1
|
Battersby JL, Stevens DA, Coutts RHA, Havlíček V, Hsu JL, Sass G, Kotta-Loizou I. The Expanding Mycovirome of Aspergilli. J Fungi (Basel) 2024; 10:585. [PMID: 39194910 DOI: 10.3390/jof10080585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Mycoviruses are viruses that infect fungi and are widespread across all major fungal taxa, exhibiting great biological diversity. Since their discovery in the 1960s, researchers have observed a myriad of fungal phenotypes altered due to mycoviral infection. In this review, we examine the nuanced world of mycoviruses in the context of the medically and agriculturally important fungal genus, Aspergillus. The advent of RNA sequencing has revealed a previous underestimate of viral prevalence in fungi, in particular linear single-stranded RNA viruses, and here we outline the diverse viral families known to date that contain mycoviruses infecting Aspergillus. Furthermore, we describe these novel mycoviruses, highlighting those with peculiar genome structures, such as a split RNA dependent RNA polymerase gene. Next, we delineate notable mycovirus-mediated phenotypes in Aspergillus, in particular reporting on observations of mycoviruses that affect their fungal host's virulence and explore how this may relate to virus-mediated decreased stress tolerance. Furthermore, mycovirus effects on microbial competition and antifungal resistance are discussed. The factors that influence the manifestation of these phenotypes, such as temperature, fungal life stage, and infection with multiple viruses, among others, are also evaluated. In addition, we attempt to elucidate the molecular mechanisms that underpin these phenotypes, examining how mycoviruses can be targets, triggers, and even suppressors of RNA silencing and how this can affect fungal gene expression and phenotypes. Finally, we highlight the potential therapeutic applications of mycoviruses and how, in an approach analogous to bacteriophage therapy, their ability to produce hypovirulence in Aspergillus might be used to attenuate invasive aspergillosis infections in humans.
Collapse
Affiliation(s)
- Josephine L Battersby
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
- Department of Clinical, Pharmaceutical and Biological Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - David A Stevens
- California Institute for Medical Research, San Jose, CA 95128, USA
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robert H A Coutts
- Department of Clinical, Pharmaceutical and Biological Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Vladimír Havlíček
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
- Department of Analytical Chemistry, Palacky University, 17. Listopadu 2, 779 00 Olomouc, Czech Republic
| | - Joe L Hsu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gabriele Sass
- California Institute for Medical Research, San Jose, CA 95128, USA
| | - Ioly Kotta-Loizou
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
- Department of Clinical, Pharmaceutical and Biological Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| |
Collapse
|
2
|
Chiu CY, John TM, Matsuo T, Wurster S, Hicklen RS, Khattak RR, Ariza-Heredia EJ, Bose P, Kontoyiannis DP. Disseminated Histoplasmosis in a Patient with Myelofibrosis on Ruxolitinib: A Case Report and Review of the Literature on Ruxolitinib-Associated Invasive Fungal Infections. J Fungi (Basel) 2024; 10:264. [PMID: 38667935 PMCID: PMC11051496 DOI: 10.3390/jof10040264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/24/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Ruxolitinib, a selective inhibitor of Janus kinases, is a standard treatment for intermediate/high-risk myelofibrosis (MF) but is associated with a predisposition to opportunistic infections, especially herpes zoster. However, the incidence and characteristics of invasive fungal infections (IFIs) in these patients remain uncertain. In this report, we present the case of a 59-year-old woman with MF who developed disseminated histoplasmosis after seven months of ruxolitinib use. The patient clinically improved after ten weeks of combined amphotericin B and azole therapy, and ruxolitinib was discontinued. Later, the patient received fedratinib, a relatively JAK2-selective inhibitor, without relapse of histoplasmosis. We also reviewed the literature on published cases of proven IFIs in patients with MF who received ruxolitinib. Including ours, we identified 28 such cases, most commonly due to Cryptococcus species (46%). IFIs were most commonly disseminated (39%), followed by localized lung (21%) infections. Although uncommon, a high index of suspicion for opportunistic IFIs is needed in patients receiving JAK inhibitors. Furthermore, the paucity of data regarding the optimal management of IFIs in patients treated with JAK inhibitors underscore the need for well-designed studies to evaluate the epidemiology, pathobiology, early diagnosis, and multimodal therapy of IFIs in patients with hematological malignancies receiving targeted therapies.
Collapse
Affiliation(s)
- Chia-Yu Chiu
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.-Y.C.); (T.M.J.); (T.M.); (S.W.); (R.R.K.); (E.J.A.-H.)
| | - Teny M. John
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.-Y.C.); (T.M.J.); (T.M.); (S.W.); (R.R.K.); (E.J.A.-H.)
| | - Takahiro Matsuo
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.-Y.C.); (T.M.J.); (T.M.); (S.W.); (R.R.K.); (E.J.A.-H.)
| | - Sebastian Wurster
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.-Y.C.); (T.M.J.); (T.M.); (S.W.); (R.R.K.); (E.J.A.-H.)
| | - Rachel S. Hicklen
- Research Medical Library, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Raihaan Riaz Khattak
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.-Y.C.); (T.M.J.); (T.M.); (S.W.); (R.R.K.); (E.J.A.-H.)
| | - Ella J. Ariza-Heredia
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.-Y.C.); (T.M.J.); (T.M.); (S.W.); (R.R.K.); (E.J.A.-H.)
| | - Prithviraj Bose
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Dimitrios P. Kontoyiannis
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.-Y.C.); (T.M.J.); (T.M.); (S.W.); (R.R.K.); (E.J.A.-H.)
