1
|
Calvert MB, Hoque M, Wood CW. Genotypic variation in resource exchange, use, and production traits in the legume-rhizobia mutualism. Ecol Evol 2024; 14:e70245. [PMID: 39498196 PMCID: PMC11532390 DOI: 10.1002/ece3.70245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 11/07/2024] Open
Abstract
Mutualisms, reciprocally beneficial interactions between two or more species, are ubiquitous in nature. A common feature of mutualisms is extensive context-dependent variation in fitness outcomes. This context-dependency is hypothesized to stem from the environment's mediation of the relative costs and benefits associated with mutualisms. However, traits related to the exchange of goods and services in mutualisms have received little attention in comparison to net fitness outcomes. In this study, we quantified the contribution of host and symbiont genotypes to variation in resource exchange, use, and production traits measured in the host using the model mutualism between legumes and nitrogen-fixing rhizobia. We predicted that plant genotype × rhizobia genotype (G × G) effects would be common to resource exchange traits because resource exchange is hypothesized to be governed by both interacting partners through bargaining. On the other hand, we predicted that plant genotype effects would dominate host resource use and production traits because these traits are only indirectly related to the exchange of resources. Consistent with our prediction for resource exchange traits, but not our prediction for resource use and production traits, we found that rhizobia genotype and G × G effects were the most common sources of variation in the traits that we measured. The results of this study complement the commonly observed phenomenon of G × G effects for fitness by showing that numerous mutualism traits also exhibit G × G variation. Furthermore, our results highlight the possibility that the exchange of resources as well as how partners use and produce traded resources can influence the evolution of mutualistic interactions. Our study lays the groundwork for future work to explore the relationship between resource exchange, use and production traits and fitness (i.e., selection) to test the competing hypotheses proposed to explain the maintenance of fitness variation in mutualisms.
Collapse
Affiliation(s)
- McCall B. Calvert
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Maliha Hoque
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Corlett W. Wood
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
2
|
Kulkarni M, Naik NV, Borges RM. Who holds the reins? Context-dependent resource allocation in the mutualism between fig trees and their fig wasp pollinators. Oecologia 2024; 205:215-227. [PMID: 38801540 DOI: 10.1007/s00442-024-05566-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Mutualisms are consumer-resource interactions, in which goods and services are exchanged. Biological market theory states that exchanges should be regulated by both partners. However, most studies on mutualisms are one-sided, focusing on the control exercised by host organisms on their symbionts. In the brood-site pollination mutualism between fig trees and their symbiont wasp pollinators, galled flowers are development sites for pollinator larvae and are exchanged for pollination services. We determined if pollinator galls influenced resource allocation to fig inflorescences called syconia and considered feedbacks from the host tree. We experimentally produced syconia containing only seeds (S), only pollinator galls (G) or seeds and galls (SG) with varying number of introduced female pollinator wasps, i.e., foundress wasps. Biomass allocation to syconia was affected by foundress numbers and treatment groups; SG treatments received highest biomass allocation at low foundress numbers, and both G and SG treatments at high foundress numbers. Seeds are important determinants of allocation at low foundress numbers; galls are likely more influential at high foundress numbers. Most allocation in the G and SG treatment was to the syconium wall, likely as protection from parasitoids and temperature/humidity fluctuations. Dry mass of individual seeds and wasps (except at low foundress numbers) was unchanged between treatment groups, indicating seeds and wasps regulate resource flow into them, with lower flow into galls containing the smaller males compared to females commensurate with sexual dimorphism. We demonstrate the importance of considering the direct role of symbionts in accessing resources and controlling exchanges within mutualisms.
Collapse
Affiliation(s)
- Manasa Kulkarni
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, 560012, India
| | - Nehal Vijay Naik
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, 560012, India
- Department of Biology (Ecology and Evolutionary Biology), University of Toronto Mississauga, Mississauga, ON, Canada
| | - Renee M Borges
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, 560012, India.
| |
Collapse
|
3
|
Brown AL, Pfab F, Baxter EC, Detmer AR, Moeller HV, Nisbet RM, Cunning R. Analysis of a mechanistic model of corals in association with multiple symbionts: within-host competition and recovery from bleaching. CONSERVATION PHYSIOLOGY 2022; 10:coac066. [PMID: 36247693 PMCID: PMC9558299 DOI: 10.1093/conphys/coac066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 07/25/2022] [Accepted: 09/09/2022] [Indexed: 06/14/2023]
Abstract
Coral reefs are increasingly experiencing stressful conditions, such as high temperatures, that cause corals to undergo bleaching, a process where they lose their photosynthetic algal symbionts. Bleaching threatens both corals' survival and the health of the reef ecosystems they create. One possible mechanism for corals to resist bleaching is through association with stress-tolerant symbionts, which are resistant to bleaching but may be worse partners in mild conditions. Some corals have been found to associate with multiple symbiont species simultaneously, which potentially gives them access to the benefits of both stress-sensitive and -tolerant symbionts. However, within-host competition between symbionts may lead to competitive exclusion of one partner, and the consequences of associating with multiple partners simultaneously are not well understood. We modify a mechanistic model of coral-algal symbiosis to investigate the effect of environmental conditions on within-host competitive dynamics between stress-sensitive and -tolerant symbionts and the effect of access to a tolerant symbiont on the dynamics of recovery from bleaching. We found that the addition of a tolerant symbiont can increase host survival and recovery from bleaching in high-light conditions. Competitive exclusion of the tolerant symbiont occurred slowly at intermediate light levels. Interestingly, there were some cases of post-bleaching competitive exclusion after the tolerant symbiont had helped the host recover.
Collapse
Affiliation(s)
- Alexandra Lynne Brown
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Ferdinand Pfab
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Ethan C Baxter
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - A Raine Detmer
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Holly V Moeller
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Roger M Nisbet
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Ross Cunning
- Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, Chicago, IL 60605, USA
| |
Collapse
|
4
|
Lau JA, Hammond MD, Schmidt JE, Weese DJ, Yang WH, Heath KD. Contemporary evolution rivals the effects of rhizobium presence on community and ecosystem properties in experimental mesocosms. Oecologia 2022; 200:133-143. [PMID: 36125524 DOI: 10.1007/s00442-022-05253-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022]
Abstract
Because genotypes within a species commonly differ in traits that influence other species, whole communities, or even ecosystem functions, evolutionary change within one key species may affect the community and ecosystem processes. Here we use experimental mesocosms to test how the evolution of reduced cooperation in rhizobium mutualists in response to 20 years of nitrogen fertilization compares to the effects of rhizobium presence on soil nitrogen availability and plant community composition and diversity. The evolution of reduced rhizobium cooperation caused reductions in soil nitrogen, biological nitrogen fixation, and leaf nitrogen concentrations that were as strong as, or even stronger than, experimental rhizobium inoculation (presence/absence) treatments. Effects of both rhizobium evolution and rhizobium inoculation on legume dominance, plant community composition, and plant species diversity were often smaller in magnitude, but suggest that rhizobium evolution can alter the relative abundance of plant functional groups. Our findings indicate that the consequences of rapid microbial evolution for ecosystems and communities can rival the effects resulting from the presence or abundance of keystone mutualists.
Collapse
Affiliation(s)
- Jennifer A Lau
- Kellogg Biological Station & Department of Plant Biology, Michigan State University, 3700 E. Gull Lake Dr., Hickory Corners, MI, 49060, USA.
- Department of Biology & the Environmental Resilience Institute, Indiana University, 1001 E 3rd St., Bloomington, IN, 47401, USA.
| | - Mark D Hammond
- Kellogg Biological Station & Department of Plant Biology, Michigan State University, 3700 E. Gull Lake Dr., Hickory Corners, MI, 49060, USA
| | - Jennifer E Schmidt
- Kellogg Biological Station & Department of Plant Biology, Michigan State University, 3700 E. Gull Lake Dr., Hickory Corners, MI, 49060, USA
- Department of Plant Sciences, University of California, Davis, Davis, CA, 95616, USA
| | - Dylan J Weese
- Kellogg Biological Station & Department of Plant Biology, Michigan State University, 3700 E. Gull Lake Dr., Hickory Corners, MI, 49060, USA
| | - Wendy H Yang
- Department of Plant Biology, University of Illinois, 505 South Goodwin Ave, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois, 1206 W. Gregory Dr., Urbana, IL, 61801, USA
- Department of Geology, University of Illinois, 1301 West Green St, Urbana, IL, 61801, USA
| | - Katy D Heath
- Department of Plant Biology, University of Illinois, 505 South Goodwin Ave, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois, 1206 W. Gregory Dr., Urbana, IL, 61801, USA
| |
Collapse
|
5
|
Burghardt LT, Epstein B, Hoge M, Trujillo DI, Tiffin P. Host-Associated Rhizobial Fitness: Dependence on Nitrogen, Density, Community Complexity, and Legume Genotype. Appl Environ Microbiol 2022; 88:e0052622. [PMID: 35852362 PMCID: PMC9361818 DOI: 10.1128/aem.00526-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022] Open
Abstract
The environmental context of the nitrogen-fixing mutualism between leguminous plants and rhizobial bacteria varies over space and time. Variation in resource availability, population density, and composition likely affect the ecology and evolution of rhizobia and their symbiotic interactions with hosts. We examined how host genotype, nitrogen addition, rhizobial density, and community complexity affected selection on 68 rhizobial strains in the Sinorhizobium meliloti-Medicago truncatula mutualism. As expected, host genotype had a substantial effect on the size, number, and strain composition of root nodules (the symbiotic organ). The understudied environmental variable of rhizobial density had a stronger effect on nodule strain frequency than the addition of low nitrogen levels. Higher inoculum density resulted in a nodule community that was less diverse and more beneficial but only in the context of the more selective host genotype. Higher density resulted in more diverse and less beneficial nodule communities with the less selective host. Density effects on strain composition deserve additional scrutiny as they can create feedback between ecological and evolutionary processes. Finally, we found that relative strain rankings were stable across increasing community complexity (2, 3, 8, or 68 strains). This unexpected result suggests that higher-order interactions between strains are rare in the context of nodule formation and development. Our work highlights the importance of examining mechanisms of density-dependent strain fitness and developing theoretical predictions that incorporate density dependence. Furthermore, our results have translational relevance for overcoming establishment barriers in bioinoculants and motivating breeding programs that maintain beneficial plant-microbe interactions across diverse agroecological contexts. IMPORTANCE Legume crops establish beneficial associations with rhizobial bacteria that perform biological nitrogen fixation, providing nitrogen to plants without the economic and greenhouse gas emission costs of chemical nitrogen inputs. Here, we examine the influence of three environmental factors that vary in agricultural fields on strain relative fitness in nodules. In addition to manipulating nitrogen, we also use two biotic variables that have rarely been examined: the rhizobial community's density and complexity. Taken together, our results suggest that (i) breeding legume varieties that select beneficial strains despite environmental variation is possible, (ii) changes in rhizobial population densities that occur routinely in agricultural fields could drive evolutionary changes in rhizobial populations, and (iii) the lack of higher-order interactions between strains will allow the high-throughput assessments of rhizobia winners and losers during plant interactions.
