1
|
Jorge DCP, Martinez-Garcia R. Demographic effects of aggregation in the presence of a component Allee effect. J R Soc Interface 2024; 21:20240042. [PMID: 38916901 DOI: 10.1098/rsif.2024.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 03/12/2024] [Indexed: 06/26/2024] Open
Abstract
The component Allee effect (AE) is the positive correlation between an organism's fitness component and population density. Depending on the population spatial structure, which determines the interactions between organisms, a component AE might lead to positive density dependence in the population per-capita growth rate and establish a demographic AE. However, existing spatial models impose a fixed population spatial structure, which limits the understanding of how a component AE and spatial dynamics jointly determine the existence of demographic AEs. We introduce a spatially explicit theoretical framework where spatial structure and population dynamics are emergent properties of the individual-level demographic and movement rates. This framework predicts various spatial patterns depending on its specific parametrization, including evenly spaced aggregates of organisms, which determine the demographic-level by-products of the component AE. We find that aggregation increases population abundance and allows population survival in harsher environments and at lower global population densities when compared with uniformly distributed organisms. Moreover, aggregation can prevent the component AE from manifesting at the population level or restrict it to the level of each independent aggregate. These results provide a mechanistic understanding of how component AEs might operate for different spatial structures and manifest at larger scales.
Collapse
Affiliation(s)
- Daniel C P Jorge
- ICTP South American Institute for Fundamental Research & Instituto de Física Teórica, Universidade Estadual Paulista-UNESP, Rua Dr. Bento Teobaldo Ferraz 271, Bloco 2-Barra Funda , São Paulo, SP 01140-070, Brazil
- Department of Ecology and Evolutionary Biology, Princeton University , Princeton, NJ 08544, USA
| | - Ricardo Martinez-Garcia
- ICTP South American Institute for Fundamental Research & Instituto de Física Teórica, Universidade Estadual Paulista-UNESP, Rua Dr. Bento Teobaldo Ferraz 271, Bloco 2-Barra Funda , São Paulo, SP 01140-070, Brazil
- Center for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden Rossendorf (HZDR) , Görlitz 02826, Germany
| |
Collapse
|
2
|
Morgan WH, Palmer SCF, Lambin X. Mating system induced lags in rates of range expansion for different simulated mating systems and dispersal strategies: a modelling study. Oecologia 2024; 204:119-132. [PMID: 38172416 PMCID: PMC10830608 DOI: 10.1007/s00442-023-05492-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/25/2023] [Indexed: 01/05/2024]
Abstract
Mismatches between current and potential species distributions are commonplace due to lags in the response of populations to changing environmental conditions. The prevailing mating system may contribute to such lags where it leads to mating failure at the range edge, but how active dispersers might mitigate these lags using social information to inform dispersal strategies warrants greater exploration. We used an individual-based model to explore how different mating systems for species that actively search for habitat can impose a filter on the ability to colonise empty, fragmented landscapes, and explored how using social information during dispersal can mitigate the lags caused by more constrained mating systems. The mate-finding requirements implemented in two-sex models consistently led to slower range expansion compared to those that were not mate limited (i.e., female only models), even when mating was polygynous. A mate-search settlement strategy reduced the proportion of unmated females at the range edge but had little impact on rate of spread. In contrast, a negative density-dependent settlement strategy resulted in much faster spread, which could be explained by a greater number of long-distance dispersal events. Our findings suggest that even low rates of mating failure at the range edge can lead to considerable lags in range expansion, though dispersal strategies that favour colonising more distant, sparsely occupied habitat patches may effectively mitigate these lags.
Collapse
Affiliation(s)
- W H Morgan
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK.