| |
Collapse
|
3
|
Shankar J, Thakur R, Clemons KV, Stevens DA. Interplay of Cytokines and Chemokines in Aspergillosis. J Fungi (Basel) 2024; 10:251. [PMID: 38667922 PMCID: PMC11051073 DOI: 10.3390/jof10040251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Aspergillosis is a fungal infection caused by various species of Aspergillus, most notably A. fumigatus. This fungus causes a spectrum of diseases, including allergic bronchopulmonary aspergillosis, aspergilloma, chronic pulmonary aspergillosis, and invasive aspergillosis. The clinical manifestations and severity of aspergillosis can vary depending on individual immune status and the specific species of Aspergillus involved. The recognition of Aspergillus involves pathogen-associated molecular patterns (PAMPs) such as glucan, galactomannan, mannose, and conidial surface proteins. These are recognized by the pathogen recognition receptors present on immune cells such as Toll-like receptors (TLR-1,2,3,4, etc.) and C-type lectins (Dectin-1 and Dectin-2). We discuss the roles of cytokines and pathogen recognition in aspergillosis from both the perspective of human and experimental infection. Several cytokines and chemokines have been implicated in the immune response to Aspergillus infection, including interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), CCR4, CCR17, and other interleukins. For example, allergic bronchopulmonary aspergillosis (ABPA) is characterized by Th2 and Th9 cell-type immunity and involves interleukin (IL)-4, IL-5, IL-13, and IL-10. In contrast, it has been observed that invasive aspergillosis involves Th1 and Th17 cell-type immunity via IFN-γ, IL-1, IL-6, and IL-17. These cytokines activate various immune cells and stimulate the production of other immune molecules, such as antimicrobial peptides and reactive oxygen species, which aid in the clearance of the fungal pathogen. Moreover, they help to initiate and coordinate the immune response, recruit immune cells to the site of infection, and promote clearance of the fungus. Insight into the host response from both human and animal studies may aid in understanding the immune response in aspergillosis, possibly leading to harnessing the power of cytokines or cytokine (receptor) antagonists and transforming them into precise immunotherapeutic strategies. This could advance personalized medicine.
Collapse
Affiliation(s)
- Jata Shankar
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat Solan 173234, Himachal Pradesh, India
| | - Raman Thakur
- Department of Medical Laboratory Science, Lovely Professional University, Jalandhar 144001, Punjab, India;
| | - Karl V. Clemons
- California Institute for Medical Research, San Jose, CA 95128, USA; (K.V.C.); (D.A.S.)
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA 94305, USA
| | - David A. Stevens
- California Institute for Medical Research, San Jose, CA 95128, USA; (K.V.C.); (D.A.S.)
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Singh N, Kumari V, Agrawal K, Kulshreshtha M. Molecular Pathway, Epidemiological Data and Treatment Strategies of Fungal Infection (Mycoses): A Comprehensive Review. Cent Nerv Syst Agents Med Chem 2024; 24:68-81. [PMID: 38305394 DOI: 10.2174/0118715249274215231205062701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/06/2023] [Accepted: 10/31/2023] [Indexed: 02/03/2024]
Abstract
The recent increase in fungal infections is a health crisis. This surge is directly tied to the increase in immunocompromised people caused by changes in medical practice, such as the use of harsh chemotherapy and immunosuppressive medicines. Immunosuppressive disorders such as HIV have exacerbated the situation dramatically. Subcutaneous or superficial fungal infections can harm the skin, keratinous tissues, and mucous membranes. This category includes some of the most common skin disorders that impact millions of people worldwide. Despite the fact that they are seldom fatal, they can have a catastrophic impact on a person's quality of life and, in rare situations, spread to other people or become obtrusive. The majority of fungal infections under the skin and on the surface are simply and quickly cured. An opportunistic organism that preys on a weak host or a natural intruder can both result in systemic fungal infections. Furthermore, it might be exceedingly lethal and dangerous to one's life. Dimorphic fungi may pose a hazard to healthy populations that are not exposed to endemic fungi. Increased surveillance, the availability of quick, noninvasive diagnostic tests, monitoring the emergence of antifungal medication resistance, and research on the pathophysiology, prevention, and management of fungal infections are just a few potential solutions to these new health problems. The goal of this review is to summarize the data available for fungal infections and the different therapies which are involved in their treatment. Additionally, it also summarizes the molecular and scientific data of the plants which contain anti-fungal activity. Data are acquired using Google, PubMed, Scholar, and other online sources.
Collapse
Affiliation(s)
| | - Vibha Kumari
- Rajiv Academy for Pharmacy, Mathura (U.P.), India
| | | | | |
Collapse
|
5
|
Carvalho JHDS, Nascimento JKC, Silva KGV, Silveira Neto S, Macedo ATD, Lima França H, Ferreira LDR, Silva RDS, Sa JC, Ramos DG, Marques DDAV, Furst C, Santos DA, Santos JRA, Holanda RA. Yeast-amoeba interaction influences murine cryptococcosis. Microbes Infect 2023; 25:105153. [PMID: 37244475 DOI: 10.1016/j.micinf.2023.105153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
The virulence of Cryptococcus spp. is modulated in the natural environment through interaction with abiotic and biotic factors, and this can occasionally have implications for the progression of cryptococcosis in mammals. Hence, we evaluated whether the prior interaction of highly virulent Cryptococcus gattii strain R265 with Acanthamoeba castellanii influenced the progression of cryptococcosis. The influence of the capsule on endocytosis was evaluated using amoeba and yeast morphometrics. Mice were intratracheally infected with yeast re-isolated from the amoeba (Interaction), yeast without prior contact with the amoeba (Non-Interaction), or sterile phosphate-buffered saline (SHAM). Morbidity signs and symptoms were monitored during the survival curve, while cytokine and fungal burden measurements and histopathological analysis were performed on the 10th day post infection. Morbidity and mortality parameters in experimental cryptococcosis were influenced by the prior interaction of yeast with amoeba, which led to phenotypic changes in the cryptococcal cells, polysaccharide secretion, and their tolerance to oxidative stress. Our results suggest that a prior yeast-amoeba interaction modulates yeast virulence, which is associated with a greater tolerance to oxidative stress related to the exo-polysaccharide content and influences the progression of cryptococcal infection.
