de la Fuente C, Galimany J, Kemp BM, Judd K, Reyes O, Moraga M. Ancient marine hunter-gatherers from Patagonia and Tierra Del Fuego: Diversity and differentiation using uniparentally inherited genetic markers. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2015. [DOI: 10.1002/ajpa.22815] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Constanza de la Fuente
- Human Genetic Program; ICBM; Faculty of Medicine; University of Chile; Santiago 8380453 Chile
| | - Jacqueline Galimany
- Human Genetic Program; ICBM; Faculty of Medicine; University of Chile; Santiago 8380453 Chile
| | - Brian M. Kemp
- Human Genetic Program; ICBM; Faculty of Medicine; University of Chile; Santiago 8380453 Chile
| | - Kathleen Judd
- Human Genetic Program; ICBM; Faculty of Medicine; University of Chile; Santiago 8380453 Chile
| | - Omar Reyes
- Human Genetic Program; ICBM; Faculty of Medicine; University of Chile; Santiago 8380453 Chile
| | - Mauricio Moraga
- Human Genetic Program; ICBM; Faculty of Medicine; University of Chile; Santiago 8380453 Chile
| |
Collapse
|
25
|
de Azevedo S, Bortolini MC, Bonatto SL, Hünemeier T, Santos FR, González-José R. Ancient remains and the first peopling of the Americas: Reassessing the Hoyo Negro skull. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2015; 158:514-21. [PMID: 26174009 DOI: 10.1002/ajpa.22801] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 06/05/2015] [Accepted: 06/10/2015] [Indexed: 11/10/2022]
Abstract
OBJECTIVE A noticeably well-preserved ∼12.500 years-old skeleton from the Hoyo Negro cave, Yucatán, México, was recently reported, along with its archaeological, genetic and skeletal characteristics. Based exclusively on an anatomical description of the skull (HN5/48), Chatters and colleagues stated that this specimen can be assigned to a set of ancient remains that differ from modern Native Americans, the so called "Paleoamericans". Here, we aim to further explore the morphological affinities of this specimen with a set of comparative cranial samples covering ancient and modern periods from Asia and the Americas. METHODS Images published in the original article were analyzed using geometric morphometrics methods. Shape variables were used to perform Principal Component and Discriminant analysis against the reference samples. RESULTS Even thought the Principal Component Analysis suggests that the Hoyo Negro skull falls in a subregion of the morphospace occupied by both "Paleoamericans" and some modern Native Americans, the Discriminant analyses suggest greater affinity with a modern Native American sample. DISCUSSION These results reinforce the idea that the original population that first occupied the New World carried high levels of within-group variation, which we have suggested previously on a synthetic model for the settlement of the Americas. Our results also highlight the importance of developing formal classificatory test before deriving settlement hypothesis purely based on macroscopic descriptions.
Collapse
Affiliation(s)
- Soledad de Azevedo
- Centro Nacional Patagónico, Consejo Nacional de Investigaciones Científicas y Técnicas, Bvd. Brown 2915, U9120ACD, Puerto Madryn, Argentina
| | - Maria C Bortolini
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, RS, Brazil
| | - Sandro L Bonatto
- Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul. Av. Ipiranga 6681, 90610-001, Porto Alegre, RS, Brazil
| | - Tábita Hünemeier
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, RS, Brazil
| | - Fabrício R Santos
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-910, Belo Horizonte, MG, Brazil
| | - Rolando González-José
- Centro Nacional Patagónico, Consejo Nacional de Investigaciones Científicas y Técnicas, Bvd. Brown 2915, U9120ACD, Puerto Madryn, Argentina
| |
Collapse
|
26
|
Araujo AGM. On Vastness and Variability: Cultural Transmission, Historicity, and the Paleoindian Record in Eastern South America. AN ACAD BRAS CIENC 2015; 87:1239-58. [PMID: 25923168 DOI: 10.1590/0001-3765201520140219] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 10/24/2014] [Indexed: 11/21/2022] Open
Abstract
Eastern South America, or what is today Brazilian territory, poses interesting questions about the early human occupation of the Americas. Three totally distinct and contemporaneous lithic technologies, dated between 11,000 and 10,000 14C BP, are present in different portions of the country: the Umbu tradition in the south, with its formal bifacial industry, with well-retouched scrapers and bifacial points; the Itaparica tradition in the central-west / northwest, totally unifacial, whose only formal artifacts are limaces; and the "Lagoa Santa" industry, completely lacking any formal artifacts, composed mainly of small quartz flakes. Our data suggests that these differences are not related to subsistence or raw-material constraints, but rather to different cultural norms and transmission of strongly divergent chaînes opératoires. Such diversity in material culture, when viewed from a cultural transmission (CT) theory standpoint, seems at odds with a simple Clovis model as the origin of these three cultural traditions given the time elapsed since the first Clovis ages and the expected population structure of the early South American settlers.
Collapse
Affiliation(s)
- Astolfo G M Araujo
- Museu de Arqueologia e Etnologia, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
27
|
Vagaitseva KV, Kharkov VN, Cherpinskaya KV, Khitrinskaya IY, Stepanov VA. Genetic variability of X-linked STR markers in Siberian populations. Mol Biol 2015. [DOI: 10.1134/s0026893315020132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Geppert M, Ayub Q, Xue Y, Santos S, Ribeiro-dos-Santos Â, Baeta M, Núñez C, Martínez-Jarreta B, Tyler-Smith C, Roewer L. Identification of new SNPs in native South American populations by resequencing the Y chromosome. Forensic Sci Int Genet 2015; 15:111-4. [DOI: 10.1016/j.fsigen.2014.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 09/16/2014] [Indexed: 12/21/2022]
|
29
|
Olofsson JK, Pereira V, Børsting C, Morling N. Peopling of the North Circumpolar Region--insights from Y chromosome STR and SNP typing of Greenlanders. PLoS One 2015; 10:e0116573. [PMID: 25635810 PMCID: PMC4312058 DOI: 10.1371/journal.pone.0116573] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/04/2014] [Indexed: 11/18/2022] Open
Abstract
The human population in Greenland is characterized by migration events of Paleo- and Neo-Eskimos, as well as admixture with Europeans. In this study, the Y-chromosomal variation in male Greenlanders was investigated in detail by typing 73 Y-chromosomal single nucleotide polymorphisms (Y-SNPs) and 17 Y-chromosomal short tandem repeats (Y-STRs). Approximately 40% of the analyzed Greenlandic Y chromosomes were of European origin (I-M170, R1a-M513 and R1b-M343). Y chromosomes of European origin were mainly found in individuals from the west and south coasts of Greenland, which is in agreement with the historic records of the geographic placements of European settlements in Greenland. Two Inuit Y-chromosomal lineages, Q-M3 (xM19, M194, L663, SA01 and L766) and Q-NWT01 (xM265) were found in 23% and 31% of the male Greenlanders, respectively. The time to the most recent common ancestor (TMRCA) of the Q-M3 lineage of the Greenlanders was estimated to be between 4,400 and 10,900 years ago (y. a.) using two different methods. This is in agreement with the theory that the North Circumpolar Region was populated via a second expansion of humans in the North American continent. The TMRCA of the Q-NWT01 (xM265) lineage in Greenland was estimated to be between 7,000 and 14,300 y. a. using two different methods, which is older than the previously reported TMRCA of this lineage in other Inuit populations. Our results indicate that Inuit individuals carrying the Q-NWT01 (xM265) lineage may have their origin in the northeastern parts of North America and could be descendants of the Dorset culture. This in turn points to the possibility that the current Inuit population in Greenland is comprised of individuals of both Thule and Dorset descent.