Collapse
Affiliation(s)
- Liana T. Burghardt
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
- Plant Science Department, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Brendan Epstein
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Michelle Hoge
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Diana I. Trujillo
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
6
|
Halloway AH, Heath KD, McNickle GG. When does mutualism offer a competitive advantage? A game-theoretic analysis of host-host competition in mutualism. AOB PLANTS 2022; 14:plac010. [PMID: 35444786 PMCID: PMC9015964 DOI: 10.1093/aobpla/plac010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Due to their non-motile nature, plants rely heavily on mutualistic interactions to obtain resources and carry out services. One key mutualism is the plant-microbial mutualism in which a plant trades away carbon to a microbial partner for nutrients like nitrogen and phosphorous. Plants show much variation in the use of this partnership from the individual level to entire lineages depending upon ecological, evolutionary and environmental context. We sought to determine how this context dependency could result in the promotion, exclusion or coexistence of the microbial mutualism by asking if and when the partnership provided a competitive advantage to the plant. To that end, we created a 2 × 2 evolutionary game in which plants could either be a mutualist and pair with a microbe or be a non-mutualist and forgo the partnership. Our model includes both frequency dependence and density dependence, which gives us the eco-evolutionary dynamics of mutualism evolution. As in all models, mutualism only evolved if it could offer a competitive advantage and its net benefit was positive. However, surprisingly the model reveals the possibility of coexistence between mutualist and non-mutualist genotypes due to competition between mutualists over the microbially obtained nutrient. Specifically, frequency dependence of host strategies can make the microbial symbiont less beneficial if the microbially derived resources are shared, a phenomenon that increasingly reduces the frequency of mutualism as the density of competitors increases. In essence, ecological competition can act as a hindrance to mutualism evolution. We go on to discuss basic experiments that can be done to test and falsify our hypotheses.
Collapse
Affiliation(s)
- Abdel H Halloway
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Avenue (M/C 116), Urbana, IL 61801, USA
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Katy D Heath
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Avenue (M/C 116), Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois, 1206 W. Gregory Drive, Urbana, IL 61801, USA
| | - Gordon G McNickle
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
- Purdue Center for Plant Biology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| |
Collapse
|
7
|
Steidinger BS, Peay KG. Optimal Allocation Ratios: A Square Root Relationship between the Ratios of Symbiotic Costs and Benefits. Am Nat 2021; 198:460-472. [PMID: 34559611 DOI: 10.1086/716182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractAll organisms struggle to make sense of environmental stimuli in order to maximize their fitness. For animals, the responses of single cells and superorganisms to stimuli are generally proportional to stimulus ratios, a phenomenon described by Weber's law. However, Weber's law has not yet been used to predict how plants respond to stimuli generated from their symbiotic partners. Here we develop a model for quantitatively predicting the ratios of carbon (C) allocation to symbionts that provide nutrients to their plant host. Consistent with Weber's law, our model demonstrates that the optimal ratio of resources allocated to a less beneficial relative to a more beneficial symbiont scale to the ratio of the growth benefits of the two strains. As C allocation to symbionts increases, the ratio of C allocation to two strains approaches the square root of the ratio of symbiotic growth benefits (e.g., a worse symbiont providing one-fourth the benefits gets 1/4=1/2 the C of a better symbiont). We document a compelling correspondence between our square root model prediction and a meta-analysis of experimental literature on C allocation. This type of preferential allocation can promote coexistence between more beneficial and less beneficial symbionts, offering a potential mechanism behind the high diversity of microbial symbionts observed in nature.
Collapse
|
8
|
Elias JD, Agrawal AA. A private channel of nitrogen alleviates interspecific competition for an annual legume. Ecology 2021; 102:e03449. [PMID: 34166532 DOI: 10.1002/ecy.3449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/29/2021] [Accepted: 05/14/2021] [Indexed: 11/08/2022]
Abstract
The way resource availability predictably alters interspecific interactions and may favor one resource-acquisition strategy over another is critical for understanding context dependency. The ubiquity of nitrogen (N) limitation across terrestrial environments is a driver of plant competition and the association of some plants with N-fixing bacteria (rhizobia) may alleviate competition with nonfixing plants. Conversely, when available soil N is elevated, competitive advantages imparted by rhizobia are hypothesized to decline because nonfixing species are able to acquire those nutrients readily. We manipulated competition, soil N, and soil microbial inoculation, employing the ground bean Amphicarpaea bracteata, a native annual N-fixing legume, and jewelweed Impatiens capensis, a native co-occurring nonfixing annual. We found that legume performance was negatively impacted by interspecific competition, but less so under lower soil N in both the greenhouse and field. The legume invested a greater proportion of resources in rhizobia when competing, but only under low N. Also consistent with predictions, a competition-by-microbial-inoculation interaction demonstrated that negative effects of competition were alleviated by rhizobia. Finally, we detected an interaction between inoculation and fertilization, whereby N addition resulted in increased performance for uninoculated legumes, but a small decline in performance for inoculated plants, the latter likely representing a cost of mutualism. Thus, several lines of evidence point to the legume-rhizobia mutualism being more beneficial under competition and limited soil N. Competing I. capensis, in contrast, benefited from N addition regardless of the addition of soil microbes. In a survey of natural populations, legume and rhizobia growth were positively correlated at population edges (where interspecific competition is expected to be higher, the mutualism is stronger), whereas at population centers we found no association. Isotopic evidence confirmed a higher degree of rhizobial N-fixation at population edges compared to centers. Taken together, our results demonstrate an important role for the largely private channel of nitrogen in legume competitive performance, but with the benefits imparted by rhizobia being predictably weaker at higher soil fertility. We speculate that alleviation of competitive impacts through resource partitioning is an important and yet largely overlooked aspect of the evolutionary ecology of legume-rhizobia interactions.
Collapse
Affiliation(s)
- J D Elias
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14853, USA
| | - A A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14853, USA
| |
Collapse
|
9
|
Petipas RH, Geber MA, Lau JA. Microbe-mediated adaptation in plants. Ecol Lett 2021; 24:1302-1317. [PMID: 33913572 DOI: 10.1111/ele.13755] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/07/2021] [Accepted: 03/17/2021] [Indexed: 12/30/2022]
Abstract
Interactions with microbial symbionts have yielded great macroevolutionary innovations across the tree of life, like the origins of chloroplasts and the mitochondrial powerhouses of eukaryotic cells. There is also increasing evidence that host-associated microbiomes influence patterns of microevolutionary adaptation in plants and animals. Here we describe how microbes can facilitate adaptation in plants and how to test for and differentiate between the two main mechanisms by which microbes can produce adaptive responses in higher organisms: microbe-mediated local adaptation and microbe-mediated adaptive plasticity. Microbe-mediated local adaptation is when local plant genotypes have higher fitness than foreign genotypes because of a genotype-specific affiliation with locally beneficial microbes. Microbe-mediated adaptive plasticity occurs when local plant phenotypes, elicited by either the microbial community or the non-microbial environment, have higher fitness than foreign phenotypes as a result of interactions with locally beneficial microbes. These microbial effects on adaptation can be difficult to differentiate from traditional modes of adaptation but may be prevalent. Ignoring microbial effects may lead to erroneous conclusions about the traits and mechanisms underlying adaptation, hindering management decisions in conservation, restoration, and agriculture.
Collapse
Affiliation(s)
- Renee H Petipas
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.,Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Monica A Geber
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Jennifer A Lau
- Department of Biology, Indiana University, Bloomington, IN, USA.,The Environmental Resilience Institute, Indiana University, Bloomington, IN, USA
| |
Collapse
|
10
|
Younginger BS, Friesen ML. Connecting signals and benefits through partner choice in plant-microbe interactions. FEMS Microbiol Lett 2020; 366:5626345. [PMID: 31730203 DOI: 10.1093/femsle/fnz217] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 10/17/2019] [Indexed: 12/20/2022] Open
Abstract
Stabilizing mechanisms in plant-microbe symbioses are critical to maintaining beneficial functions, with two main classes: host sanctions and partner choice. Sanctions are currently presumed to be more effective and widespread, based on the idea that microbes rapidly evolve cheating while retaining signals matching cooperative strains. However, hosts that effectively discriminate among a pool of compatible symbionts would gain a significant fitness advantage. Using the well-characterized legume-rhizobium symbiosis as a model, we evaluate the evidence for partner choice in the context of the growing field of genomics. Empirical studies that rely upon bacteria varying only in nitrogen-fixation ability ignore host-symbiont signaling and frequently conclude that partner choice is not a robust stabilizing mechanism. Here, we argue that partner choice is an overlooked mechanism of mutualism stability and emphasize that plants need not use the microbial services provided a priori to discriminate among suitable partners. Additionally, we present a model that shows that partner choice signaling increases symbiont and host fitness in the absence of sanctions. Finally, we call for a renewed focus on elucidating the signaling mechanisms that are critical to partner choice while further aiming to understand their evolutionary dynamics in nature.