Collapse
Affiliation(s)
| | | | | | - Sebastiao Silveira Neto
- Laboratório de Biologia Molecular de Microrganismos Patogênicos, Universidade CEUMA, São Luís, Maranhão, Brazil
| | | | - Hermeson Lima França
- Laboratório de Biologia Molecular de Microrganismos Patogênicos, Universidade CEUMA, São Luís, Maranhão, Brazil
| | - Larissa Dos Reis Ferreira
- Laboratório de Biologia Molecular de Microrganismos Patogênicos, Universidade CEUMA, São Luís, Maranhão, Brazil
| | - Rayssa de Sousa Silva
- Laboratório de Biologia Molecular de Microrganismos Patogênicos, Universidade CEUMA, São Luís, Maranhão, Brazil
| | - Joicy Cortez Sa
- Laboratório de Imunologia, Universidade CEUMA, São Luís, Maranhão, Brazil
| | - Diego Gomes Ramos
- Laboratório Integrado de Biotecnologia Aplicada, Universidade de Pernambuco, Recife, Pernambuco, Brazil
| | | | - Cinthia Furst
- Departamento de Patologia, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Daniel Assis Santos
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Rodrigo Assuncao Holanda
- Laboratório de Biologia Molecular de Microrganismos Patogênicos, Universidade CEUMA, São Luís, Maranhão, Brazil.
| |
Collapse
|
6
|
Armstrong-James D, Kosmidis C, Bromley M. Update on the treatment of chronic pulmonary aspergillosis. Curr Opin Infect Dis 2023; 36:146-151. [PMID: 36912585 DOI: 10.1097/qco.0000000000000913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
PURPOSE OF REVIEW Chronic pulmonary aspergillosis is a major global infection in individuals with preexisting structural lung diseases and those with immunodeficiencies, in particular cytokine defects. Current treatment options are confined to just three drug classes, the triazoles, the echinocandins and amphotericin B. However, antifungal resistance is rapidly emerging for the triazoles, the only available oral therapy for this chronic condition. RECENT FINDINGS Fortunately, there are now a number of novel antifungals in the development pipeline, mostly now in Phase 3 studies, with a potential for the treatment of chronic pulmonary aspergillosis. However, almost all current randomized triazoles of novel antifungals are primarily undertaken in patients with invasive candidiasis or invasive mould infections. Given the poor outcomes from treatment with antifungals in chronic pulmonary aspergillosis, in part associated with triazole resistance, we urgently need clinical trials of novel agents either as monotherapy or in combination for this disease. In addition, there is an emerging understanding of the role of immunotherapies for the treatment of chronic pulmonary aspergillosis, especially in the context of cytokine defects. Therefore, better understanding of the role of adjunctive immunotherapies such as interferon-gamma is also required. SUMMARY In this review, we give an overview of current management of chronic pulmonary aspergillosis, and novel antifungals and immunotherapies for the future.
Collapse
Affiliation(s)
- Darius Armstrong-James
- Department of Infectious Diseases and Imperial Fungal Science Network, Imperial College London, London
| | - Chris Kosmidis
- Manchester Fungal Infection Group, University of Manchester, Manchester, UK
| | - Mike Bromley
- Manchester Fungal Infection Group, University of Manchester, Manchester, UK
| |
Collapse
|
7
|
Infection and Immunity. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
8
|
Colombo SAP, Hashad R, Denning DW, Kumararatne DS, Ceron-Gutierrez L, Barcenas-Morales G, MacDonald AS, Harris C, Doffinger R, Kosmidis C. Defective interferon-gamma production is common in chronic pulmonary aspergillosis. J Infect Dis 2021; 225:1822-1831. [PMID: 34850023 DOI: 10.1093/infdis/jiab583] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/25/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Immune defects in chronic pulmonary aspergillosis (CPA) are poorly characterised. We compared peripheral blood cytokine profiles in patients with CPA vs healthy controls and explored the relationship with disease severity. METHODS Interferon-gamma (IFNγ), IL-17, TNFα, IL-6, IL-12 and IL-10 were measured after in vitro stimulation of whole blood with lipopolysaccharide (LPS), phytohaemagglutinin (PHA), β-glucan, zymosan (ZYM), IL-12 or IL-18, and combinations. Clinical parameters and mortality were correlated with cytokine production. RESULTS Cytokine profiles were evaluated in 133 patients (57.1% male, mean age 61 years). In comparison to controls, patients with CPA had significantly reduced production of IFNγ in response to stimulation with β-glucan+IL-12 (312 vs 988 pg/ml), LPS+IL-12 (252 vs 1033 pg/ml), ZYM+IL-12 (996 vs 2347 pg/ml), and IL-18+IL-12 (7193 vs 12330 pg/ml). Age >60 (p=0.05, HR 1.71, 95%CI 1.00-2.91) and COPD (p=0.039, HR 1.69, 95%CI 1.03-2.78) were associated with worse survival, whereas high IFNγ production in response to beta-glucan+IL-12 stimulation (p=0.026, HR 0.48, 95%CI 0.25-0.92) was associated with reduced mortality. CONCLUSION Patients with CPA show impaired IFNγ production in peripheral blood in response to stimuli. Defective IFNγ production ability correlates with worse outcomes. Immunotherapy with IFNγ could be beneficial for patients showing impaired IFNγ production in CPA.