Collapse
Affiliation(s)
- Jill Katharina Olofsson
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | - Vania Pereira
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus Børsting
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Morling
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
Ruiz-Linares A. How genes have illuminated the history of early Americans and Latino Americans. Cold Spring Harb Perspect Biol 2014; 7:cshperspect.a008557. [PMID: 25256008 DOI: 10.1101/cshperspect.a008557] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The American continent currently accounts for ∼15% of the world population. Although first settled thousands of years ago and fitting its label as "the New World," the European colonial expansion initiated in the late 15th century resulted in people from virtually every corner of the globe subsequently settling in the Americas. The arrival of large numbers of immigrants led to a dramatic decline of the Native American population and extensive population mixing. A salient feature of the current human population of the Americas is, thus, its great diversity. The genetic variation of the Native peoples that recent immigrants encountered had been shaped by demographic events acting since the initial peopling of the continent. Similarly, but on a compressed timescale, the colonial history of the Americas has had a major impact on the genetic makeup of the current population of the continent. A range of genetic analyses has been used to study both the ancient settlement of the continent and more recent history of population mixing. Here, I show how these two strands of research overlap and make use of results from other scientific disciplines to produce a fuller picture of the settlement of the continent at different time periods. The biological diversity of the Americas also provides prominent examples of the complex interaction between biological and social factors in constructing human identities and of the difficulties in defining human populations.
Collapse
Affiliation(s)
- Andrés Ruiz-Linares
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
31
|
Barbieri C, Heggarty P, Yang Yao D, Ferri G, De Fanti S, Sarno S, Ciani G, Boattini A, Luiselli D, Pettener D. Between Andes and Amazon: the genetic profile of the Arawak-speaking Yanesha. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2014; 155:600-9. [PMID: 25229359 DOI: 10.1002/ajpa.22616] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/04/2014] [Indexed: 11/10/2022]
Abstract
The Yanesha are a Peruvian population who inhabit an environment transitional between the Andes and Amazonia. They present cultural traits characteristic of both regions, including in the language they speak: Yanesha belongs to the Arawak language family (which very likely originated in the Amazon/Orinoco lowlands), but has been strongly influenced by Quechua, the most widespread language family of the Andes. Given their location and cultural make-up, the Yanesha make for an ideal case study for investigating language and population dynamics across the Andes-Amazonia divide. In this study, we analyze data from high and mid-altitude Yanesha villages, both Y chromosome (17 STRs and 16 SNPs diagnostic for assigning haplogroups) and mtDNA data (control region sequences and 3 SNPs and one INDEL diagnostic for assigning haplogroups). We uncover sex-biased genetic trends that probably arose in different stages: first, a male-biased gene flow from Andean regions, genetically consistent with highland Quechua-speakers and probably dating back to Inca expansion; and second, traces of European contact consistent with Y chromosome lineages from Italy and Tyrol, in line with historically documented migrations. Most research in the history, archaeology and linguistics of South America has long been characterized by perceptions of a sharp divide between the Andes and Amazonia; our results serve as a clear case-study confirming demographic flows across that 'divide'.
Collapse
Affiliation(s)
- Chiara Barbieri
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126, Bologna, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Strong genetic admixture in the Altai at the Middle Bronze Age revealed by uniparental and ancestry informative markers. Forensic Sci Int Genet 2014; 12:199-207. [PMID: 25016250 DOI: 10.1016/j.fsigen.2014.05.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 05/21/2014] [Accepted: 05/25/2014] [Indexed: 11/21/2022]
Abstract
The Altai Mountains have been a long-term boundary zone between the Eurasian Steppe populations and South and East Asian populations. To disentangle some of the historical population movements in this area, 14 ancient human specimens excavated in the westernmost part of the Mongolian Altai were studied. Thirteen of them were dated from the Middle to the End of the Bronze Age and one of them to the Eneolithic period. The environmental conditions encountered in this region led to the good preservation of DNA in the human remains. Therefore, a multi-markers approach was adopted for the genetic analysis of identity, ancestry and phenotype markers. Mitochondrial DNA analyses revealed that the ancient Altaians studied carried both Western (H, U, T) and Eastern (A, C, D) Eurasian lineages. In the same way, the patrilineal gene pool revealed the presence of different haplogroups (Q1a2a1-L54, R1a1a1b2-Z93 and C), probably marking different origins for the male paternal lineages. To go further in the search of the origin of these ancient specimens, phenotypical characters (i.e. hair and eye color) were determined. For this purpose, we adapted the HIrisPlex assay recently described to MALDI-TOF mass spectrometry. In addition, some ancestry informative markers were analyzed with this assay. The results revealed mixed phenotypes among this group confirming the probable admixed ancestry of the studied Altaian population at the Middle Bronze Age. The good results obtained from ancient DNA samples suggest that this approach might be relevant for forensic casework too.
Collapse
|
33
|
Vullo C, Gomes V, Romanini C, Oliveira AM, Rocabado O, Aquino J, Amorim A, Gusmão L. Association between Y haplogroups and autosomal AIMs reveals intra-population substructure in Bolivian populations. Int J Legal Med 2014; 129:673-80. [PMID: 24878616 DOI: 10.1007/s00414-014-1025-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 05/15/2014] [Indexed: 12/24/2022]
Abstract
For the correct evaluation of the weight of genetic evidence in a forensic context, databases must reflect the structure of the population, with all possible groups being represented. Countries with a recent history of admixture between strongly differentiated populations are usually highly heterogeneous and sub-structured. Bolivia is one of these countries, with a high diversity of ethnic groups and different levels of admixture (among Native Americans, Europeans and Africans) across the territory. For a better characterization of the male lineages in Bolivia, 17 Y-STR and 42 Y-SNP loci were genotyped in samples from La Paz and Chuquisaca. Only European and Native American Y-haplogroups were detected, and no sub-Saharan African chromosomes were found. Significant differences were observed between the two samples, with a higher frequency of European lineages in Chuquisaca than in La Paz. A sample belonging to haplogroup Q1a3a1a1-M19 was detected in La Paz, in a haplotype background different from those previously found in Argentina. This result supports an old M19 North-south dispersion in South America, possibly via two routes. When comparing the ancestry of each individual assessed through his Y chromosome with the one estimated using autosomal AIMs, (a) increased European ancestry in individuals with European Y chromosomes and (b) higher Native American ancestry in the carriers of Native American Y-haplogroups were observed, revealing an association between autosomal and Y-chromosomal markers. The results of this study demonstrate that a sub-structure does exist in Bolivia at both inter- and intrapopulation levels, a fact which must be taken into account in the evaluation of forensic genetic evidence.