Collapse
Affiliation(s)
- Brett S Younginger
- Department of Plant Pathology, Washington State University, PO Box 646430, 345 Johnson Hall, Pullman, WA 99164, USA
| | - Maren L Friesen
- Department of Plant Pathology, Washington State University, PO Box 646430, 345 Johnson Hall, Pullman, WA 99164, USA.,Department of Crop and Soil Sciences, Washington State University, PO Box 646420, 115 Johnson Hall, Pullman, WA 99164, USA
| |
Collapse
|
11
|
Abstract
Strategic interactions arise in all domains of life. This form of competition often plays out in dynamically changing environments. The strategies employed in a population may alter the state of the environment, which may in turn feedback to change the incentive structure of strategic interactions. Feedbacks between strategies and the environment are common in social-ecological systems, evolutionary-ecological systems, and even psychological-economic systems. Here we develop a framework of 'eco-evolutionary game theory' that enables the study of strategic and environmental dynamics with feedbacks. We consider environments governed either by intrinsic growth, decay, or tipping points. We show how the joint dynamics of strategies and the environment depend on the incentives for individuals to lead or follow behavioral changes, and on the relative speed of environmental versus strategic change. Our analysis unites dynamical phenomena that occur in settings as diverse as human decision-making, plant nutrient acquisition, and resource harvesting. We discuss implications in fields ranging from ecology to economics.
Collapse
|
12
|
Batstone RT, Peters MAE, Simonsen AK, Stinchcombe JR, Frederickson ME. Environmental variation impacts trait expression and selection in the legume-rhizobium symbiosis. AMERICAN JOURNAL OF BOTANY 2020; 107:195-208. [PMID: 32064599 DOI: 10.1002/ajb2.1432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 11/04/2019] [Indexed: 05/22/2023]
Abstract
PREMISE The ecological outcomes of mutualism are well known to shift across abiotic or biotic environments, but few studies have addressed how different environments impact evolutionary responses, including the intensity of selection on and the expression of genetic variance in key mutualism-related traits. METHODS We planted 30 maternal lines of the legume Medicago lupulina in four field common gardens and compared our measures of selection on and genetic variance in nodulation, a key trait reflecting legume investment in the symbiosis, with those from a previous greenhouse experiment using the same 30 M. lupulina lines. RESULTS We found that both the mean and genetic variance for nodulation were much greater in the greenhouse than in the field and that the form of selection on nodulation significantly differed across environments. We also found significant genotype-by-environment (G × E) effects for fitness-related traits that were generated by differences in the rank order of plant lines among environments. CONCLUSIONS Overall, our results suggest that the expression of genotypic variation and selection on nodulation differ across environments. In the field, significant rank-order changes for plant fitness potentially help maintain genetic variation in natural populations, even in the face of directional or stabilizing selection.
Collapse
Affiliation(s)
- Rebecca T Batstone
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
- Carl Woese Institute for Genomic Biology, University of Illinois at Champaign-Urbana, Urbana, IL, 61801, USA
| | - Madeline A E Peters
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Anna K Simonsen
- Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
- Koffler Scientific Reserve, University of Toronto, King, ON, L7B 1K5, Canada
| | - Megan E Frederickson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
13
|
Heath KD, Podowski JC, Heniff S, Klinger CR, Burke PV, Weese DJ, Yang WH, Lau JA. Light availability and rhizobium variation interactively mediate the outcomes of legume-rhizobium symbiosis. AMERICAN JOURNAL OF BOTANY 2020; 107:229-238. [PMID: 32072629 DOI: 10.1002/ajb2.1435] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/08/2019] [Indexed: 05/22/2023]
Abstract
PREMISE Nutrients, light, water, and temperature are key factors limiting the growth of individual plants in nature. Mutualistic interactions between plants and microbes often mediate resource limitation for both partners. In the mutualism between legumes and rhizobia, plants provide rhizobia with carbon in exchange for fixed nitrogen. Because partner quality in mutualisms is genotype-dependent, within-species genetic variation is expected to alter the responses of mutualists to changes in the resource environment. Here we ask whether partner quality variation in rhizobia mediates the response of host plants to changing light availability, and conversely, whether light alters the expression of partner quality variation. METHODS We inoculated clover hosts with 11 strains of Rhizobium leguminosarum that differed in partner quality, grew plants under either ambient or low light conditions in the greenhouse, and measured plant growth, nodule traits, and foliar nutrient composition. RESULTS Light availability and rhizobium inoculum interactively determined plant growth, and variation in rhizobium partner quality was more apparent in ambient light. CONCLUSIONS Our results suggest that variation in the costs and benefits of rhizobium symbionts mediate host responses to light availability and that rhizobium strain variation might more important in higher-light environments. Our work adds to a growing appreciation for the role of microbial intraspecific and interspecific diversity in mediating extended phenotypes in their hosts and suggests an important role for light availability in the ecology and evolution of legume-rhizobium symbiosis.
Collapse
Affiliation(s)
- Katy D Heath
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave., Urbana, IL, 61801, USA
| | - Justin C Podowski
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave., Urbana, IL, 61801, USA
| | - Stephanie Heniff
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave., Urbana, IL, 61801, USA
| | - Christie R Klinger
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave., Urbana, IL, 61801, USA
| | - Patricia V Burke
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave., Urbana, IL, 61801, USA
| | - Dylan J Weese
- Department of Biology, St. Ambrose University, Davenport, IA, 52803, USA
| | - Wendy H Yang
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave., Urbana, IL, 61801, USA
| | - Jennifer A Lau
- W. K. Kellogg Biological Station and Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
14
|
Gano-Cohen KA, Wendlandt CE, Al Moussawi K, Stokes PJ, Quides KW, Weisberg AJ, Chang JH, Sachs JL. Recurrent mutualism breakdown events in a legume rhizobia metapopulation. Proc Biol Sci 2020; 287:20192549. [PMID: 31992172 DOI: 10.1098/rspb.2019.2549] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Bacterial mutualists generate major fitness benefits for eukaryotes, reshaping the host phenotype and its interactions with the environment. Yet, microbial mutualist populations are predicted to generate mutants that defect from providing costly services to hosts while maintaining the capacity to exploit host resources. Here, we examined the mutualist service of symbiotic nitrogen fixation in a metapopulation of root-nodulating Bradyrhizobium spp. that associate with the native legume Acmispon strigosus. We quantified mutualism traits of 85 Bradyrhizobium isolates gathered from a 700 km transect in California spanning 10 sampled A. strigosus populations. We clonally inoculated each Bradyrhizobium isolate onto A. strigosus hosts and quantified nodulation capacity and net effects of infection, including host growth and isotopic nitrogen concentration. Six Bradyrhizobium isolates from five populations were categorized as ineffective because they formed nodules but did not enhance host growth via nitrogen fixation. Six additional isolates from three populations failed to form root nodules. Phylogenetic reconstruction inferred two types of mutualism breakdown, including three to four independent losses of effectiveness and five losses of nodulation capacity on A. strigosus. The evolutionary and genomic drivers of these mutualism breakdown events remain poorly understood.