Collapse
Affiliation(s)
- Stefano A P Colombo
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Rola Hashad
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester Academic Health Science Centre, UK.,Department of Medical Microbiology and Immunology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - David W Denning
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, UK
| | - Dinakantha S Kumararatne
- Department of Clinical Biochemistry and Immunology, Addenbrookes Hospital, Cambridge University NHS Foundation Trust, Cambridge, UK
| | - Lourdes Ceron-Gutierrez
- Department of Clinical Biochemistry and Immunology, Addenbrookes Hospital, Cambridge University NHS Foundation Trust, Cambridge, UK
| | | | - Andrew S MacDonald
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Chris Harris
- National Aspergillosis Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Rainer Doffinger
- Department of Clinical Biochemistry and Immunology, Addenbrookes Hospital, Cambridge University NHS Foundation Trust, Cambridge, UK
| | - Chris Kosmidis
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, UK.,National Aspergillosis Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
9
|
Ademe M. Immunomodulation for the Treatment of Fungal Infections: Opportunities and Challenges. Front Cell Infect Microbiol 2020; 10:469. [PMID: 33042859 PMCID: PMC7522196 DOI: 10.3389/fcimb.2020.00469] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/30/2020] [Indexed: 01/03/2023] Open
Abstract
Opportunistic fungal infections are major causes of morbidity and mortality in patients with single or multiple defects in their immunity. Antifungal agents targeting the pathogen remain the treatment of choice for fungal infections. However, antifungal agents are toxic to the host mainly due to the close evolutionary similarity of fungi and humans. Moreover, antifungal therapy is ineffective in patients with immunosuppression. For this reason, there is an increased demand to develop novel strategies to enhance immune function and augment the existing antifungal drugs. In recent times, targeting the immune system to improve impaired host immune responses becomes a reasonable approach to improve the effectiveness of antifungal drugs. In this regard, immunomodulating therapeutic agents that turn up the immune response in the fight against fungal infections hold promise for enhancing the efficacy and safety of conventional antifungal therapy. In general, immunomodulating therapies are safe with decreased risk of resistance and broad spectrum of activity. In this review, therefore, clinical evidences supporting the opportunities and challenges of immunomodulation therapies in the treatment of invasive fungal infections are included.
Collapse
Affiliation(s)
- Muluneh Ademe
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
10
|
Żelechowska P, Różalska S, Wiktorska M, Brzezińska-Błaszczyk E, Agier J. Curdlan stimulates tissue mast cells to synthesize pro-inflammatory mediators, generate ROS, and migrate via Dectin-1 receptor. Cell Immunol 2020; 351:104079. [PMID: 32115182 DOI: 10.1016/j.cellimm.2020.104079] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 01/10/2023]
Abstract
Mast cells (MCs) are engaged in host defense against various pathogens as they are equipped with pattern recognition receptors (PRRs). Among PRRs expressed on MCs, there are also molecules recognizing components of the fungal cell wall, which are able to induce cellular activation and response. However, little information is available concerning the MC activation by various fungal-derived components. The aim of the study was to determine whether curdlan, a model fungal particle of β-(1,3)-glucan, can directly stimulate tissue MCs. We demonstrated that curdlan triggers MCs to initiate pro-inflammatory response as it activates these cells to synthesize essential pro-inflammatory and/or immunoregulatory factors. We also showed that curdlan serves as a potent chemoattractant for MCs and stimulates those cells to generate reactive oxygen species (ROS). Finally, we documented that curdlan induces MC response via Dectin-1. Our observations support the idea that MCs serve as important sentinels modulating immune response during fungal infection.
Collapse
Affiliation(s)
- Paulina Żelechowska
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, 92-213 Lodz, Poland
| | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
| | - Magdalena Wiktorska
- Department of Molecular Cell Mechanisms, Faculty of Health Sciences, Medical University of Lodz, 92-215 Lodz, Poland
| | - Ewa Brzezińska-Błaszczyk
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, 92-213 Lodz, Poland.
| | - Justyna Agier
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, 92-213 Lodz, Poland
| |
Collapse
|
11
|
Carreras E, Velasco de Andrés M, Orta-Mascaró M, Simões IT, Català C, Zaragoza O, Lozano F. Discordant susceptibility of inbred C57BL/6 versus outbred CD1 mice to experimental fungal sepsis. Cell Microbiol 2019; 21:e12995. [PMID: 30577088 DOI: 10.1111/cmi.12995] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/06/2018] [Accepted: 12/11/2018] [Indexed: 01/01/2023]
Abstract
Individual susceptibility differences to fungal infection following invasive and/or immunosuppressive medical interventions are an important clinical issue. In order to explore immune response-related factors that may be linked to fungal infection susceptibility, we have compared the response of inbred C57BL/6J and outbred CD1 mouse strains to different experimental models of fungal sepsis. The challenge of animals with the zymosan-induced generalised inflammation model revealed poorer survival rates in C57BL/6J, consistent with lower Th1 cytokine interferon (IFN)-γ serum levels, compared with CD1 mice. Likewise, ex vivo exposure of C57BL/6J splenocytes to zymosan but also bacterial lipopolisaccharide or lipoteichoic acid, resulted in lower IFN-γ secretion compared with CD1 mice. C57BL/6J susceptibility could be reverted by rescue infusion of relative low IFN-γ doses (0.2 μg/kg) either alone or in combination with the ß-glucan-binding CD5 protein (0.7 mg/kg) leading to improved post zymosan-induced generalised inflammation survival. Similarly, low survival rates to systemic Candida albicans infection (2.86 × 104 CFU/gr) were ameliorated by low-dose IFN-γ infusion in C57BL/6J but not CD1 mice. Our results highlight the importance of strain choice in experimental fungal infection models and provide a susceptibility rationale for more specific antifungal immunotherapy designs.