Collapse
Affiliation(s)
- Carlos Vullo
- DNA Forensic Laboratory, Argentinean Forensic Anthropology Team (EAAF), Córdoba, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Ibarra A, Restrepo T, Rojas W, Castillo A, Amorim A, Martínez B, Burgos G, Ostos H, Álvarez K, Camacho M, Suarez Z, Pereira R, Gusmão L. Evaluating the X chromosome-specific diversity of Colombian populations using insertion/deletion polymorphisms. PLoS One 2014; 9:e87202. [PMID: 24498042 PMCID: PMC3909073 DOI: 10.1371/journal.pone.0087202] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/23/2013] [Indexed: 12/20/2022] Open
Abstract
The European and African contribution to the pre-existing Native American background has influenced the complex genetic pool of Colombia. Because colonisation was not homogeneous in this country, current populations are, therefore, expected to have different proportions of Native American, European and African ancestral contributions. The aim of this work was to examine 11 urban admixed populations and a Native American group, called Pastos, for 32 X chromosome indel markers to expand the current knowledge concerning the genetic background of Colombia. The results revealed a highly diverse genetic background comprising all admixed populations, harbouring important X chromosome contributions from all continental source populations. In addition, Colombia is genetically sub-structured, with different proportions of European and African influxes depending on the regions. The samples from the North Pacific and Caribbean coasts have a high African ancestry, showing the highest levels of diversity. The sample from the South Andean region showed the lowest diversity and significantly higher proportion of Native American ancestry than the other samples from the North Pacific and Caribbean coasts, Central-West and Central-East Andean regions, and the Orinoquian region. The results of admixture analysis using X-chromosomal markers suggest that the high proportion of African ancestry in the North Pacific coast was primarily male driven. These men have joined to females with higher Native American and European ancestry (likely resulting from a classic colonial asymmetric mating type: European male x Amerindian female). This high proportion of male-mediated African contributions is atypical of colonial settings, suggesting that the admixture occurred during a period when African people were no longer enslaved. In the remaining regions, the African contribution was primarily female-mediated, whereas the European counterpart was primarily male driven and the Native American ancestry contribution was not gender biased.
Collapse
Affiliation(s)
- Adriana Ibarra
- IdentiGEN - Genetic Identification Laboratory and Research Group of Genetic Identification, Institute of Biology, School of Natural and Exact Sciences (FCEN), University of Antioquia, Medellin, Antioquia, Colombia
- * E-mail:
| | - Tomás Restrepo
- IdentiGEN - Genetic Identification Laboratory and Research Group of Genetic Identification, Institute of Biology, School of Natural and Exact Sciences (FCEN), University of Antioquia, Medellin, Antioquia, Colombia
| | - Winston Rojas
- Laboratory of Molecular Genetics, Institute of Biology, University of Antioquia, Medellin, Antioquia, Colombia
| | - Adriana Castillo
- Laboratorio de Genética, Universidad Industrial de Santander (UIS), Bucaramanga, Santander, Colombia
| | - António Amorim
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- FCUP - Faculty of Sciences of the University of Porto, Porto, Portugal
| | - Beatriz Martínez
- Molecular Genetics Laboratory, Institute for Immunological Research, University of Cartagena, Cartagena, Bolivar, Colombia
| | - German Burgos
- Molecular Genetics Laboratory, Cruz Vital, Ecuadorian Red Cross, Quito, Ecuador
| | - Henry Ostos
- Genomic Medicine Laboratory, Health Faculty, Surcolombiana University, Neiva, Huila, Colombia
| | - Karen Álvarez
- IdentiGEN - Genetic Identification Laboratory and Research Group of Genetic Identification, Institute of Biology, School of Natural and Exact Sciences (FCEN), University of Antioquia, Medellin, Antioquia, Colombia
| | - Mauricio Camacho
- Institute of Legal Medicine and Forensic Sciences, Northeast Regional, Arauca, Colombia
| | - Zuleyma Suarez
- Clinical Laboratory Olga Zuleima Suárez Molina, Cucuta, Norte de Santander, Colombia
| | - Rui Pereira
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Leonor Gusmão
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| |
Collapse
|
35
|
Bernardo S, Hermida R, Desidério M, Silva DA, de Carvalho EF. MtDNA ancestry of Rio de Janeiro population, Brazil. Mol Biol Rep 2014; 41:1945-50. [PMID: 24420852 DOI: 10.1007/s11033-014-3041-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/04/2014] [Indexed: 11/30/2022]
Abstract
Polymorphism studies concerning HVI and HVII regions of mitochondrial DNA (mtDNA) have improved the understanding of the admixture genetic process related to the occupation of the continents by human population groups. We have analyzed the mtDNA lineages of 190 healthy and maternally unrelated individuals born in the metropolitan region of the Rio de Janeiro city, the capital of the State of Rio de Janeiro, southeastern Brazil. The data showing that 57.9, 25.3 and 16.8 % of the matrilineages found in Rio de Janeiro come from African, Amerindian and European population groups. They are, respectively, in close agreement with historical records which indicate that the admixture population of Brazil is the resulting of interethnic asymmetry crosses between individuals from those population groups. The high proportion of African mtDNA lineages in the population of Rio de Janeiro is in accordance with studies related to other Brazilian states.
Collapse
Affiliation(s)
- Suellen Bernardo
- Laboratório de Diagnósticos por DNA, Instituto de Biologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
36
|
Ribeiro-dos-Santos AM, de Souza JES, Almeida R, Alencar DO, Barbosa MS, Gusmão L, Silva WA, de Souza SJ, Silva A, Ribeiro-dos-Santos Â, Darnet S, Santos S. High-throughput sequencing of a South American Amerindian. PLoS One 2013; 8:e83340. [PMID: 24386182 PMCID: PMC3875439 DOI: 10.1371/journal.pone.0083340] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 10/30/2013] [Indexed: 11/18/2022] Open
Abstract
The emergence of next-generation sequencing technologies allowed access to the vast amounts of information that are contained in the human genome. This information has contributed to the understanding of individual and population-based variability and improved the understanding of the evolutionary history of different human groups. However, the genome of a representative of the Amerindian populations had not been previously sequenced. Thus, the genome of an individual from a South American tribe was completely sequenced to further the understanding of the genetic variability of Amerindians. A total of 36.8 giga base pairs (Gbp) were sequenced and aligned with the human genome. These Gbp corresponded to 95.92% of the human genome with an estimated miscall rate of 0.0035 per sequenced bp. The data obtained from the alignment were used for SNP (single-nucleotide) and INDEL (insertion-deletion) calling, which resulted in the identification of 502,017 polymorphisms, of which 32,275 were potentially new high-confidence SNPs and 33,795 new INDELs, specific of South Native American populations. The authenticity of the sample as a member of the South Native American populations was confirmed through the analysis of the uniparental (maternal and paternal) lineages. The autosomal comparison distinguished the investigated sample from others continental populations and revealed a close relation to the Eastern Asian populations and Aboriginal Australian. Although, the findings did not discard the classical model of America settlement; it brought new insides to the understanding of the human population history. The present study indicates a remarkable genetic variability in human populations that must still be identified and contributes to the understanding of the genetic variability of South Native American populations and of the human populations history.