Collapse
Affiliation(s)
- Kelsey A Gano-Cohen
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| | - Camille E Wendlandt
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Khadija Al Moussawi
- Department of Evolution Ecology and Organismal Biology, University of California, Riverside, CA, USA
| | - Peter J Stokes
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Kenjiro W Quides
- Department of Evolution Ecology and Organismal Biology, University of California, Riverside, CA, USA
| | - Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Joel L Sachs
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA.,Department of Botany and Plant Sciences, University of California, Riverside, CA, USA.,Department of Evolution Ecology and Organismal Biology, University of California, Riverside, CA, USA.,Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| |
Collapse
|
15
|
Bennett AE, Preedy K, Golubski A, Umbanhowar J, Borrett SR, Byrne L, Apostol K, Bever JD, Biederman L, Classen AT, Cuddington K, Graaff M, Garrett KA, Gross L, Hastings A, Hoeksema JD, Hrynkiv V, Karst J, Kummel M, Lee CT, Liang C, Liao W, Mack K, Miller L, Ownley B, Rojas C, Simms EL, Walsh VK, Warren M, Zhu J. Beyond the black box: promoting mathematical collaborations for elucidating interactions in soil ecology. Ecosphere 2019. [DOI: 10.1002/ecs2.2799] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Alison E. Bennett
- Department of Evolution, Ecology, and Organismal Biology The Ohio State University Columbus Ohio 43210 USA
| | - Katharine Preedy
- Biomathematics and Statistics Scotland The James Hutton Institute Invergowrie Dundee DD2 5DA UK
| | - Antonio Golubski
- Ecology, Evolution, and Organismal Biology Kennesaw State University Kennesaw Georgia 30144 USA
| | - James Umbanhowar
- Department of Biology University of North Carolina at Chapel Hill Chapel Hill North Carolina 27599‐3280 USA
| | - Stuart R. Borrett
- Department of Biology and Marine Biology University of North Carolina‐Wilmington Wilmington North Carolina 28403‐5915 USA
| | - Loren Byrne
- Roger Williams University One Old Ferry Road Bristol Rhode Island 02809 USA
| | - Kent Apostol
- Environmental Review 925N. Fairgrounds Road Goldendale Washington 98620 USA
| | - James D. Bever
- Department of Ecology & Evolutionary Biology University of Kansas Lawrence Kansas 66045 USA
| | | | - Aimée T. Classen
- The Rubenstein School of Environment and Natural Resources University of Vermont Burlington Vermont 05405 USA
| | | | | | - Karen A. Garrett
- Institute for Sustainable Food Systems and Plant Pathology Department University of Florida Gainesville Florida 32611 USA
| | - Lou Gross
- National Institute for Mathematical and Biological Synthesis University of Tennessee Knoxville Tennessee 37996‐1610 USA
| | - Alan Hastings
- Environmental Science and Policy University of California Davis Davis California 95616 USA
| | - Jason D. Hoeksema
- Department of Biology University of Mississippi University Mississippi 38677‐1848 USA
| | | | - Justine Karst
- Renewable Resources University of Alberta Edmonton Alberta T6G 2E3 Canada
| | - Miro Kummel
- Colorado College Colorado Springs Colorado 80903 USA
| | - Charlotte T. Lee
- Department of Biology Duke University Durham North Carolina 27708 USA
| | - Chao Liang
- Key Laboratory of Forest Ecology and Management Institute of Applied Ecology Chinese Academy of Sciences Shenyang 110016 China
| | - Wei Liao
- University of Wisconsin Madison Wisconsin 53706 USA
| | - Keenan Mack
- Department of Biology Illinois College Jacksonville Illinois 62650 USA
| | - Laura Miller
- University of North Carolina at Chapel Hill Chapel Hill North Carolina 27599‐3280 USA
| | - Bonnie Ownley
- The University of Tennessee Institute of Agriculture Knoxville Tennessee 37996 USA
| | - Claudia Rojas
- Institute of Agronomic Sciences University of O'Higgins Rancagua Chile
| | - Ellen L. Simms
- Department of Integrative Biology University of California, Berkeley Berkeley California 94720‐3140 USA
| | - Vonda K. Walsh
- Virginia Military Institute Lexington Virginia 24450‐0304 USA
| | - Matthew Warren
- Northern Research Station United States Department of Agriculture Forest Service Durham New Hampshire 03824 USA
| | - Jun Zhu
- University of Wisconsin Madison Wisconsin 53706‐1598 USA
| |
Collapse
|
16
|
Clark TJ, Friel CA, Grman E, Friesen ML, Shachar-Hill Y. Unfair trade underground revealed by integrating data with Nash bargaining models. THE NEW PHYTOLOGIST 2019; 222:1325-1337. [PMID: 30671951 DOI: 10.1111/nph.15703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
Mutually beneficial resource exchange is fundamental to global biogeochemical cycles and plant and animal nutrition. However, there is inherent potential conflict in mutualisms, as each organism benefits more when the exchange ratio ('price') minimizes its own costs and maximizes its benefits. Understanding the bargaining power that each partner has in these interactions is key to our ability to predict the exchange ratio and therefore the functionality of the cell, organism, community and ecosystem. We tested whether partners have symmetrical ('fair') or asymmetrical ('unfair') bargaining power in a legume-rhizobia nitrogen-fixing symbiosis using measurements of carbon and nitrogen dynamics in a mathematical modeling framework derived from economic theory. A model of symmetric bargaining power was not consistent with our data. Instead, our data indicate that the growth benefit to the plant (Medicago truncatula) has greater weight in determining trade dynamics than the benefit to the bacteria. Quantitative estimates of the relative power of the plant revealed that the plant's influence rises as soil nitrogen availability decreases and trade benefits to both partners increase. Our finding that M. truncatula legumes have more bargaining power than their rhizobial partner at lower nitrogen availabilities highlights the importance of context-dependence for the evolution of mutualism with increasing nutrient deposition.
Collapse
Affiliation(s)
- Teresa J Clark
- Department of Plant Biology, Michigan State University, 612 Wilson Rd., East Lansing, MI, 48824, USA
| | - Colleen A Friel
- Department of Plant Biology, Michigan State University, 612 Wilson Rd., East Lansing, MI, 48824, USA
| | - Emily Grman
- Department of Biology, Eastern Michigan University, 441 Mark Jefferson Science Complex, Ypsilanti, MI, 48197, USA
| | - Maren L Friesen
- Department of Plant Biology, Michigan State University, 612 Wilson Rd., East Lansing, MI, 48824, USA
- Department of Plant Pathology, Washington State University, Johnson Hall Rm 345, Pullman, WA, 99164, USA
- Department of Crop and Soil Sciences, Washington State University, Johnson Hall Rm 115, Pullman, WA, 99164, USA
| | - Yair Shachar-Hill
- Department of Plant Biology, Michigan State University, 612 Wilson Rd., East Lansing, MI, 48824, USA
| |
Collapse
|
17
|
Peralta AL, Sun Y, McDaniel MD, Lennon JT. Crop rotational diversity increases disease suppressive capacity of soil microbiomes. Ecosphere 2018. [DOI: 10.1002/ecs2.2235] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Ariane L. Peralta
- Department of Biology East Carolina University S301B Howell Science Complex Greenville North Carolina 27858 USA
| | - Yanmei Sun
- Department of Biology East Carolina University S301B Howell Science Complex Greenville North Carolina 27858 USA
- School of Environment and Civil Engineering Dongguan University of Technology Dongguang 523808 China
| | - Marshall D. McDaniel
- Department of Agronomy Iowa State University 2517 Agronomy Hall Ames Iowa 50014 USA
| | - Jay T. Lennon
- Department of Biology Indiana University 261 Jordan Hall Bloomington Indiana 47405 USA
| |
Collapse
|
18
|
Akçay E. Population structure reduces benefits from partner choice in mutualistic symbiosis. Proc Biol Sci 2018; 284:rspb.2016.2317. [PMID: 28298346 DOI: 10.1098/rspb.2016.2317] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 11/17/2016] [Indexed: 12/25/2022] Open
Abstract
Mutualistic symbioses are key drivers of evolutionary and ecological processes. Understanding how different species can evolve to interact in mutually beneficial ways is an important goal of evolutionary theory, especially when the benefits require costly investments by the partners. For such costly investments to evolve, some sort of fitness feedback mechanism must exist that more than recoups the direct costs. Several such feedback mechanisms have been explored both theoretically and empirically, yet we know relatively little of how they might act together, as they probably do in nature. In this paper, I model the joint action of three of the main mechanisms that can maintain interspecific cooperation in symbioses: partner choice by hosts, population structure amongst symbionts and undirected rewards from hosts to symbionts. The model shows that population structure reduces the benefit from partner choice to hosts. It may help or hinder beneficial symbionts and create positive or negative frequency dependence depending on the nature of host rewards to the symbiont. Strong population structure also makes it less likely that host choosiness and symbiont cooperation will be jointly maintained in a population. The intuition behind these results is that all else being equal, population structure reduces local variation available to the host to choose from. Thus, population structure is not always beneficial for the evolution of cooperation between species. These results also underscore the need to do full analyses of multiple mechanisms of social evolution to uncover the interactions between them.
Collapse
Affiliation(s)
- Erol Akçay
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
19
|
Schmidt JE, Weese DJ, Lau JA. Long-term agricultural management does not alter the evolution of a soybean-rhizobium mutualism. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2017; 27:2487-2496. [PMID: 28921808 DOI: 10.1002/eap.1625] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 08/11/2017] [Accepted: 08/29/2017] [Indexed: 06/07/2023]
Abstract
Leguminous crops, like soybeans, often rely on biologically fixed nitrogen via their symbiosis with rhizobia rather than synthetic nitrogen inputs. However, agricultural management practices may influence the effectiveness of biological nitrogen fixation (BNF). While the ecological effects of agricultural management on rhizobia have received some attention, the evolutionary effects have been neglected in comparison. Resource mutualism theory predicts that evolutionary effects are likely, however. Both fertilization and tillage are predicted to cause the evolution of rhizobia that provide fewer growth benefits to plant hosts and fix less nitrogen. This study capitalized on a Long-Term Ecological Research experiment that manipulated agricultural management practices in a corn-soybean-wheat row crop system for 24 yr to investigate whether four different management practices (conventional, no-till, low chemical input, and certified organic) cause rhizobia populations to evolve to become more or less cooperative. We found little evidence that 24 yr of varying management practices affect the net growth benefits rhizobia provide to soybeans, although soybean plants inoculated with soils collected from conventional treatments tended to have lower BNF rates than plants inoculated with soils from the no-till, low input, and organic management treatments. These findings suggest that rhizobia will continue to provide adequate growth benefits to leguminous crops in the future, even in intensively managed systems.
Collapse
Affiliation(s)
- Jennifer E Schmidt
- Kellogg Biological Station, Michigan State University, 3700 E Gull Lake Drive, Hickory Corners, Michigan, 49060, USA
- Pomoma College, Claremont, California, 91711, USA
| | - Dylan J Weese
- Kellogg Biological Station, Michigan State University, 3700 E Gull Lake Drive, Hickory Corners, Michigan, 49060, USA
- Saint Ambrose University, Davenport, Iowa, 52803, USA
| | - Jennifer A Lau
- Kellogg Biological Station, Michigan State University, 3700 E Gull Lake Drive, Hickory Corners, Michigan, 49060, USA
| |
Collapse
|
20
|
Yoder JB, Tiffin P. Sanctions, Partner Recognition, and Variation in Mutualism. Am Nat 2017; 190:491-505. [DOI: 10.1086/693472] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
21
|
Clark TJ, Friel CA, Grman E, Shachar‐Hill Y, Friesen ML. Modelling nutritional mutualisms: challenges and opportunities for data integration. Ecol Lett 2017; 20:1203-1215. [DOI: 10.1111/ele.12810] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/23/2016] [Accepted: 06/12/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Teresa J. Clark
- Department of Plant Biology Michigan State University 612 Wilson Rd. East Lansing MI48824 USA
| | - Colleen A. Friel
- Department of Plant Biology Michigan State University 612 Wilson Rd. East Lansing MI48824 USA
| | - Emily Grman
- Biology Department Eastern Michigan University 441 Mark Jefferson Science Complex Ypsilanti MI48197 USA
| | - Yair Shachar‐Hill
- Department of Plant Biology Michigan State University 612 Wilson Rd. East Lansing MI48824 USA
| | - Maren L. Friesen
- Department of Plant Biology Michigan State University 612 Wilson Rd. East Lansing MI48824 USA
| |
Collapse
|
22
|
Yang Y, Hu XP, Ma BG. Construction and simulation of the Bradyrhizobium diazoefficiens USDA110 metabolic network: a comparison between free-living and symbiotic states. MOLECULAR BIOSYSTEMS 2017; 13:607-620. [DOI: 10.1039/c6mb00553e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The first genome-scale metabolic network forBradyrhizobiumwas constructed and the metabolic properties were compared between the free-living and symbiotic physiological states.