Collapse
Affiliation(s)
- Esther Carreras
- Immunoreceptors of the Innate and Adaptive System team, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - María Velasco de Andrés
- Immunoreceptors of the Innate and Adaptive System team, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Marc Orta-Mascaró
- Immunoreceptors of the Innate and Adaptive System team, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Inês T Simões
- Immunoreceptors of the Innate and Adaptive System team, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Cristina Català
- Immunoreceptors of the Innate and Adaptive System team, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Oscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Francisco Lozano
- Immunoreceptors of the Innate and Adaptive System team, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.,Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain.,Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Holanda RA, Muñoz JE, Dias LS, Silva LBR, Santos JRA, Pagliari S, Vieira ÉLM, Paixão TA, Taborda CP, Santos DA, Bruña-Romero O. Recombinant vaccines of a CD4+ T-cell epitope promote efficient control of Paracoccidioides brasiliensis burden by restraining primary organ infection. PLoS Negl Trop Dis 2017; 11:e0005927. [PMID: 28938005 PMCID: PMC5627964 DOI: 10.1371/journal.pntd.0005927] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 10/04/2017] [Accepted: 09/02/2017] [Indexed: 11/19/2022] Open
Abstract
Paracoccidioidomycosis (PCM) is an infectious disease endemic to South America, caused by the thermally dimorphic fungi Paracoccidioides. Currently, there is no effective human vaccine that can be used in prophylactic or therapeutic regimes. We tested the hypothesis that the immunogenicity of the immunodominant CD4+ T-cell epitope (P10) of Paracoccidioides brasiliensis gp43 antigen might be significantly enhanced by using a hepatitis B virus-derived particle (VLP) as an antigen carrier. This chimera was administered to mice as a (His)6-purified protein (rPbT) or a replication-deficient human type 5 adenoviral vector (rAdPbT) in an immunoprophylaxis assay. The highly virulent Pb18 yeast strain was used to challenge our vaccine candidates. Fungal challenge evoked robust P10-specific memory CD4+ T cells secreting protective Th-1 cytokines in most groups of immunized mice. Furthermore, the highest level of fungal burden control was achieved when rAdPbT was inoculated in a homologous prime-boost regimen, with 10-fold less CFU recovering than in non-vaccinated mice. Systemic Pb18 spreading was only prevented when rAdPbT was previously inoculated. In summary, we present here VLP/P10 formulations as vaccine candidates against PCM, some of which have demonstrated for the first time their ability to prevent progression of this pernicious fungal disease, which represents a significant social burden in developing countries.
Collapse
MESH Headings
- Animals
- Antigens, Fungal/immunology
- CD4-Positive T-Lymphocytes/immunology
- Cytokines/immunology
- Cytokines/metabolism
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Fungal Proteins/immunology
- Fungal Vaccines/administration & dosage
- Fungal Vaccines/immunology
- Glycoproteins/immunology
- Hepatitis B virus/genetics
- Immunization
- Immunodominant Epitopes/immunology
- Immunogenicity, Vaccine
- Immunologic Memory
- Liver/microbiology
- Lung/microbiology
- Mice, Inbred BALB C
- Paracoccidioides/growth & development
- Paracoccidioides/immunology
- Paracoccidioidomycosis/immunology
- Paracoccidioidomycosis/microbiology
- Paracoccidioidomycosis/prevention & control
- Spleen/microbiology
- Th1 Cells/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Virus-Like Particle/administration & dosage
- Vaccines, Virus-Like Particle/genetics
- Vaccines, Virus-Like Particle/immunology
Collapse
Affiliation(s)
- Rodrigo Assunção Holanda
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
- Laboratório de Biologia Parasitária, Universidade CEUMA, Maranhão, Brazil
- * E-mail:
| | - Julián Esteban Muñoz
- Departamento de Microbiologia, Universidade de São Paulo, São Paulo, Brazil
- Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Lucas Santos Dias
- Departamento de Microbiologia, Universidade de São Paulo, São Paulo, Brazil
| | | | - Julliana Ribeiro Alves Santos
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
- Laboratório de Microbiologia Ambiental, Universidade CEUMA, Maranhão, Brazil
| | - Sthefany Pagliari
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Santa Catarina, Brazil
| | | | - Tatiane Alves Paixão
- Departamento de Patologia Geral, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | | | - Daniel Assis Santos
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Oscar Bruña-Romero
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Santa Catarina, Brazil
| |
Collapse
|
13
|
Kosch TA, Eimes JA, Didinger C, Brannelly LA, Waldman B, Berger L, Skerratt LF. Characterization of MHC class IA in the endangered southern corroboree frog. Immunogenetics 2016; 69:165-174. [DOI: 10.1007/s00251-016-0965-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/29/2016] [Indexed: 01/12/2023]
|
14
|
Noncanonical Fungal Autophagy Inhibits Inflammation in Response to IFN-γ via DAPK1. Cell Host Microbe 2016; 20:744-757. [PMID: 27889463 PMCID: PMC5161749 DOI: 10.1016/j.chom.2016.10.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/21/2016] [Accepted: 10/21/2016] [Indexed: 12/31/2022]
Abstract
Defects in a form of noncanonical autophagy, known as LC3-associated phagocytosis (LAP), lead to increased inflammatory pathology during fungal infection. Although LAP contributes to fungal degradation, the molecular mechanisms underlying LAP-mediated modulation of inflammation are unknown. We describe a mechanism by which inflammation is regulated during LAP through the death-associated protein kinase 1 (DAPK1). The ATF6/C/EBP-β/DAPK1 axis activated by IFN-γ not only mediates LAP to Aspergillus fumigatus but also concomitantly inhibits Nod-like receptor protein 3 (NLRP3) activation and restrains pathogenic inflammation. In mouse models and patient samples of chronic granulomatous disease, which exhibit defective autophagy and increased inflammasome activity, IFN-γ restores reduced DAPK1 activity and dampens fungal growth. Additionally, in a cohort of hematopoietic stem cell-transplanted patients, a genetic DAPK1 deficiency is associated with increased inflammation and heightened aspergillosis susceptibility. Thus, DAPK1 is a potential drugable player in regulating the inflammatory response during fungal clearance initiated by IFN-γ.