Collapse
Affiliation(s)
| | - Jorge Estefano Santana de Souza
- Centro Regional de Hemoterapia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- Institute of Bioinformatics and Biotechnology, São Paulo, São Paulo, Brazil
| | - Renan Almeida
- Institute of Bioinformatics and Biotechnology, São Paulo, São Paulo, Brazil
| | - Dayse O. Alencar
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | | | - Leonor Gusmão
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Wilson A. Silva
- Centro Regional de Hemoterapia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sandro J. de Souza
- Institute of Bioinformatics and Biotechnology, São Paulo, São Paulo, Brazil
- Brain Institute, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Artur Silva
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | | | - Sylvain Darnet
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Sidney Santos
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
- * E-mail: /
| |
Collapse
|
37
|
Gravel S, Zakharia F, Moreno-Estrada A, Byrnes JK, Muzzio M, Rodriguez-Flores JL, Kenny EE, Gignoux CR, Maples BK, Guiblet W, Dutil J, Via M, Sandoval K, Bedoya G, Oleksyk TK, Ruiz-Linares A, Burchard EG, Martinez-Cruzado JC, Bustamante CD. Reconstructing Native American migrations from whole-genome and whole-exome data. PLoS Genet 2013; 9:e1004023. [PMID: 24385924 PMCID: PMC3873240 DOI: 10.1371/journal.pgen.1004023] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 10/29/2013] [Indexed: 12/12/2022] Open
Abstract
There is great scientific and popular interest in understanding the genetic history of populations in the Americas. We wish to understand when different regions of the continent were inhabited, where settlers came from, and how current inhabitants relate genetically to earlier populations. Recent studies unraveled parts of the genetic history of the continent using genotyping arrays and uniparental markers. The 1000 Genomes Project provides a unique opportunity for improving our understanding of population genetic history by providing over a hundred sequenced low coverage genomes and exomes from Colombian (CLM), Mexican-American (MXL), and Puerto Rican (PUR) populations. Here, we explore the genomic contributions of African, European, and especially Native American ancestry to these populations. Estimated Native American ancestry is in MXL, in CLM, and in PUR. Native American ancestry in PUR is most closely related to populations surrounding the Orinoco River basin, confirming the Southern America ancestry of the Taíno people of the Caribbean. We present new methods to estimate the allele frequencies in the Native American fraction of the populations, and model their distribution using a demographic model for three ancestral Native American populations. These ancestral populations likely split in close succession: the most likely scenario, based on a peopling of the Americas thousand years ago (kya), supports that the MXL Ancestors split kya, with a subsequent split of the ancestors to CLM and PUR kya. The model also features effective populations of in Mexico, in Colombia, and in Puerto Rico. Modeling Identity-by-descent (IBD) and ancestry tract length, we show that post-contact populations also differ markedly in their effective sizes and migration patterns, with Puerto Rico showing the smallest effective size and the earlier migration from Europe. Finally, we compare IBD and ancestry assignments to find evidence for relatedness among European founders to the three populations. Populations of the Americas have a rich and heterogeneous genetic and cultural heritage that draws from a diversity of pre-Columbian Native American, European, and African populations. Characterizing this diversity facilitates the development of medical genetics research in diverse populations and the transfer of medical knowledge across populations. It also represents an opportunity to better understand the peopling of the Americas, from the crossing of Beringia to the post-Columbian era. Here, we take advantage sequencing of individuals of Colombian (CLM), Mexican (MXL), and Puerto Rican (PUR) origin by the 1000 Genomes project to improve our demographic models for the peopling of the Americas. The divergence among African, European, and Native American ancestors to these populations enables us to infer the continent of origin at each locus in the sampled genomes. The resulting patterns of ancestry suggest complex post-Columbian migration histories, starting later in CLM than in MXL and PUR. Whereas European ancestral segments show evidence of relatedness, a demographic model of synonymous variation suggests that the Native American Ancestors to MXL, PUR, and CLM panels split within a few hundred years over 12 thousand years ago. Together with early archeological sites in South America, these results support rapid divergence during the initial peopling of the Americas.