Collapse
Affiliation(s)
- Yi Yang
- Hubei Key Laboratory of Agricultural Bioinformatics
- College of Informatics
- State Key Laboratory of Agricultural Microbiology
- Huazhong Agricultural University
- Wuhan 430070
| | - Xiao-Pan Hu
- Hubei Key Laboratory of Agricultural Bioinformatics
- College of Informatics
- State Key Laboratory of Agricultural Microbiology
- Huazhong Agricultural University
- Wuhan 430070
| | - Bin-Guang Ma
- Hubei Key Laboratory of Agricultural Bioinformatics
- College of Informatics
- State Key Laboratory of Agricultural Microbiology
- Huazhong Agricultural University
- Wuhan 430070
| |
Collapse
|
23
|
Klinger CR, Lau JA, Heath KD. Ecological genomics of mutualism decline in nitrogen-fixing bacteria. Proc Biol Sci 2016; 283:20152563. [PMID: 26962142 DOI: 10.1098/rspb.2015.2563] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Anthropogenic changes can influence mutualism evolution; however, the genomic regions underpinning mutualism that are most affected by environmental change are generally unknown, even in well-studied model mutualisms like the interaction between legumes and their nitrogen (N)-fixing rhizobia. Such genomic information can shed light on the agents and targets of selection maintaining cooperation in nature. We recently demonstrated that N-fertilization has caused an evolutionary decline in mutualistic partner quality in the rhizobia that form symbiosis with clover. Here, population genomic analyses of N-fertilized versus control rhizobium populations indicate that evolutionary differentiation at a key symbiosis gene region on the symbiotic plasmid (pSym) contributes to partner quality decline. Moreover, patterns of genetic variation at selected loci were consistent with recent positive selection within N-fertilized environments, suggesting that N-rich environments might select for less beneficial rhizobia. By studying the molecular population genomics of a natural bacterial population within a long-term ecological field experiment, we find that: (i) the N environment is indeed a potent selective force mediating mutualism evolution in this symbiosis, (ii) natural variation in rhizobium partner quality is mediated in part by key symbiosis genes on the symbiotic plasmid, and (iii) differentiation at selected genes occurred in the context of otherwise recombining genomes, resembling eukaryotic models of adaptation.
Collapse
Affiliation(s)
- Christie R Klinger
- Department of Plant Biology, University of Illinois Urbana-Champaign, 505 South Goodwin Avenue, Urbana, IL 61801, USA
| | - Jennifer A Lau
- W.K. Kellogg Biological Station and Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Katy D Heath
- Department of Plant Biology, University of Illinois Urbana-Champaign, 505 South Goodwin Avenue, Urbana, IL 61801, USA
| |
Collapse
|
24
|
Johnstone RA, Rodrigues AMM. Cooperation and the common good. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150086. [PMID: 26729926 DOI: 10.1098/rstb.2015.0086] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this paper, we draw the attention of biologists to a result from the economic literature, which suggests that when individuals are engaged in a communal activity of benefit to all, selection may favour cooperative sharing of resources even among non-relatives. Provided that group members all invest some resources in the public good, they should refrain from conflict over the division of these resources. The reason is that, given diminishing returns on investment in public and private goods, claiming (or ceding) a greater share of total resources only leads to the actor (or its competitors) investing more in the public good, such that the marginal costs and benefits of investment remain in balance. This cancels out any individual benefits of resource competition. We illustrate how this idea may be applied in the context of biparental care, using a sequential game in which parents first compete with one another over resources, and then choose how to allocate the resources they each obtain to care of their joint young (public good) versus their own survival and future reproductive success (private good). We show that when the two parents both invest in care to some extent, they should refrain from any conflict over the division of resources. The same effect can also support asymmetric outcomes in which one parent competes for resources and invests in care, whereas the other does not invest but refrains from competition. The fact that the caring parent gains higher fitness pay-offs at these equilibria suggests that abandoning a partner is not always to the latter's detriment, when the potential for resource competition is taken into account, but may instead be of benefit to the 'abandoned' mate.
Collapse
Affiliation(s)
- Rufus A Johnstone
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - António M M Rodrigues
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK Wolfson College, Barton Road, Cambridge CB3 9BB, UK
| |
Collapse
|
25
|
Grillo MA, Stinchcombe JR, Heath KD. Nitrogen addition does not influence pre-infection partner choice in the legume-rhizobium symbiosis. AMERICAN JOURNAL OF BOTANY 2016; 103:1763-1770. [PMID: 27671532 DOI: 10.3732/ajb.1600090] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/09/2016] [Indexed: 05/26/2023]
Abstract
PREMISE OF THE STUDY Resource mutualisms such as the symbiosis between legumes and nitrogen-fixing rhizobia are context dependent and are sensitive to various aspects of the environment, including nitrogen (N) addition. Mutualist hosts such as legumes are also thought to use mechanisms such as partner choice to discriminate among potential symbionts that vary in partner quality (fitness benefits conferred to hosts) and thus impose selection on rhizobium populations. Together, context dependency and partner choice might help explain why the legume-rhizobium mutualism responds evolutionarily to N addition, since plant-mediated selection that shifts in response to N might be expected to favor different rhizobium strains in different N environments. METHODS We test for the influence of context dependency on partner choice in the model legume, Medicago truncatula, using a factorial experiments with three plant families across three N levels with a mixed inoculation of three rhizobia strains. KEY RESULTS Neither the relative frequencies of rhizobium strains occupying host nodules, nor the size of those nodules, differed in response to N level. CONCLUSIONS Despite the lack of context dependence, plant genotypes respond very differently to mixed populations of rhizobia, suggesting that these traits are genetically variable and thus could evolve in response to longer-term increases in N.
Collapse
Affiliation(s)
- Michael A Grillo
- University of Illinois, Department of Plant Biology, Urbana, Illinois 61801, USA
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Katy D Heath
- University of Illinois, Department of Plant Biology, Urbana, Illinois 61801, USA
| |
Collapse
|
26
|
Gordon BR, Klinger CR, Weese DJ, Lau JA, Burke PV, Dentinger BTM, Heath KD. Decoupled genomic elements and the evolution of partner quality in nitrogen-fixing rhizobia. Ecol Evol 2016; 6:1317-27. [PMID: 27087920 PMCID: PMC4775534 DOI: 10.1002/ece3.1953] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 01/24/2023] Open
Abstract
Understanding how mutualisms evolve in response to a changing environment will be critical for predicting the long-term impacts of global changes, such as increased N (nitrogen) deposition. Bacterial mutualists in particular might evolve quickly, thanks to short generation times and the potential for independent evolution of plasmids through recombination and/or HGT (horizontal gene transfer). In a previous work using the legume/rhizobia mutualism, we demonstrated that long-term nitrogen fertilization caused the evolution of less-mutualistic rhizobia. Here, we use our 63 previously isolated rhizobium strains in comparative phylogenetic and quantitative genetic analyses to determine the degree to which variation in partner quality is attributable to phylogenetic relationships among strains versus recent genetic changes in response to N fertilization. We find evidence of distinct evolutionary relationships between chromosomal and pSym genes, and broad similarity between pSym genes. We also find that nifD has a unique evolutionary history that explains much of the variation in partner quality, and suggest MoFe subunit interaction sites in the evolution of less-mutualistic rhizobia. These results provide insight into the mechanisms behind the evolutionary response of rhizobia to long-term N fertilization, and we discuss the implications of our results for the evolution of the mutualism.
Collapse
Affiliation(s)
- Benjamin R. Gordon
- Department of Plant BiologyUniversity of Illinois Urbana‐Champaign505 S. Goodwin Ave.UrbanaIllinois61801
| | - Christie R. Klinger
- Department of Plant BiologyUniversity of Illinois Urbana‐Champaign505 S. Goodwin Ave.UrbanaIllinois61801
| | - Dylan J. Weese
- Department of BiologySt. Ambrose University518 West Locust StDavenportIowa52803
| | - Jennifer A. Lau
- Kellogg Biological Station and Department of Plant BiologyMichigan State University3700 E. Gull Lake DriveHickory CornersMichigan49060
| | - Patricia V. Burke
- Department of Plant BiologyUniversity of Illinois Urbana‐Champaign505 S. Goodwin Ave.UrbanaIllinois61801
| | | | - Katy D. Heath
- Department of Plant BiologyUniversity of Illinois Urbana‐Champaign505 S. Goodwin Ave.UrbanaIllinois61801
| |
Collapse
|
27
|
Miranda-Sánchez F, Rivera J, Vinuesa P. Diversity patterns ofRhizobiaceaecommunities inhabiting soils, root surfaces and nodules reveal a strong selection of rhizobial partners by legumes. Environ Microbiol 2015; 18:2375-91. [DOI: 10.1111/1462-2920.13061] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/17/2015] [Indexed: 10/23/2022]
Affiliation(s)
- Fabiola Miranda-Sánchez
- Programa de Ingeniería Genómica; Centro de Ciencias Genómicas; Universidad Nacional Autónoma de México; Cuernavaca Morelos 62210 Mexico
| | - Javier Rivera
- Programa de Ingeniería Genómica; Centro de Ciencias Genómicas; Universidad Nacional Autónoma de México; Cuernavaca Morelos 62210 Mexico
| | - Pablo Vinuesa
- Programa de Ingeniería Genómica; Centro de Ciencias Genómicas; Universidad Nacional Autónoma de México; Cuernavaca Morelos 62210 Mexico
| |
Collapse
|
28
|
Shantz AA, Lemoine NP, Burkepile DE. Nutrient loading alters the performance of key nutrient exchange mutualisms. Ecol Lett 2015; 19:20-8. [PMID: 26549314 DOI: 10.1111/ele.12538] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/10/2015] [Accepted: 09/30/2015] [Indexed: 01/27/2023]
Abstract
Nutrient exchange mutualisms between phototrophs and heterotrophs, such as plants and mycorrhizal fungi or symbiotic algae and corals, underpin the functioning of many ecosystems. These relationships structure communities, promote biodiversity and help maintain food security. Nutrient loading may destabilise these mutualisms by altering the costs and benefits each partner incurs from interacting. Using meta-analyses, we show a near ubiquitous decoupling in mutualism performance across terrestrial and marine environments in which phototrophs benefit from enrichment at the expense of their heterotrophic partners. Importantly, heterotroph identity, their dependence on phototroph-derived C and the type of nutrient enrichment (e.g. nitrogen vs. phosphorus) mediated the responses of different mutualisms to enrichment. Nutrient-driven changes in mutualism performance may alter community organisation and ecosystem processes and increase costs of food production. Consequently, the decoupling of nutrient exchange mutualisms via alterations of the world's nitrogen and phosphorus cycles may represent an emerging threat of global change.