| | - S C F Palmer
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK
| | - X Lambin
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK
| |
Collapse
|
3
|
Daly EZ, Chabrerie O, Massol F, Facon B, Hess MC, Tasiemski A, Grandjean F, Chauvat M, Viard F, Forey E, Folcher L, Buisson E, Boivin T, Baltora‐Rosset S, Ulmer R, Gibert P, Thiébaut G, Pantel JH, Heger T, Richardson DM, Renault D. A synthesis of biological invasion hypotheses associated with the introduction–naturalisation–invasion continuum. OIKOS 2023. [DOI: 10.1111/oik.09645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Ella Z. Daly
- Univ. of Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Evolution), UMR 6553 Rennes France
| | - Olivier Chabrerie
- Univ. de Picardie Jules Verne, UMR 7058 CNRS EDYSAN Amiens Cedex 1 France
| | - Francois Massol
- Univ. Lille, CNRS, Inserm, CHU Lille, Inst. Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille Lille France
| | - Benoit Facon
- CBGP, INRAE, CIRAD, IRD, Montpellier Institut Agro, Univ. Montpellier Montpellier France
| | - Manon C.M. Hess
- Inst. Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), UMR: Aix Marseille Univ., Avignon Université, CNRS, IRD France
- Inst. de Recherche pour la Conservation des zones Humides Méditerranéennes Tour du Valat, Le Sambuc Arles France
| | - Aurélie Tasiemski
- Univ. Lille, CNRS, Inserm, CHU Lille, Inst. Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille Lille France
| | - Frédéric Grandjean
- Univ. de Poitiers, UMR CNRS 7267 EBI‐Ecologie et Biologie des Interactions, équipe EES Poitiers Cedex 09 France
| | | | | | - Estelle Forey
- Normandie Univ., UNIROUEN, INRAE, USC ECODIV Rouen France
| | - Laurent Folcher
- ANSES – Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, Laboratoire de la Santé des Végétaux – Unité de Nématologie Le Rheu France
| | - Elise Buisson
- Inst. Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), UMR: Aix Marseille Univ., Avignon Université, CNRS, IRD France
| | - Thomas Boivin
- INRAE, UR629 Écologie des Forêts Méditerranéennes, Centre de Recherche Provence‐Alpes‐Côte d'Azur Avignon France
| | | | - Romain Ulmer
- Univ. de Picardie Jules Verne, UMR 7058 CNRS EDYSAN Amiens Cedex 1 France
| | - Patricia Gibert
- UMR 5558 CNRS – Univ. Claude Bernard Lyon 1, Biométrie et Biologie Evolutive, Bât. Gregor Mendel Villeurbanne Cedex France
| | - Gabrielle Thiébaut
- Univ. of Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Evolution), UMR 6553 Rennes France
| | - Jelena H. Pantel
- Ecological Modelling, Faculty of Biology, Univ. of Duisburg‐Essen Essen Germany
| | - Tina Heger
- Leibniz Inst. of Freshwater Ecology and Inland Fisheries (IGB) Berlin Germany
- Technical Univ. of Munich, Restoration Ecology Freising Germany
| | - David M. Richardson
- Centre for Invasion Biology, Dept. Botany & Zoology, Stellenbosch University Stellenbosch South Africa
- Inst. of Botany, Czech Academy of Sciences Průhonice Czech Republic
| | - David Renault
- Univ. of Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Evolution), UMR 6553 Rennes France
- Inst. Universitaire de France Paris Cedex 05 France
| |
Collapse
|
4
|
How mutation shapes the rate of population spread in the presence of a mate-finding Allee effect. THEOR ECOL-NETH 2022. [DOI: 10.1007/s12080-022-00540-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Understanding the drivers of dispersal evolution in range expansions and their ecological consequences. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10166-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractResearch has conclusively demonstrated the potential for dispersal evolution in range expansions and shifts, however the degree of dispersal evolution observed has varied substantially among organisms. Further, it is unknown how the factors influencing dispersal evolution might impact other ecological processes at play. We use an individual-based model to investigate the effects of the underlying genetics of dispersal and mode of reproduction in range expansions and shifts. Consistent with predictions from stationary populations, dispersal evolution increases with sexual reproduction and loci number. Contrary to our predictions, however, increased dispersal does not always improve a population’s ability to track changing conditions. The mate finding Allee effect inherent to sexual reproduction increases extinction risk during range shifts, counteracting the beneficial effect of increased dispersal evolution. Our results demonstrate the importance of considering both ecological and evolutionary processes for understanding range expansions and shifts.
Collapse
|
6
|
Miller TEX, Angert AL, Brown CD, Lee-Yaw JA, Lewis M, Lutscher F, Marculis NG, Melbourne BA, Shaw AK, Szűcs M, Tabares O, Usui T, Weiss-Lehman C, Williams JL. Eco-evolutionary dynamics of range expansion. Ecology 2020; 101:e03139. [PMID: 32697876 DOI: 10.1002/ecy.3139] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/05/2020] [Accepted: 06/08/2020] [Indexed: 01/31/2023]
Abstract
Understanding the movement of species' ranges is a classic ecological problem that takes on urgency in this era of global change. Historically treated as a purely ecological process, range expansion is now understood to involve eco-evolutionary feedbacks due to spatial genetic structure that emerges as populations spread. We synthesize empirical and theoretical work on the eco-evolutionary dynamics of range expansion, with emphasis on bridging directional, deterministic processes that favor evolved increases in dispersal and demographic traits with stochastic processes that lead to the random fixation of alleles and traits. We develop a framework for understanding the joint influence of these processes in changing the mean and variance of expansion speed and its underlying traits. Our synthesis of recent laboratory experiments supports the consistent role of evolution in accelerating expansion speed on average, and highlights unexpected diversity in how evolution can influence variability in speed: results not well predicted by current theory. We discuss and evaluate support for three classes of modifiers of eco-evolutionary range dynamics (landscape context, trait genetics, and biotic interactions), identify emerging themes, and suggest new directions for future work in a field that stands to increase in relevance as populations move in response to global change.