Collapse
Affiliation(s)
- Simon Gravel
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- McGill University and Génome Québec Innovation Centre, Montréal, Québec, Canada
- * E-mail:
| | - Fouad Zakharia
- Department of Genetics, Stanford University, Stanford, California, United States of America
| | - Andres Moreno-Estrada
- Department of Genetics, Stanford University, Stanford, California, United States of America
| | - Jake K. Byrnes
- Department of Genetics, Stanford University, Stanford, California, United States of America
- Ancestry.com DNA LLC, San Francisco, California, United States of America
| | - Marina Muzzio
- Department of Genetics, Stanford University, Stanford, California, United States of America
- Laboratorio de Genética Molecular Poblacional, Instituto Multidisciplinario de Biología Celular (IMBICE). CCT- CONICET-La Plata, Argentina and Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Argentina
| | | | - Eimear E. Kenny
- Department of Genetics, Stanford University, Stanford, California, United States of America
- Department of Genetics and Genomic Sciences, The Charles Bronfman Institute for Personalized Medicine, Center for Statistical Genetics, and Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Christopher R. Gignoux
- Department of Bioengineering and Therapeutic Sciences and Medicine, Univeristy of California San Francisco, San Francisco, California, United States of America
| | - Brian K. Maples
- Department of Genetics, Stanford University, Stanford, California, United States of America
| | - Wilfried Guiblet
- Department of Biology, University of Puerto Rico at Mayaguez, Mayaguez, Puerto Rico
| | - Julie Dutil
- Department of Biochemistry, Ponce School of Medicine and Health Sciences, Ponce, Puerto Rico
| | - Marc Via
- Department of Bioengineering and Therapeutic Sciences and Medicine, Univeristy of California San Francisco, San Francisco, California, United States of America
- Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Barcelona, Spain
| | - Karla Sandoval
- Department of Genetics, Stanford University, Stanford, California, United States of America
| | | | | | - Taras K. Oleksyk
- Department of Biology, University of Puerto Rico at Mayaguez, Mayaguez, Puerto Rico
| | - Andres Ruiz-Linares
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Esteban G. Burchard
- Department of Bioengineering and Therapeutic Sciences and Medicine, Univeristy of California San Francisco, San Francisco, California, United States of America
| | | | - Carlos D. Bustamante
- Department of Genetics, Stanford University, Stanford, California, United States of America
| |
Collapse
|
38
|
Schurr TG, Dulik MC, Cafaro TA, Suarez MF, Urrets-Zavalia JA, Serra HM. Genetic background and climatic droplet keratopathy incidence in a Mapuche population from Argentina. PLoS One 2013; 8:e74593. [PMID: 24040292 PMCID: PMC3764023 DOI: 10.1371/journal.pone.0074593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/05/2013] [Indexed: 11/18/2022] Open
Abstract
Purpose To determine whether the incidence of and susceptibility to climatic droplet keratopathy (CDK), an acquired, often bilateral degenerative corneal disease, is influenced by the genetic background of the individuals who exhibit the disorder. Methods To determine whether the disease expression was influenced by the genetic ancestry of CDK cases in native Mapuche of the northwest area of Patagonia in Argentina, we examined mitochondrial DNA and Y-chromosome variation in 53 unrelated individuals. Twenty-nine of them were part of the CDK (patient) population, while 24 were part of the control group. The analysis revealed the maternal and paternal lineages that were present in the two study groups. Results This analysis demonstrated that nearly all persons had a Native American mtDNA background, whereas 50% of the CDK group and 37% of the control group had Native American paternal ancestry, respectively. There was no significant difference in the frequencies of mtDNA haplogroups between the CDK patient and control groups. Although the Y-chromosome data revealed differences in specific haplogroup frequencies between these two groups, there was no statistically significant relationship between individual paternal genetic backgrounds and the incidence or stage of disease. Conclusions These results indicate a lack of correlation between genetic ancestry as represented by haploid genetic systems and the incidence of CDK in Mapuche populations. In addition, the mtDNA appears to play less of a role in CDK expression than for other complex diseases linked to bioenergetic processes. However, further analysis of the mtDNA genome sequence and other genes involved in corneal function may reveal the more precise role that mitochondria play in the expression of CDK.
Collapse
Affiliation(s)
- Theodore G. Schurr
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Matthew C. Dulik
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Thamara A. Cafaro
- CIBICI (Centro de Investigaciones en Bioquímica Clínica e Inmunología), Faculty of Chemistry, National University of Córdoba, Córdoba, Argentina
| | - María F. Suarez
- CIBICI (Centro de Investigaciones en Bioquímica Clínica e Inmunología), Faculty of Chemistry, National University of Córdoba, Córdoba, Argentina
| | | | - Horacio M. Serra
- CIBICI (Centro de Investigaciones en Bioquímica Clínica e Inmunología), Faculty of Chemistry, National University of Córdoba, Córdoba, Argentina
- * E-mail:
| |
Collapse
|
39
|
Battaglia V, Grugni V, Perego UA, Angerhofer N, Gomez-Palmieri JE, Woodward SR, Achilli A, Myres N, Torroni A, Semino O. The first peopling of South America: new evidence from Y-chromosome haplogroup Q. PLoS One 2013; 8:e71390. [PMID: 23990949 PMCID: PMC3749222 DOI: 10.1371/journal.pone.0071390] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/03/2013] [Indexed: 01/13/2023] Open
Abstract
Recent progress in the phylogenetic resolution of the Y-chromosome phylogeny permits the male demographic dynamics and migratory events that occurred in Central and Southern America after the initial human spread into the Americas to be investigated at the regional level. To delve further into this issue, we examined more than 400 Native American Y chromosomes (collected in the region ranging from Mexico to South America) belonging to haplogroup Q – virtually the only branch of the Y phylogeny observed in modern-day Amerindians of Central and South America – together with 27 from Mongolia and Kamchatka. Two main founding lineages, Q1a3a1a-M3 and Q1a3a1-L54(xM3), were detected along with novel sub-clades of younger age and more restricted geographic distributions. The first was also observed in Far East Asia while no Q1a3a1-L54(xM3) Y chromosome was found in Asia except the southern Siberian-specific sub-clade Q1a3a1c-L330. Our data not only confirm a southern Siberian origin of ancestral populations that gave rise to Paleo-Indians and the differentiation of both Native American Q founding lineages in Beringia, but support their concomitant arrival in Mesoamerica, where Mexico acted as recipient for the first wave of migration, followed by a rapid southward migration, along the Pacific coast, into the Andean region. Although Q1a3a1a-M3 and Q1a3a1-L54(xM3) display overlapping general distributions, they show different patterns of evolution in the Mexican plateau and the Andean area, which can be explained by local differentiations due to demographic events triggered by the introduction of agriculture and associated with the flourishing of the Great Empires.
Collapse
Affiliation(s)
- Vincenza Battaglia
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Università di Pavia, Pavia, Italy
| | - Viola Grugni
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Università di Pavia, Pavia, Italy
| | - Ugo Alessandro Perego
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Università di Pavia, Pavia, Italy
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah, United States of America
| | - Norman Angerhofer
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah, United States of America
| | | | - Scott Ray Woodward
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah, United States of America
- AncestryDNA, Provo, Utah, United States of America
| | - Alessandro Achilli
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Natalie Myres
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah, United States of America
- AncestryDNA, Provo, Utah, United States of America
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Università di Pavia, Pavia, Italy
| | - Ornella Semino
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Università di Pavia, Pavia, Italy
- Centro Interdipartimentale “Studi di Genere”, Università di Pavia, Pavia, Italy
- * E-mail:
| |
Collapse
|
40
|
Reconciling migration models to the Americas with the variation of North American native mitogenomes. Proc Natl Acad Sci U S A 2013; 110:14308-13. [PMID: 23940335 DOI: 10.1073/pnas.1306290110] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study we evaluated migration models to the Americas by using the information contained in native mitochondrial genomes (mitogenomes) from North America. Molecular and phylogeographic analyses of B2a mitogenomes, which are absent in Eskimo-Aleut and northern Na-Dene speakers, revealed that this haplogroup arose in North America ∼11-13 ka from one of the founder Paleo-Indian B2 mitogenomes. In contrast, haplogroup A2a, which is typical of Eskimo-Aleuts and Na-Dene, but also present in the easternmost Siberian groups, originated only 4-7 ka in Alaska, led to the first Paleo-Eskimo settlement of northern Canada and Greenland, and contributed to the formation of the Na-Dene gene pool. However, mitogenomes also show that Amerindians from northern North America, without any distinction between Na-Dene and non-Na-Dene, were heavily affected by an additional and distinctive Beringian genetic input. In conclusion, most mtDNA variation (along the double-continent) stems from the first wave from Beringia, which followed the Pacific coastal route. This was accompanied or followed by a second inland migratory event, marked by haplogroups X2a and C4c, which affected all Amerindian groups of Northern North America. Much later, the ancestral A2a carriers spread from Alaska, undertaking both a westward migration to Asia and an eastward expansion into the circumpolar regions of Canada. Thus, the first American founders left the greatest genetic mark but the original maternal makeup of North American Natives was subsequently reshaped by additional streams of gene flow and local population dynamics, making a three-wave view too simplistic.