Collapse
Affiliation(s)
- Andrew A Shantz
- Department of Biology, Florida International University, Miami, FL, 33199, USA
| | - Nathan P Lemoine
- Department of Biology, Florida International University, Miami, FL, 33199, USA.,Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Deron E Burkepile
- Department of Biology, Florida International University, Miami, FL, 33199, USA.,Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
29
|
Menge DNL, Wolf AA, Funk JL. Diversity of nitrogen fixation strategies in Mediterranean legumes. NATURE PLANTS 2015; 1:15064. [PMID: 27250004 DOI: 10.1038/nplants.2015.64] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 04/20/2015] [Indexed: 06/05/2023]
Abstract
Symbiotic N2 fixation (SNF) brings nitrogen into ecosystems, fuelling much of the world's agriculture(1) and sustaining carbon storage(2,3). However, it can also cause nitrogen saturation, exacerbating eutrophication and greenhouse warming(4-7). The balance of these effects depends on the degree to which N2-fixing plants adjust how much N2 they fix based on their needs (their SNF 'strategies')(5,6). Genetic, biochemical and physiological details of SNF are well known for certain economically important species(8,9), but the diversity of N2-fixing plants(10) and bacteria(11) is enormous, and little is known about most N2-fixing symbioses in natural ecosystems(12). Here, we show that co-occurring, closely related herbs exhibit diverse SNF strategies. In response to a nitrogen supply gradient, four species fixed less N2 than they needed (over-regulation), two fixed what they needed (facultative) and two did not downregulate SNF (obligate). No species downregulated but fixed more N2 than it needed (under-regulation or incomplete downregulation), but some species under-regulated or incompletely downregulated structural allocation to SNF. In fact, most species maintained nodules (the root structures that house symbionts) when they did not fix N2, suggesting decoupling of SNF activity and structure. Simulations showed that over-regulation of SNF activity is more adaptive than under-regulation or incomplete downregulation, and that different strategies have wildly different effects on ecosystem-level nitrogen cycling.
Collapse
Affiliation(s)
- Duncan N L Menge
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, New York 10027, USA
| | - Amelia A Wolf
- Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095, USA
| | - Jennifer L Funk
- Schmid College of Science and Technology, Chapman University, Orange, California 92866, USA
| |
Collapse
|
30
|
Bever JD. Preferential allocation, physio-evolutionary feedbacks, and the stability and environmental patterns of mutualism between plants and their root symbionts. THE NEW PHYTOLOGIST 2015; 205:1503-1514. [PMID: 25561086 DOI: 10.1111/nph.13239] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/15/2014] [Indexed: 05/09/2023]
Abstract
The common occurrence of mutualistic interactions between plants and root symbionts is problematic. As the delivery of benefit to hosts involves costs to symbionts, symbionts that provide reduced benefit to their host are expected to increase in frequency. Plants have been shown to allocate preferentially to the most efficient symbiont and this preferential allocation may stabilize the mutualism. I construct a general model of the interactive feedbacks of host preferential allocation and the dynamics of root symbiont populations to evaluate the stability of nutritional mutualisms. Preferential allocation can promote the evolution of mutualism even when the cost to the symbiont is very large. Moreover, the physiological plasticity of preferential allocation likely leads to coexistence of beneficial and nonbeneficial symbionts. For arbuscular mycorrhizal fungi, which facilitate plant uptake of phosphorus (P), the model predicts greater P transfer from these fungi per unit carbon invested with decreasing concentrations of soil P and with increasing concentrations of atmospheric CO2 , patterns that have been observed in laboratory and field studies. This framework connects physiological plasticity in plant allocation to population processes that determine mutualism stability and, as such, represents a significant step in understanding the stability and environmental patterns in mutualism.
Collapse
Affiliation(s)
- James D Bever
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
31
|
Weese DJ, Heath KD, Dentinger BTM, Lau JA. Long-term nitrogen addition causes the evolution of less-cooperative mutualists. Evolution 2015; 69:631-42. [DOI: 10.1111/evo.12594] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 12/15/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Dylan J. Weese
- Department of Biology; St. Ambrose University; 518 West Locust St Davenport Iowa 52803
- Kellogg Biological Station and Department of Plant Biology; Michigan State University; 3700 E. Gull Lake Drive, Hickory Corners Michigan 49060
| | - Katy D. Heath
- Department of Plant Biology; University of Illinois; 192 Edward R. Madigan Lab, 1201 W. Gregory Urbana Illinois 61801
| | - Bryn T. M. Dentinger
- Jodrell Laboratory; Royal Botanic Gardens, Kew, Richmond; Surrey TW9 3DS United Kingdom
| | - Jennifer A. Lau
- Kellogg Biological Station and Department of Plant Biology; Michigan State University; 3700 E. Gull Lake Drive, Hickory Corners Michigan 49060
| |
Collapse
|
32
|
Regus JU, Gano KA, Hollowell AC, Sofish V, Sachs JL. Lotus
hosts delimit the mutualism-parasitism continuum of Bradyrhizobium. J Evol Biol 2015; 28:447-56. [DOI: 10.1111/jeb.12579] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 10/15/2014] [Accepted: 12/22/2014] [Indexed: 01/24/2023]
Affiliation(s)
- J. U. Regus
- Department of Biology; University of California; Riverside CA USA
| | - K. A. Gano
- Department of Biology; University of California; Riverside CA USA
| | - A. C. Hollowell
- Department of Biology; University of California; Riverside CA USA
| | - V. Sofish
- Department of Biology; University of California; Riverside CA USA
| | - J. L. Sachs
- Department of Biology; University of California; Riverside CA USA
- Institute for Integrative Genome Biology; University of California; Riverside CA USA
| |
Collapse
|
33
|
Wyatt GAK, Kiers ET, Gardner A, West SA. A BIOLOGICAL MARKET ANALYSIS OF THE PLANT-MYCORRHIZAL SYMBIOSIS. Evolution 2014; 68:2603-18. [DOI: 10.1111/evo.12466] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 05/27/2014] [Indexed: 12/21/2022]
Affiliation(s)
| | - E. Toby Kiers
- Institute of Ecological Sciences; Faculty of Earth and Life Sciences; Vrije Universiteit; De Boelelaan 1085, 1081 HV Amsterdam The Netherlands
| | - Andy Gardner
- School of Biology; University of St Andrews; Dyers Brae, St Andrews KY16 9 United Kingdom
| | - Stuart A. West
- Department of Zoology; University of Oxford; Oxford OX1 3PS United Kingdom
| |
Collapse
|
34
|
Porter SS, Simms EL. Selection for cheating across disparate environments in the legume-rhizobium mutualism. Ecol Lett 2014; 17:1121-9. [PMID: 25039752 DOI: 10.1111/ele.12318] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 05/19/2014] [Accepted: 06/03/2014] [Indexed: 01/18/2023]
Abstract
The primary dilemma in evolutionarily stable mutualisms is that natural selection for cheating could overwhelm selection for cooperation. Cheating need not entail parasitism; selection favours cheating as a quantitative trait whenever less-cooperative partners are more fit than more-cooperative partners. Mutualisms might be stabilised by mechanisms that direct benefits to more-cooperative individuals, which counter selection for cheating; however, empirical evidence that natural selection favours cheating in mutualisms is sparse. We measured selection on cheating in single-partner pairings of wild legume and rhizobium lineages, which prevented legume choice. Across contrasting environments, selection consistently favoured cheating by rhizobia, but did not favour legumes that provided less benefit to rhizobium partners. This is the first simultaneous measurement of selection on cheating across both host and symbiont lineages from a natural population. We empirically confirm selection for cheating as a source of antagonistic coevolutionary pressure in mutualism and a biological dilemma for models of cooperation.