Collapse
|
15
|
Fungal Engagement of the C-Type Lectin Mincle Suppresses Dectin-1-Induced Antifungal Immunity. Cell Host Microbe 2014; 15:494-505. [DOI: 10.1016/j.chom.2014.03.008] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/13/2014] [Accepted: 03/17/2014] [Indexed: 01/15/2023]
|
16
|
Interferon-gamma as adjunctive immunotherapy for invasive fungal infections: a case series. BMC Infect Dis 2014; 14:166. [PMID: 24669841 PMCID: PMC3987054 DOI: 10.1186/1471-2334-14-166] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 03/14/2014] [Indexed: 12/28/2022] Open
Abstract
Background Invasive fungal infections are very severe infections associated with high mortality rates, despite the availability of new classes of antifungal agents. Based on pathophysiological mechanisms and limited pre-clinical and clinical data, adjunctive immune-stimulatory therapy with interferon-gamma (IFN-γ) may represent a promising candidate to improve outcome of invasive fungal infections by enhancing host defence mechanisms. Methods In this open-label, prospective case series, we describe eight patients with invasive Candida and/or Aspergillus infections who were treated with recombinant IFN-γ (rIFN-γ, 100 μg s.c., thrice a week) for 2 weeks in addition to standard antifungal therapy. Results Recombinant IFN-γ treatment in patients with invasive Candida and/or Aspergillus infections partially restored immune function, as characterized by an increased HLA-DR expression in those patients with a baseline expression below 50%, and an enhanced capacity of leukocytes from treated patients to produce proinflammatory cytokines involved in antifungal defence. Conclusions The present study provides evidence that adjunctive immunotherapy with IFN-γ can restore immune function in fungal sepsis patients, warranting future clinical studies to assess its potential clinical benefit. Trial registration ClinicalTrials.gov - NCT01270490
Collapse
|
17
|
Chiam N, Rose LVT, Waters KD, Elder JE. Scedosporium prolificans endogenous endophthalmitis. J AAPOS 2013; 17:627-9. [PMID: 24210343 DOI: 10.1016/j.jaapos.2013.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 07/08/2013] [Indexed: 10/26/2022]
Abstract
Scedosporium prolificans is an opportunistic fungus with a predilection for sepsis and endophthalmitis in immunocompromised patients. We report a case of endogenous S. prolificans endophthalmitis in a 9-year-old girl following chemotherapy for acute myeloid leukemia. She achieved an excellent visual outcome following intensive antifungal therapy.
Collapse
Affiliation(s)
- Nathalie Chiam
- Department of Ophthalmology, Royal Children's Hospital, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
18
|
Safdar A, Rodriguez GH. Aerosolized amphotericin B lipid complex as adjunctive treatment for fungal lung infection in patients with cancer-related immunosuppression and recipients of hematopoietic stem cell transplantation. Pharmacotherapy 2013; 33:1035-43. [PMID: 23784915 PMCID: PMC3791151 DOI: 10.1002/phar.1309] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
STUDY OBJECTIVE Aerosolized amphotericin B lipid complex (aeABLC) has been successfully used to prevent fungal disease. Experience with aeABLC as treatment of fungal lung disease is limited. DESIGN We evaluated the safety and efficacy of aeABLC adjunct therapy for fungal lung disease in a retrospective study of 32 immunosuppressed adults. All values are given as ± standard deviation. SETTING National Cancer Institute-designated Comprehensive Cancer Center. PATIENTS Acute leukemia (69%) and severe neutropenia (63%) were common. Fifty-six percent of patients had undergone allogeneic hematopoietic stem cell transplantation 185 ± 424 days prior to aeABLC was commenced. MEASUREMENT AND MAIN RESULTS High-dose corticosteroids were administered during aeABLC in 28% of patients. Fungal lung disease was proven or probable in 41% of patients. Most patients (78%) received concurrent systemic antifungal therapy for a median of 14 ± 18 days before aeABLC. The median cumulative aeABLC dose was 1050 ± 2368 mg, and the median duration of aeABLC therapy was 28 ± 130 days. Most patients (78%) received 50 mg aeABLC twice daily. Partial or complete resolution of fungal lung disease was noted in 50% of patients. In three patients (9%) modest cough, mild bronchospasm, and transient chest pain with accompanying nausea and vomiting resolved completely after discontinuation of aeABLC. No patient required hospitalization for drug toxicity or had a serious (grade III or IV) drug-related adverse event. CONCLUSION Treatment with aeABLC was tolerated without serious toxicity and may be considered in the setting of severe immunosuppression, cancer, and/or hematopoietic stem cell transplantation in patients with difficult-to-treat fungal lung disease.