Collapse
|
41
|
Ascunce MS, Fane J, Kassu G, Toloza AC, Picollo MI, González-Oliver A, Reed DL. Mitochondrial diversity in human head louse populations across the Americas. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2013; 152:118-29. [PMID: 23900879 DOI: 10.1002/ajpa.22336] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 06/18/2013] [Indexed: 01/04/2023]
Abstract
Anthropological studies suggest that the genetic makeup of human populations in the Americas is the result of diverse processes including the initial colonization of the continent by the first people plus post-1492 European migrations. Because of the recent nature of some of these events, understanding the geographical origin of American human diversity is challenging. However, human parasites have faster evolutionary rates and larger population sizes allowing them to maintain greater levels of genetic diversity than their hosts. Thus, we can use human parasites to provide insights into some aspects of human evolution that may be unclear from direct evidence. In this study, we analyzed mitochondrial DNA (mtDNA) sequences from 450 head lice in the Americas. Haplotypes clustered into two well-supported haplogroups, known as A and B. Haplogroup frequencies differ significantly among North, Central and South America. Within each haplogroup, we found evidence of demographic expansions around 16,000 and 20,000 years ago, which correspond broadly with those estimated for Native Americans. The parallel timing of demographic expansions of human lice and Native Americans plus the contrasting pattern between the distribution of haplogroups A and B through the Americas suggests that human lice can provide additional evidence about the human colonization of the New World.
Collapse
Affiliation(s)
- Marina S Ascunce
- Florida Museum of Natural History, University of Florida, Gainesville, FL; Department of Biology, University of Florida, Gainesville, FL
| | | | | | | | | | | | | |
Collapse
|
42
|
Roewer L, Nothnagel M, Gusmão L, Gomes V, González M, Corach D, Sala A, Alechine E, Palha T, Santos N, Ribeiro-Dos-Santos A, Geppert M, Willuweit S, Nagy M, Zweynert S, Baeta M, Núñez C, Martínez-Jarreta B, González-Andrade F, Fagundes de Carvalho E, da Silva DA, Builes JJ, Turbón D, Lopez Parra AM, Arroyo-Pardo E, Toscanini U, Borjas L, Barletta C, Ewart E, Santos S, Krawczak M. Continent-wide decoupling of Y-chromosomal genetic variation from language and geography in native South Americans. PLoS Genet 2013; 9:e1003460. [PMID: 23593040 PMCID: PMC3623769 DOI: 10.1371/journal.pgen.1003460] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 03/04/2013] [Indexed: 01/07/2023] Open
Abstract
Numerous studies of human populations in Europe and Asia have revealed a concordance between their extant genetic structure and the prevailing regional pattern of geography and language. For native South Americans, however, such evidence has been lacking so far. Therefore, we examined the relationship between Y-chromosomal genotype on the one hand, and male geographic origin and linguistic affiliation on the other, in the largest study of South American natives to date in terms of sampled individuals and populations. A total of 1,011 individuals, representing 50 tribal populations from 81 settlements, were genotyped for up to 17 short tandem repeat (STR) markers and 16 single nucleotide polymorphisms (Y-SNPs), the latter resolving phylogenetic lineages Q and C. Virtually no structure became apparent for the extant Y-chromosomal genetic variation of South American males that could sensibly be related to their inter-tribal geographic and linguistic relationships. This continent-wide decoupling is consistent with a rapid peopling of the continent followed by long periods of isolation in small groups. Furthermore, for the first time, we identified a distinct geographical cluster of Y-SNP lineages C-M217 (C3*) in South America. Such haplotypes are virtually absent from North and Central America, but occur at high frequency in Asia. Together with the locally confined Y-STR autocorrelation observed in our study as a whole, the available data therefore suggest a late introduction of C3* into South America no more than 6,000 years ago, perhaps via coastal or trans-Pacific routes. Extensive simulations revealed that the observed lack of haplogroup C3* among extant North and Central American natives is only compatible with low levels of migration between the ancestor populations of C3* carriers and non-carriers. In summary, our data highlight the fact that a pronounced correlation between genetic and geographic/cultural structure can only be expected under very specific conditions, most of which are likely not to have been met by the ancestors of native South Americans. In the largest population genetic study of South Americans to date, we analyzed the Y-chromosomal makeup of more than 1,000 male natives. We found that the male-specific genetic variation of Native Americans lacks any clear structure that could sensibly be related to their geographic and/or linguistic relationships. This finding is consistent with a rapid initial peopling of South America, followed by long periods of isolation in small tribal groups. The observed continent-wide decoupling of geography, spoken language, and genetics contrasts strikingly with previous reports of such correlation from many parts of Europe and Asia. Moreover, we identified a cluster of Native American founding lineages of Y chromosomes, called C-M217 (C3*), within a restricted area of Ecuador in North-Western South America. The same haplogroup occurs at high frequency in Central, East, and North East Asia, but is virtually absent from North (except Alaska) and Central America. Possible scenarios for the introduction of C-M217 (C3*) into Ecuador may thus include a coastal or trans-Pacific route, an idea also supported by occasional archeological evidence and the recent coalescence of the C3* haplotypes, estimated from our data to have occurred some 6,000 years ago.
Collapse
Affiliation(s)
- Lutz Roewer
- Institute of Legal Medicine and Forensic Sciences, Department of Forensic Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Detection of ancestry informative HLA alleles confirms the admixed origins of Japanese population. PLoS One 2013; 8:e60793. [PMID: 23577161 PMCID: PMC3618337 DOI: 10.1371/journal.pone.0060793] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 03/03/2013] [Indexed: 01/11/2023] Open
Abstract
The polymorphisms in the human leukocyte antigen (HLA) region are powerful tool for studying human evolutionary processes. We investigated genetic structure of Japanese by using five-locus HLA genotypes (HLA-A, -B, -C, -DRB1, and -DPB1) of 2,005 individuals from 10 regions of Japan. We found a significant level of population substructure in Japanese; particularly the differentiation between Okinawa Island and mainland Japanese. By using a plot of the principal component scores, we identified ancestry informative alleles associated with the underlying population substructure. We examined extent of linkage disequilibrium (LD) between pairs of HLA alleles on the haplotypes that were differentiated among regions. The LDs were strong and weak for pairs of HLA alleles characterized by low and high frequencies in Okinawa Island, respectively. The five-locus haplotypes whose alleles exhibit strong LD were unique to Japanese and South Korean, suggesting that these haplotypes had been recently derived from the Korean Peninsula. The alleles characterized by high frequency in Japanese compared to South Korean formed segmented three-locus haplotype that was commonly found in Aleuts, Eskimos, and North- and Meso-Americans but not observed in Korean and Chinese. The serologically equivalent haplotype was found in Orchid Island in Taiwan, Mongol, Siberia, and Arctic regions. It suggests that early Japanese who existed prior to the migration wave from the Korean Peninsula shared ancestry with northern Asian who moved to the New World via the Bering Strait land bridge. These results may support the admixture model for peopling of Japanese Archipelago.