Collapse
Affiliation(s)
- Stephanie S Porter
- Department of Integrative Biology, University of California, 1001 Valley Life Science Building #3140, Berkeley, California, 94720-3140, USA
| | | |
Collapse
|
35
|
Van Cleve J, Akçay E. PATHWAYS TO SOCIAL EVOLUTION: RECIPROCITY, RELATEDNESS, AND SYNERGY. Evolution 2014; 68:2245-58. [DOI: 10.1111/evo.12438] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 04/16/2014] [Indexed: 01/24/2023]
Affiliation(s)
- Jeremy Van Cleve
- National Evolutionary Synthesis Center (NESCent); 2024 W. Main Street, Suite A200 Durham North Carolina 27705
| | - Erol Akçay
- Department of Biology, University of Pennsylvania; 433 S. University Avenue Philadelphia Pennsylvania 19104
| |
Collapse
|
36
|
Evolutionary dynamics of nitrogen fixation in the legume-rhizobia symbiosis. PLoS One 2014; 9:e93670. [PMID: 24691447 PMCID: PMC3972148 DOI: 10.1371/journal.pone.0093670] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 03/09/2014] [Indexed: 11/19/2022] Open
Abstract
The stabilization of host–symbiont mutualism against the emergence of parasitic individuals is pivotal to the evolution of cooperation. One of the most famous symbioses occurs between legumes and their colonizing rhizobia, in which rhizobia extract nutrients (or benefits) from legume plants while supplying them with nitrogen resources produced by nitrogen fixation (or costs). Natural environments, however, are widely populated by ineffective rhizobia that extract benefits without paying costs and thus proliferate more efficiently than nitrogen-fixing cooperators. How and why this mutualism becomes stabilized and evolutionarily persists has been extensively discussed. To better understand the evolutionary dynamics of this symbiosis system, we construct a simple model based on the continuous snowdrift game with multiple interacting players. We investigate the model using adaptive dynamics and numerical simulations. We find that symbiotic evolution depends on the cost–benefit balance, and that cheaters widely emerge when the cost and benefit are similar in strength. In this scenario, the persistence of the symbiotic system is compatible with the presence of cheaters. This result suggests that the symbiotic relationship is robust to the emergence of cheaters, and may explain the prevalence of cheating rhizobia in nature. In addition, various stabilizing mechanisms, such as partner fidelity feedback, partner choice, and host sanction, can reinforce the symbiotic relationship by affecting the fitness of symbionts in various ways. This result suggests that the symbiotic relationship is cooperatively stabilized by various mechanisms. In addition, mixed nodule populations are thought to encourage cheater emergence, but our model predicts that, in certain situations, cheaters can disappear from such populations. These findings provide a theoretical basis of the evolutionary dynamics of legume–rhizobia symbioses, which is extendable to other single-host, multiple-colonizer systems.
Collapse
|
37
|
Simonsen AK, Stinchcombe JR. Herbivory eliminates fitness costs of mutualism exploiters. THE NEW PHYTOLOGIST 2014; 202:651-661. [PMID: 24428169 DOI: 10.1111/nph.12668] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/28/2013] [Indexed: 05/07/2023]
Abstract
A common empirical observation in mutualistic interactions is the persistence of variation in partner quality and, in particular, the persistence of exploitative phenotypes. For mutualisms between hosts and symbionts, most mutualism theory assumes that exploiters always impose fitness costs on their host. We exposed legume hosts to mutualistic (nitrogen-fixing) and exploitative (non-nitrogen-fixing) symbiotic rhizobia in field conditions, and manipulated the presence or absence of insect herbivory to determine if the costly fitness effects of exploitative rhizobia are context-dependent. Exploitative rhizobia predictably reduced host fitness when herbivores were excluded. However, insects caused greater damage on hosts associating with mutualistic rhizobia, as a consequence of feeding preferences related to leaf nitrogen content, resulting in the elimination of fitness costs imposed on hosts by exploitative rhizobia. Our experiment shows that herbivory is potentially an important factor in influencing the evolutionary dynamic between legumes and rhizobia. Partner choice and host sanctioning are theoretically predicted to stabilize mutualisms by reducing the frequency of exploitative symbionts. We argue that herbivore pressure may actually weaken selection on choice and sanction mechanisms, thus providing one explanation of why host-based discrimination mechanisms may not be completely effective in eliminating nonbeneficial partners.
Collapse
Affiliation(s)
- Anna K Simonsen
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
38
|
Ehinger M, Mohr TJ, Starcevich JB, Sachs JL, Porter SS, Simms EL. Specialization-generalization trade-off in a Bradyrhizobium symbiosis with wild legume hosts. BMC Ecol 2014; 14:8. [PMID: 24641813 PMCID: PMC4021497 DOI: 10.1186/1472-6785-14-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/10/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Specialized interactions help structure communities, but persistence of specialized organisms is puzzling because a generalist can occupy more environments and partake in more beneficial interactions. The "Jack-of-all-trades is a master of none" hypothesis asserts that specialists persist because the fitness of a generalist utilizing a particular habitat is lower than that of a specialist adapted to that habitat. Yet, there are many reasons to expect that mutualists will generalize on partners.Plant-soil feedbacks help to structure plant and microbial communities, but how frequently are soil-based symbiotic mutualistic interactions sufficiently specialized to influence species distributions and community composition? To address this question, we quantified realized partner richness and phylogenetic breadth of four wild-grown native legumes (Lupinus bicolor, L. arboreus, Acmispon strigosus and A. heermannii) and performed inoculation trials to test the ability of two hosts (L. bicolor and A. strigosus) to nodulate (fundamental partner richness), benefit from (response specificity), and provide benefit to (effect specificity) 31 Bradyrhizobium genotypes. RESULTS In the wild, each Lupinus species hosted a broader genetic range of Bradyrhizobium than did either Acmispon species, suggesting that Acmispon species are more specialized. In the greenhouse, however, L. bicolor and A. strigosus did not differ in fundamental association specificity: all inoculated genotypes nodulated both hosts. Nevertheless, A. strigosus exhibited more specificity, i.e., greater variation in its response to, and effect on, Bradyrhizobium genotypes. Lupinus bicolor benefited from a broader range of genotypes but averaged less benefit from each. Both hosts obtained more fitness benefit from symbionts isolated from conspecific hosts; those symbionts in turn gained greater fitness benefit from hosts of the same species from which they were isolated. CONCLUSIONS This study affirmed two important tenets of evolutionary theory. First, as predicted by the Jack-of-all-trades is a master of none hypothesis, specialist A. strigosus obtained greater benefit from its beneficial symbionts than did generalist L. bicolor. Second, as predicted by coevolutionary theory, each test species performed better with partner genotypes isolated from conspecifics. Finally, positive fitness feedback between the tested hosts and symbionts suggests that positive plant-soil feedback could contribute to their patchy distributions in this system.
Collapse
Affiliation(s)
- Martine Ehinger
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Toni J Mohr
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | | | - Joel L Sachs
- Department of Biology, University of California, Riverside, CA, USA
- Institute of Integrative Genomic Biology, University of California, Riverside, CA, USA
| | - Stephanie S Porter
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Ellen L Simms
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
39
|
Frederickson ME. Rethinking mutualism stability: cheaters and the evolution of sanctions. QUARTERLY REVIEW OF BIOLOGY 2014; 88:269-95. [PMID: 24552098 DOI: 10.1086/673757] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
How cooperation originates and persists in diverse species, from bacteria to multicellular organisms to human societies, is a major question in evolutionary biology. A large literature asks: what prevents selection for cheating within cooperative lineages? In mutualisms, or cooperative interactions between species, feedback between partners often aligns their fitness interests, such that cooperative symbionts receive more benefits from their hosts than uncooperative symbionts. But how do these feedbacks evolve? Cheaters might invade symbiont populations and select for hosts that preferentially reward or associate with cooperators (often termed sanctions or partner choice); hosts might adapt to variation in symbiont quality that does not amount to cheating (e.g., environmental variation); or conditional host responses might exist before cheaters do, making mutualisms stable from the outset. I review evidence from yucca-yucca moth, fig-fig wasp, and legume-rhizobium mutualisms, which are commonly cited as mutualisms stabilized by sanctions. Based on the empirical evidence, it is doubtful that cheaters select for host sanctions in these systems; cheaters are too uncommon. Recognizing that sanctions likely evolved for functions other than retaliation against cheaters offers many insights about mutualism coevolution, and about why mutualism evolves in only some lineages of potential hosts.
Collapse
Affiliation(s)
- Megan E Frederickson
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada.
| |
Collapse
|
40
|
Werner GDA, Strassmann JE, Ivens ABF, Engelmoer DJP, Verbruggen E, Queller DC, Noë R, Johnson NC, Hammerstein P, Kiers ET. Evolution of microbial markets. Proc Natl Acad Sci U S A 2014; 111:1237-44. [PMID: 24474743 PMCID: PMC3910570 DOI: 10.1073/pnas.1315980111] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Biological market theory has been used successfully to explain cooperative behavior in many animal species. Microbes also engage in cooperative behaviors, both with hosts and other microbes, that can be described in economic terms. However, a market approach is not traditionally used to analyze these interactions. Here, we extend the biological market framework to ask whether this theory is of use to evolutionary biologists studying microbes. We consider six economic strategies used by microbes to optimize their success in markets. We argue that an economic market framework is a useful tool to generate specific and interesting predictions about microbial interactions, including the evolution of partner discrimination, hoarding strategies, specialized versus diversified mutualistic services, and the role of spatial structures, such as flocks and consortia. There is untapped potential for studying the evolutionary dynamics of microbial systems. Market theory can help structure this potential by characterizing strategic investment of microbes across a diversity of conditions.