Collapse
Affiliation(s)
- Amar Safdar
- The University of Texas MD Anderson Cancer Center, Houston, Texas
- New York University Langone Medical Center, New York, New York
| | - Gilhen H. Rodriguez
- The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas, Texas Medical Center, Houston, Texas
| |
Collapse
|
19
|
Safdar A. Immunotherapy for Invasive Mold Disease in Severely Immunosuppressed Patients. Clin Infect Dis 2013; 57:94-100. [DOI: 10.1093/cid/cit187] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
20
|
Latif AL, Harper C, Macdonald I, Morrison A. Splenectomy as an effective debulking therapy for disseminated mould infection in acute myeloid leukaemia following adjuvant therapy with interferon gamma and liposomal amphotericin. Med Mycol Case Rep 2012; 1:82-4. [PMID: 24371746 DOI: 10.1016/j.mmcr.2012.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 08/29/2012] [Accepted: 08/30/2012] [Indexed: 01/28/2023] Open
Abstract
Invasive fungal infection is a major cause of morbidity and mortality in patients receiving treatment for Acute Myeloid Leukaemia (AML). Herein, we report a case of a 21 year old woman with an extremely resistant Fusarium species that responded to the addition of interferon gamma to her medical therapy, subsequently allowing definitive debulking surgery of her invasive Fusarium infection to be undertaken.
Collapse
Affiliation(s)
- Anne-Louise Latif
- Department of Haematology and Blood Transfusion, Southern General Hospital, 1345 Govan Road, Glasgow G51 4 TF, UK
| | - Chrsitina Harper
- Department of Pathology, Southern General Hospital, Glasgow G51 4 TF, UK
| | - Ian Macdonald
- Department of Haematology and Blood Transfusion, Southern General Hospital, 1345 Govan Road, Glasgow G51 4 TF, UK
| | - Anne Morrison
- Department of Haematology and Blood Transfusion, Southern General Hospital, 1345 Govan Road, Glasgow G51 4 TF, UK
| |
Collapse
|
21
|
Espinosa V, Rivera A. Cytokines and the regulation of fungus-specific CD4 T cell differentiation. Cytokine 2011; 58:100-6. [PMID: 22133343 DOI: 10.1016/j.cyto.2011.11.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/02/2011] [Accepted: 11/03/2011] [Indexed: 12/11/2022]
Abstract
CD4 T cells play important and non-redundant roles in protection against infection with diverse fungi. Distinct CD4 T cell subsets can mediate protection against fungal disease where Th1 and Th17 CD4 T cell subsets have been found to promote fungal clearance and protective immunity against diverse fungal pathogens. The differentiation of naïve CD4 T cells into Th1 or Th17 cells is crucially controlled by their interaction with dendritic cells and instructed by cytokines. IL-12 and IFN-γ promote Th1 differentiation while TGF-β, IL-6, IL-1, IL-21 and IL-23 promote Th17 differentiation and maintenance. The production of these cytokines by DCs is in turn regulated by innate receptors triggered in response to fungal infection. In this review we will discuss the contributions of cytokines found to influence fungus-specific CD4 T cell differentiation and their role in defense against fungal disease. We will also highlight the contributions of innate receptors involved in recognition of fungi and how they shape cytokine secretion and CD4 T cell differentiation.
Collapse
Affiliation(s)
- Vanessa Espinosa
- Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, 185 So Orange Avenue, MSB-F601, Newark, NJ 07101, USA.
| | | |
Collapse
|
22
|
Miossec C, Morio F, Lepoivre T, Le Pape P, Garcia-Hermoso D, Gay-Andrieu F, Haloun A, Treilhaud M, Leclair F, Miegeville M. Fatal invasive infection with fungemia due to Microascus cirrosus after heart and lung transplantation in a patient with cystic fibrosis. J Clin Microbiol 2011; 49:2743-7. [PMID: 21543579 PMCID: PMC3147864 DOI: 10.1128/jcm.00127-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 04/20/2011] [Indexed: 11/20/2022] Open
Abstract
Scopulariopsis species are rarely but increasingly recognized as opportunistic pathogens in immunocompromised patients. We report on a patient suffering from cystic fibrosis who developed disseminated fungal infection due to a rare Scopulariopsis species, Microascus cirrosus, after heart and lung transplantation. Despite antifungal combination therapy with voriconazole and caspofungin, the patient died 4 weeks after transplantation. Diagnostic difficulties and optimal management of disseminated Scopulariopsis/Microascus infections are discussed.