Collapse
|
44
|
Ramallo V, Bisso-Machado R, Bravi C, Coble MD, Salzano FM, Hünemeier T, Bortolini MC. Demographic expansions in South America: Enlightening a complex scenario with genetic and linguistic data. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2013; 150:453-63. [DOI: 10.1002/ajpa.22219] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 12/05/2012] [Indexed: 11/10/2022]
|
45
|
Regueiro M, Alvarez J, Rowold D, Herrera RJ. On the origins, rapid expansion and genetic diversity of Native Americans from hunting-gatherers to agriculturalists. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2013; 150:333-48. [PMID: 23283701 DOI: 10.1002/ajpa.22207] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 11/08/2012] [Indexed: 11/05/2022]
Abstract
Given the importance of Y-chromosome haplogroup Q to better understand the source populations of contemporary Native Americans, we studied 8 biallelic and 17 microsatellite polymorphisms on the background of 128 Q Y-chromosomes from geographically targeted populations. The populations examined in this study include three from the Tuva Republic in Central Asia (Bai-Tai, Kungurtug, and Toora-Hem, n = 146), two from the northeastern tip of Siberia (New Chaplino and Chukchi, n = 32), and two from Mesoamerica (Mayans from Yucatan, Mexico n = 72, and Mayans from the Guatemalan Highlands, n = 43). We also see evidence of a dramatic Mesoamerican post-migration population growth in the ubiquitous and diverse Y-STR profiles of the Mayan and other Mesoamerican populations. In the case of the Mayans, this demographic growth was most likely fueled by the agricultural- and trade-based subsistence adopted during the Pre-Classic, Classic and Post-Classic periods of their empire. The limited diversity levels observed in the Altaian and Tuvinian regions of Central Asia, the lowest of all populations examined, may be the consequence of bottleneck events fostered by the spatial isolation and low effective population size characteristic of a nomadic lifestyle. Furthermore, our data illustrate how a sociocultural characteristic such as mode of subsistence may be of impact on the genetic structure of populations. We analyzed our genetic data using Multidimensional Scaling Analysis of populations, Principal Component Analysis of individuals, Median-joining networks of M242, M346, L54, and M3 individuals, age estimations based on microsatellite variation utilizing genealogical and evolutionary mutation rates/generation times and estimation of Y- STR average gene diversity indices.
Collapse
Affiliation(s)
- Maria Regueiro
- Department of Molecular and Human Genetics, College of Medicine, Florida International University, Miami, FL 33199, USA
| | | | | | | |
Collapse
|
46
|
Badano I, Schurr TG, Stietz SM, Dulik MC, Mampaey M, Quintero IM, Zinovich JB, Campos RH, Liotta DJ. TNF promoter SNP variation in Amerindians and white-admixed women from Misiones, Argentina. Int J Immunogenet 2012; 40:216-21. [DOI: 10.1111/iji.12002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/12/2012] [Accepted: 09/12/2012] [Indexed: 01/05/2023]
Affiliation(s)
- I. Badano
- Laboratorio de Biología Molecular Aplicada; Facultad de Ciencias Exactas; Quimicas y Naturales; Universidad Nacional de Misiones; Misiones; Argentina
| | - T. G. Schurr
- Laboratory of Molecular Anthropology; Department of Anthropology; University of Pennsylvania; Philadelphia; PA; USA
| | - S. M. Stietz
- Laboratorio de Biología Molecular Aplicada; Facultad de Ciencias Exactas; Quimicas y Naturales; Universidad Nacional de Misiones; Misiones; Argentina
| | - M. C. Dulik
- Laboratory of Molecular Anthropology; Department of Anthropology; University of Pennsylvania; Philadelphia; PA; USA
| | - M. Mampaey
- Ministerio de Salud Pública de la Provincia de Misiones; Misiones; Argentina
| | - I. M. Quintero
- Laboratorio de Biología Molecular Aplicada; Facultad de Ciencias Exactas; Quimicas y Naturales; Universidad Nacional de Misiones; Misiones; Argentina
| | - J. B. Zinovich
- Ministerio de Salud Pública de la Provincia de Misiones; Misiones; Argentina
| | - R. H. Campos
- Cátedra de Virología; Facultad de Farmacia y Bioquímica; Universidad de Buenos Aires; Buenos Aires; Argentina
| | - D. J. Liotta
- Laboratorio de Biología Molecular Aplicada; Facultad de Ciencias Exactas; Quimicas y Naturales; Universidad Nacional de Misiones; Misiones; Argentina
| |
Collapse
|
47
|
Abstract
The peopling of the Americas has been the subject of extensive genetic, archaeological and linguistic research; however, central questions remain unresolved1–5. One contentious issue is whether the settlement occurred via a single6–8 or multiple streams of migration from Siberia9–15. The pattern of dispersals within the Americas is also poorly understood. To address these questions at higher resolution than was previously possible, we assembled data from 52 Native American and 17 Siberian groups genotyped at 364,470 single nucleotide polymorphisms. We show that Native Americans descend from at least three streams of Asian gene flow. Most descend entirely from a single ancestral population that we call “First American”. However, speakers of Eskimo-Aleut languages from the Arctic inherit almost half their ancestry from a second stream of Asian gene flow, and the Na-Dene-speaking Chipewyan from Canada inherit roughly one-tenth of their ancestry from a third stream. We show that the initial peopling followed a southward expansion facilitated by the coast, with sequential population splits and little gene flow after divergence, especially in South America. A major exception is in Chibchan-speakers on both sides of the Panama Isthmus, who have ancestry from both North and South America.