Collapse
Affiliation(s)
- Gijsbert D. A. Werner
- Department of Ecological Science, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Joan E. Strassmann
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Aniek B. F. Ivens
- Theoretical Biology Group, Centre for Ecological and Evolutionary Studies, University of Groningen, 9700 CC, Groningen, The Netherlands
- Laboratory of Insect Social Evolution, The Rockefeller University, New York, NY 10065
| | - Daniel J. P. Engelmoer
- Department of Ecological Science, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Erik Verbruggen
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, 14195 Berlin, Germany
| | - David C. Queller
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Ronald Noë
- Faculté de Psychologie, Université de Strasbourg et Ethologie Evolutive, Département Ecologie, Physiologie et Ethologie, Centre National de la Recherche Scientifique, 67087 Strasbourg Cedex, France
- Netherlands Institute of Advanced Studies, 2242 PR, Wassenaar, The Netherlands
| | - Nancy Collins Johnson
- School of Earth Sciences and Environmental Sustainability and Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011-5694; and
| | - Peter Hammerstein
- Institute for Theoretical Biology, Humboldt University, 10115 Berlin, Germany
| | - E. Toby Kiers
- Department of Ecological Science, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
41
|
Heath KD, Stinchcombe JR. EXPLAINING MUTUALISM VARIATION: A NEW EVOLUTIONARY PARADOX? Evolution 2013; 68:309-17. [DOI: 10.1111/evo.12292] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/06/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Katy D. Heath
- Department of Plant Biology; University of Illinois Urbana-Champaign; 265 Morrill Hall, 505 S. Goodwin Avenue Urbana Illinois 61801
| | - John R. Stinchcombe
- Department of Ecology and Evolutionary Biology; University of Toronto; 25 Willcocks Street Toronto Ontario M5S 3B2 Canada
| |
Collapse
|
42
|
|
43
|
Gingins S, Werminghausen J, Johnstone RA, Grutter AS, Bshary R. Power and temptation cause shifts between exploitation and cooperation in a cleaner wrasse mutualism. Proc Biol Sci 2013; 280:20130553. [PMID: 23615288 DOI: 10.1098/rspb.2013.0553] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In many instances of cooperation, only one individual has both the potential and the incentive to 'cheat' and exploit its partner. Under these asymmetric conditions, a simple model predicts that variation in the temptation to cheat and in the potential victim's capacity for partner control leads to shifts between exploitation and cooperation. Here, we show that the threat of early termination of an interaction was sufficient to induce cleaner wrasse Labroides dimidiatus to feed selectively against their preference (which corresponds to cooperatively eating client fish ectoparasites), provided that their preference for alternative food was weak. Under opposite conditions, cleaners fed selectively according to their own preference (which corresponds to cheating by eating client mucus). By contrast, a non-cleaning fish species, Halichoeres melanurus, failed to adjust its foraging behaviour under these same conditions. Thus, cleaners appear to have evolved the power to strategically adjust their levels of cooperation according to the circumstances.
Collapse
Affiliation(s)
- Simon Gingins
- Department of Biology, University of Neuchâtel, Emile-Argand 11, 2000 Neuchâtel, Switzerland.
| | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- Ellen L. Simms
- Department of Integrative Biology; University of California; 1001 Valley Life Science Building #3140; Berkeley; California; 94720-3140; USA
| | - Stephanie S. Porter
- Department of Integrative Biology; University of California; 1001 Valley Life Science Building #3140; Berkeley; California; 94720-3140; USA
| |
Collapse
|
45
|
Ezoe H. Evolutionary stability of one-to-many mutualisms. J Theor Biol 2012; 314:138-44. [PMID: 22974562 DOI: 10.1016/j.jtbi.2012.08.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 08/26/2012] [Accepted: 08/27/2012] [Indexed: 11/28/2022]
Abstract
One-to-many mutualisms - interspecific cooperations in which each host individual can potentially interact with multiple symbiont individuals while each symbiont individual can only one host individual - are widely found in nature, while their evolutionary stability has not been explored. It has been often thought that partner choice can stabilize multi-player mutualisms. However, in one-to-many mutualisms partner choice is inevitably asymmetric between hosts and symbionts, which might destabilize the system. Here I develop a simple mathematical model for an obligate one-to-many mutualism, with explicitly considering imperfect ability of symbiont choice by hosts. I fix the trait of hosts and concentrate on the evolutionary dynamics of cooperativeness in symbiont population. Each host chooses a constant number of symbionts from a potential symbiont population, a fraction of which are chosen through preferential choice depending on cooperativeness of the symbionts, while the rest are through random choice. After the association between the host and the symbionts is established, the host offers a constant amount of resource to each associating symbiont. It spends a part of the resource to increase the fitness of the host in proportion to its cooperativeness, and the rest for its own reproduction. I show that pure mutualist population is evolutionarily stable when the fraction of preferential choice c is large and the strength of preferential choice k is small, otherwise mutualists and cheaters coexist. In addition, in the coexistence state the frequency of mutualists increases with c. In contrast, it decreases with k, while the cooperativeness of mutualists increases. The two factors offset against each other, so that the fitness gain of host remains constant.
Collapse
Affiliation(s)
- Hideo Ezoe
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai 599-8531, Japan.
| |
Collapse
|
46
|
Charlotte Jandér K, Herre EA, Simms EL, Irwin R. Precision of host sanctions in the fig tree-fig wasp mutualism: consequences for uncooperative symbionts. Ecol Lett 2012; 15:1362-9. [PMID: 22925044 DOI: 10.1111/j.1461-0248.2012.01857.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 04/17/2012] [Accepted: 07/28/2012] [Indexed: 11/28/2022]
Abstract
Host sanctions that reduce the relative fitness of uncooperative symbionts provide a mechanism that can limit cheating and thus stabilise mutualisms over evolutionary timescales. Sanctions have been demonstrated empirically in several mutualisms. However, if multiple individual symbionts interact with each host, the precision with which individual cheating symbionts are targeted by host sanctions is critical to their short- and long-term effectiveness. No previous empirical study has directly addressed this issue. Here, we report the precision of host sanctions in the mutualism between fig trees and their pollinating wasps. Using field experiments and molecular parentage analyses, we show that sanctions in Ficus nymphaeifolia act at the level of entire figs (syconia), not at the level of the individual flowers within. Such fig-level sanctions allow uncooperative wasps, which do not bring pollen, to avoid sanctions in figs to which other wasps bring pollen. We discuss the relevance of sanction precision to other mutualisms.
Collapse
Affiliation(s)
- K Charlotte Jandér
- Department of Neurobiology and Behavior, Seeley G. Mudd Hall, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | |
Collapse
|
47
|
Jones EI, Bronstein JL, Ferrière R. The fundamental role of competition in the ecology and evolution of mutualisms. Ann N Y Acad Sci 2012; 1256:66-88. [PMID: 22583047 DOI: 10.1111/j.1749-6632.2012.06552.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mutualisms are interspecific interactions that yield reciprocal benefits. Here, by adopting a consumer-resource perspective, we show how considering competition is necessary in order to understand the evolutionary and ecological dynamics of mutualism. We first review the ways in which competition shapes the ecology of mutualisms, using a graphical framework based on resource flows rather than net effects to highlight the opportunities for competition. We then describe the known mechanisms of competition and show how it is a critical driver of the evolutionary dynamics, persistence, and diversification of mutualism. We argue that empirical and theoretical research on the ecology and evolution of mutualisms will jointly progress by addressing four key points: (i) the existence and shape of physiological trade-offs among cooperation, competition, and other life-history and functional traits; (ii) the capacity for individuals to express conditional responses to variation in their mutualistic and competitive environment; (iii) the existence of heritable variation for mutualistic and competitive traits and their potentially conditional expression; and (iv) the structure of the network of consumer-resource interactions in which individuals are embedded.
Collapse
Affiliation(s)
- Emily I Jones
- School of Biological Sciences, Washington State University, Pullman, Washington 99164, USA.
| | | | | |
Collapse
|
48
|
Grman E, Robinson TMP, Klausmeier CA. Ecological specialization and trade affect the outcome of negotiations in mutualism. Am Nat 2012; 179:567-81. [PMID: 22504540 DOI: 10.1086/665006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
By definition, mutualisms involve the exchange of goods or services between partners. It has been shown that mutualism can grade into parasitism, but even when exchange is mutually beneficial, a conflict of interest remains because each partner benefits from reaping more benefits at a lower cost. Metaphorically, the partners negotiate the conditions of trade, the outcome of which will determine the net benefit to each partner. Each partner can adjust its allocation to self-provisioning while negotiating the ratio at which benefits are exchanged. To understand how these two features of trade affect mutualisms, we used the example of the plant-arbuscular mycorrhizal mutualism and modeled uptake and trade of two resources, phosphorus and carbon. In most contexts, the fungus specialized on phosphorus uptake while the plant took up both phosphorus and carbon. However, when phosphorus was abundant and light was scarce, the plant specialized, taking up only carbon and relying on trade for phosphorus. Resource availability was the most important factor determining specialization and the outcome of negotiation and trade, but other aspects of the context were also important. These results suggest experiments to link these two key features of trade with environmental conditions to determine the outcome of mutualism.
Collapse
Affiliation(s)
- Emily Grman
- Kellogg Biological Station and Department of Plant Biology, Michigan State University, Hickory Corners, Michigan 49060, USA.
| | | | | |
Collapse
|
49
|
Porter SS, Stanton ML, Rice KJ. Mutualism and adaptive divergence: co-invasion of a heterogeneous grassland by an exotic legume-rhizobium symbiosis. PLoS One 2011; 6:e27935. [PMID: 22174755 PMCID: PMC3235091 DOI: 10.1371/journal.pone.0027935] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/28/2011] [Indexed: 11/18/2022] Open
Abstract
Species interactions play a critical role in biological invasions. For example, exotic plant and microbe mutualists can facilitate each other's spread as they co-invade novel ranges. Environmental context may influence the effect of mutualisms on invasions in heterogeneous environments, however these effects are poorly understood. We examined the mutualism between the legume, Medicago polymorpha, and the rhizobium, Ensifer medicae, which have both invaded California grasslands. Many of these invaded grasslands are composed of a patchwork of harsh serpentine and relatively benign non-serpentine soils. We grew legume genotypes collected from serpentine or non-serpentine soil in both types of soil in combination with rhizobium genotypes from serpentine or non-serpentine soils and in the absence of rhizobia. Legumes invested more strongly in the mutualism in the home soil type and trends in fitness suggested that this ecotypic divergence was adaptive. Serpentine legumes had greater allocation to symbiotic root nodules in serpentine soil than did non-serpentine legumes and non-serpentine legumes had greater allocation to nodules in non-serpentine soil than did serpentine legumes. Therefore, this invasive legume has undergone the rapid evolution of divergence for soil-specific investment in the mutualism. Contrary to theoretical expectations, the mutualism was less beneficial for legumes grown on the stressful serpentine soil than on the non-serpentine soil, possibly due to the inhibitory effects of serpentine on the benefits derived from the interaction. The soil-specific ability to allocate to a robust microbial mutualism may be a critical, and previously overlooked, adaptation for plants adapting to heterogeneous environments during invasion.
Collapse
Affiliation(s)
- Stephanie S Porter
- Section of Evolution and Ecology, University of California Davis, Davis, California, United States of America.
| | | | | |
Collapse
|