Collapse
Affiliation(s)
- Charline Miossec
- Laboratoire de Parasitologie-Mycologie, CHU de Nantes, Nantes, France
| | - Florent Morio
- Laboratoire de Parasitologie-Mycologie, CHU de Nantes, Nantes, France
- Département de Parasitologie et Mycologie Médicale, Université de Nantes, Nantes Atlantique Universités, EA1155–IICiMed, Faculté de Pharmacie, Nantes, France
| | - Thierry Lepoivre
- Unité de Transplantation Thoracique, CHU de Nantes, Nantes, France
| | - Patrice Le Pape
- Laboratoire de Parasitologie-Mycologie, CHU de Nantes, Nantes, France
- Département de Parasitologie et Mycologie Médicale, Université de Nantes, Nantes Atlantique Universités, EA1155–IICiMed, Faculté de Pharmacie, Nantes, France
| | - Dea Garcia-Hermoso
- Institut Pasteur, Unité de Mycologie Moléculaire, Centre National de Référence Mycologie et Antifongiques, Paris, France
- CNRS URA3012, Paris, France
| | - Françoise Gay-Andrieu
- Laboratoire de Parasitologie-Mycologie, CHU de Nantes, Nantes, France
- Département de Parasitologie et Mycologie Médicale, Université de Nantes, Nantes Atlantique Universités, EA1155–IICiMed, Faculté de Pharmacie, Nantes, France
| | - Alain Haloun
- Unité de Transplantation Thoracique, CHU de Nantes, Nantes, France
| | | | | | - Michel Miegeville
- Laboratoire de Parasitologie-Mycologie, CHU de Nantes, Nantes, France
- Département de Parasitologie et Mycologie Médicale, Université de Nantes, Nantes Atlantique Universités, EA1155–IICiMed, Faculté de Pharmacie, Nantes, France
| |
Collapse
|
23
|
|
24
|
Liu M, Clemons KV, Bigos M, Medovarska I, Brummer E, Stevens DA. Immune responses induced by heat killed Saccharomyces cerevisiae: a vaccine against fungal infection. Vaccine 2011; 29:1745-53. [PMID: 21219976 DOI: 10.1016/j.vaccine.2010.12.119] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/04/2010] [Accepted: 12/23/2010] [Indexed: 01/30/2023]
Abstract
Heat-killed Saccharomyces cerevisiae (HKY) used as a vaccine protects mice against systemic aspergillosis and coccidioidomycosis. Little is known about the immune response induced by HKY vaccination, consequently our goal was to do an analysis of HKY-induced immune responses involved in protection. BALB/c mice were vaccinated subcutaneously 3 times with HKY, a protective reagent, and bronchoalveolar lavage fluid, spleen, lymph nodes, and serum collected 2-5 weeks later. Cultured spleen or lymph node cells were stimulated with HKY. Proliferation of HKY-stimulated spleen or lymph node cells was tested by Alamar Blue reduction and flow cytometry. Cytokines from lymphocyte supernatants and antibody to glycans in serum collected from HKY-vaccinated mice were measured by ELISA. The results show that HKY promoted spleen cell and lymph node cell proliferation from HKY-vaccinated mice but not from PBS-vaccinated control mice (all P<0.05). Cytokine measurement showed HKY significantly promoted IFNγ, IL-6 and IL-17A production by spleen cells and lymph node cells (all P<0.05 and P<0.01, respectively). Cytokine production by HKY-stimulated cells from PBS-vaccinated mice was lower than those from HKY-vaccinated (P<0.05). Cytokines in BAL from HKY-vaccinated were higher, 1.7-fold for IFNγ and 2.1-fold for TNFα, than in BAL from PBS-vaccinated. Flow cytometry of lymphocytes from HKY-vaccinated showed 52% of CD3(+) or 56% of CD8(+) cells exhibited cell division after stimulation with HKY, compared to non-stimulated controls (26 or 23%, respectively) or HKY-stimulated cells from PBS-vaccinated (31 or 34%). HKY also induced antibody against Saccharomyces glucan and mannan with titers 4- or 2-fold, respectively, above that in unvaccinated. Taken together, the results suggested that HKY vaccination induces significant and specific Th1 type cellular immune responses and antibodies to glucan and mannan.
Collapse
Affiliation(s)
- Min Liu
- California Institute for Medical Research, San Jose, CA, USA
| | | | | | | | | | | |
Collapse
|
25
|
Immunomodulation Therapy for Invasive Aspergillosis: Discussion on Myeloid Growth Factors, Recombinant Cytokines, and Antifungal Drug Immune Modulation. CURRENT FUNGAL INFECTION REPORTS 2010; 4:1-7. [DOI: 10.1007/s12281-010-0006-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Papakonstantinou E, Antachopoulos C, Roilides E. The role of immunostimulation in the treatment of invasive fungal infection. CURRENT FUNGAL INFECTION REPORTS 2008. [DOI: 10.1007/s12281-008-0005-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Backer R, van Leeuwen F, Kraal G, den Haan J. CD8– dendritic cells preferentially cross-presentSaccharomyces cerevisiae antigens. Eur J Immunol 2008; 38:370-80. [DOI: 10.1002/eji.200737647] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Capilla J, Clemons KV, Stevens DA. Animal models: an important tool in mycology. Med Mycol 2007; 45:657-84. [PMID: 18027253 PMCID: PMC7107685 DOI: 10.1080/13693780701644140] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 08/22/2007] [Indexed: 10/29/2022] Open
Abstract
Animal models of fungal infections are, and will remain, a key tool in the advancement of the medical mycology. Many different types of animal models of fungal infection have been developed, with murine models the most frequently used, for studies of pathogenesis, virulence, immunology, diagnosis, and therapy. The ability to control numerous variables in performing the model allows us to mimic human disease states and quantitatively monitor the course of the disease. However, no single model can answer all questions and different animal species or different routes of infection can show somewhat different results. Thus, the choice of which animal model to use must be made carefully, addressing issues of the type of human disease to mimic, the parameters to follow and collection of the appropriate data to answer those questions being asked. This review addresses a variety of uses for animal models in medical mycology. It focuses on the most clinically important diseases affecting humans and cites various examples of the different types of studies that have been performed. Overall, animal models of fungal infection will continue to be valuable tools in addressing questions concerning fungal infections and contribute to our deeper understanding of how these infections occur, progress and can be controlled and eliminated.
Collapse
Affiliation(s)
- Javier Capilla
- California Institute for Medical Research, San Jose, USA
- Department of Medicine, Division of Infectious Diseases, Santa Clara Valley Medical Center, San Jose, USA
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - Karl V. Clemons
- California Institute for Medical Research, San Jose, USA
- Department of Medicine, Division of Infectious Diseases, Santa Clara Valley Medical Center, San Jose, USA
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - David A. Stevens
- California Institute for Medical Research, San Jose, USA
- Department of Medicine, Division of Infectious Diseases, Santa Clara Valley Medical Center, San Jose, USA
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|