Collapse
|
48
|
Niederstätter H, Rampl G, Erhart D, Pitterl F, Oberacher H, Neuhuber F, Hausner I, Gassner C, Schennach H, Berger B, Parson W. Pasture names with Romance and Slavic roots facilitate dissection of Y chromosome variation in an exclusively German-speaking alpine region. PLoS One 2012; 7:e41885. [PMID: 22848647 PMCID: PMC3407130 DOI: 10.1371/journal.pone.0041885] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 06/28/2012] [Indexed: 01/04/2023] Open
Abstract
The small alpine district of East Tyrol (Austria) has an exceptional demographic history. It was contemporaneously inhabited by members of the Romance, the Slavic and the Germanic language groups for centuries. Since the Late Middle Ages, however, the population of the principally agrarian-oriented area is solely Germanic speaking. Historic facts about East Tyrol's colonization are rare, but spatial density-distribution analysis based on the etymology of place-names has facilitated accurate spatial mapping of the various language groups' former settlement regions. To test for present-day Y chromosome population substructure, molecular genetic data were compared to the information attained by the linguistic analysis of pasture names. The linguistic data were used for subdividing East Tyrol into two regions of former Romance (A) and Slavic (B) settlement. Samples from 270 East Tyrolean men were genotyped for 17 Y-chromosomal microsatellites (Y-STRs) and 27 single nucleotide polymorphisms (Y-SNPs). Analysis of the probands' surnames revealed no evidence for spatial genetic structuring. Also, spatial autocorrelation analysis did not indicate significant correlation between genetic (Y-STR haplotypes) and geographic distance. Haplogroup R-M17 chromosomes, however, were absent in region A, but constituted one of the most frequent haplogroups in region B. The R-M343 (R1b) clade showed a marked and complementary frequency distribution pattern in these two regions. To further test East Tyrol's modern Y-chromosomal landscape for geographic patterning attributable to the early history of settlement in this alpine area, principal coordinates analysis was performed. The Y-STR haplotypes from region A clearly clustered with those of Romance reference populations and the samples from region B matched best with Germanic speaking reference populations. The combined use of onomastic and molecular genetic data revealed and mapped the marked structuring of the distribution of Y chromosomes in an alpine region that has been culturally homogeneous for centuries.
Collapse
Affiliation(s)
| | - Gerhard Rampl
- Institute of Lexicography of Austrian Dialects and Names, Austrian Academy of Sciences, Vienna, Austria
| | - Daniel Erhart
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Florian Pitterl
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Herbert Oberacher
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Franz Neuhuber
- Institute of Legal Medicine, University of Salzburg, Salzburg, Austria
| | - Isolde Hausner
- Institute of Lexicography of Austrian Dialects and Names, Austrian Academy of Sciences, Vienna, Austria
| | - Christoph Gassner
- Central Institute for Blood Transfusion & Immunological Department, Innsbruck, Austria
- Blood Transfusion Service Zürich, SRC, Schlieren, Switzerland
| | - Harald Schennach
- Central Institute for Blood Transfusion & Immunological Department, Innsbruck, Austria
| | - Burkhard Berger
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
- * E-mail:
| | - Walther Parson
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
49
|
Y chromosome haplogroup diversity in a Mestizo population of Nicaragua. Forensic Sci Int Genet 2012; 6:e192-5. [PMID: 22770600 DOI: 10.1016/j.fsigen.2012.06.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 06/10/2012] [Indexed: 11/23/2022]
Abstract
Y chromosome single nucleotide polymorphisms (Y-SNPs) are indispensable markers for haplogroup determination. Since Y chromosome haplogroups show a high specific geographical distribution, they play a major role in population genetics but can also benefit forensic investigations. Although haplogroup prediction methods based on Y chromosome short tandem repeats (Y-STRs) exist and are frequently used, precaution is required in this regard. In this study we determine the Y chromosome haplogroups of a Nicaraguan population using several Y-SNP multiplex reactions. Y chromosome haplogroups have been predicted before, but our results show that a confirmation with Y-SNP typings is necessary. These results have revealed a 4.8% of error in haplogroup prediction based on Y-STR haplotypes using Athey's Haplogroup Predictor. The Nicaraguan Mestizo population displays a majority of Eurasian lineages, mainly represented by haplogroup R-M207 (46.7%). Other Eurasian lineages have been observed, especially J-P209 (13.3%), followed by I-M170 (3.6%) and G-M201 (1.8%). Haplogroup E-P170 was also observed in 15.2% of the sample, particularly subhaplogroup E1b1b1-M35. Finally, the Native American haplogroup Q-M242 was found in 15.2% of the sample, with Q1a3a-M3 being the most frequent.
Collapse
|
50
|
Hünemeier T, Amorim CEG, Azevedo S, Contini V, Acuña-Alonzo V, Rothhammer F, Dugoujon JM, Mazières S, Barrantes R, Villarreal-Molina MT, Paixão-Côrtes VR, Salzano FM, Canizales-Quinteros S, Ruiz-Linares A, Bortolini MC. Evolutionary responses to a constructed niche: ancient Mesoamericans as a model of gene-culture coevolution. PLoS One 2012; 7:e38862. [PMID: 22768049 PMCID: PMC3380856 DOI: 10.1371/journal.pone.0038862] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 05/12/2012] [Indexed: 12/26/2022] Open
Abstract
Culture and genetics rely on two distinct but not isolated transmission systems. Cultural processes may change the human selective environment and thereby affect which individuals survive and reproduce. Here, we evaluated whether the modes of subsistence in Native American populations and the frequencies of the ABCA1*Arg230Cys polymorphism were correlated. Further, we examined whether the evolutionary consequences of the agriculturally constructed niche in Mesoamerica could be considered as a gene-culture coevolution model. For this purpose, we genotyped 229 individuals affiliated with 19 Native American populations and added data for 41 other Native American groups (n = 1905) to the analysis. In combination with the SNP cluster of a neutral region, this dataset was then used to unravel the scenario involved in 230Cys evolutionary history. The estimated age of 230Cys is compatible with its origin occurring in the American continent. The correlation of its frequencies with the archeological data on Zea pollen in Mesoamerica/Central America, the neutral coalescent simulations, and the FST-based natural selection analysis suggest that maize domestication was the driving force in the increase in the frequencies of 230Cys in this region. These results may represent the first example of a gene-culture coevolution involving an autochthonous American allele.
Collapse
Affiliation(s)
- Tábita Hünemeier
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Eduardo Guerra Amorim
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Soledad Azevedo
- Centro Nacional Patagónico, CONICET, U9120ACV, Puerto Madryn, Argentina
| | - Veronica Contini
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Víctor Acuña-Alonzo
- Molecular Genetics Laboratory, Escuela Nacional de Antropología e Historia, Mexico City, Mexico
| | - Francisco Rothhammer
- Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile
| | - Jean-Michel Dugoujon
- Laboratoire d′Anthropologie Moléculaire et d′Imagerie de Synthèse, UMR 5288 CNRS, Université Paul Sabatier (Toulouse3), Toulouse, France
| | - Stephane Mazières
- Anthropologie Bio-culturelle, Droit, Ethique et Santé (ADES), UMR 7268, Aix-Marseille-Université/CNRS/EFS, Marseille, France
| | - Ramiro Barrantes
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
| | | | - Vanessa Rodrigues Paixão-Côrtes
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Francisco M. Salzano
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Samuel Canizales-Quinteros
- Unit of Molecular Biology and Genomic Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Andres Ruiz-Linares
- The Galton Laboratory, Department of Biology, University College London, London, United Kingdom
| | - Maria Cátira Bortolini
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- * E-mail:
| |
Collapse
|