Collapse
Affiliation(s)
- Tom E X Miller
- Program in Ecology and Evolutionary Biology, Department of BioSciences, Rice University, Houston, Texas, 77005, USA
| | - Amy L Angert
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z2, Canada
| | - Carissa D Brown
- Department of Geography, Memorial University, 230 Elizabeth Avenue, St John's, Newfoundland and Labrador, A1B 3X9, Canada
| | - Julie A Lee-Yaw
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z2, Canada.,Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, T1K 3M4, Canada
| | - Mark Lewis
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, T6G 2G1, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2G1, Canada
| | - Frithjof Lutscher
- Department of Mathematics and Statistics, and Department of Biology, University of Ottawa, Ottawa, Ottawa, K1N 6N5, Canada
| | - Nathan G Marculis
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, T6G 2G1, Canada.,Department of Environmental Science and Policy, University of California-Davis, Davis, California, 95616, USA
| | - Brett A Melbourne
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309, USA
| | - Allison K Shaw
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Marianna Szűcs
- Department of Entomology, Michigan State University, 288 Farm Lane, East Lansing, Michigan, 48824, USA
| | - Olivia Tabares
- Department of Geography and Biodiversity Research Centre, University of British Columbia, 1984 West Mall, Vancouver, British Columbia, V6T 1Z2, Canada
| | - Takuji Usui
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z2, Canada
| | - Christopher Weiss-Lehman
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Jennifer L Williams
- Department of Geography and Biodiversity Research Centre, University of British Columbia, 1984 West Mall, Vancouver, British Columbia, V6T 1Z2, Canada
| |
Collapse
|
7
|
Mishra A, Tung S, Shree Sruti VR, Srivathsa S, Dey S. Mate-finding dispersal reduces local mate limitation and sex bias in dispersal. J Anim Ecol 2020; 89:2089-2098. [PMID: 32535925 DOI: 10.1111/1365-2656.13278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 05/19/2020] [Indexed: 11/29/2022]
Abstract
Sex-biased dispersal (SBD) often skews the local sex ratio in a population. This can result in a shortage of mates for individuals of the less-dispersive sex. Such mate limitation can lead to Allee effects in populations that are small or undergoing range expansion, consequently affecting their survival, growth, stability and invasion speed. Theory predicts that mate shortage can lead to either an increase or a decrease in the dispersal of the less-dispersive sex. However, neither of these predictions have been empirically validated. To investigate how SBD-induced mate limitation affects dispersal of the less-dispersive sex, we used Drosophila melanogaster populations with varying dispersal propensities. To rule out any mate-independent density effects, we examined the behavioural plasticity of dispersal in the presence of mates as well as same-sex individuals with differential dispersal capabilities. In the presence of high-dispersive mates, the dispersal of both male and female individuals was significantly increased. However, the magnitude of this increase was much larger in males than in females, indicating that the former shows greater mate-finding dispersal. Moreover, the dispersal of either sex did not change when dispersing alongside high- or low-dispersive individuals of the same sex. This suggested that the observed plasticity in dispersal was indeed due to mate-finding dispersal, and not mate-independent density effects. Strong mate-finding dispersal can diminish the magnitude of sex bias in dispersal. This can modulate the evolutionary processes that shape range expansions and invasions, depending on the population size. In small populations, mate-finding dispersal can ameliorate Allee effects. However, in large populations, it can dilute the effects of spatial sorting.
Collapse
Affiliation(s)
- Abhishek Mishra
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research-Pune, Pune, Maharashtra, India
| | - Sudipta Tung
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research-Pune, Pune, Maharashtra, India
| | - V R Shree Sruti
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research-Pune, Pune, Maharashtra, India
| | - Sahana Srivathsa
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research-Pune, Pune, Maharashtra, India
| | - Sutirth Dey
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research-Pune, Pune, Maharashtra, India
| |
Collapse
|
8
|
Ochocki BM, Saltz JB, Miller TEX. Demography-Dispersal Trait Correlations Modify the Eco-Evolutionary Dynamics of Range Expansion. Am Nat 2020; 195:231-246. [DOI: 10.1086/706904] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Weiss-Lehman C, Shaw AK. Spatial Population Structure Determines Extinction Risk in Climate-Induced Range Shifts. Am Nat 2020; 195:31-42. [DOI: 10.1086/706259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Williams JL, Hufbauer RA, Miller TE. How Evolution Modifies the Variability of Range Expansion. Trends Ecol Evol 2019; 34:903-913. [DOI: 10.1016/j.tree.2019.05.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 12/16/2022]
|
11
|
Pires MA, Duarte Queirós SM. Optimal dispersal in ecological dynamics with Allee effect in metapopulations. PLoS One 2019; 14:e0218087. [PMID: 31220111 PMCID: PMC6586282 DOI: 10.1371/journal.pone.0218087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 05/26/2019] [Indexed: 12/04/2022] Open
Abstract
We introduce a minimal agent-based model to understand the effects of the interplay between dispersal and geometric constraints in metapopulation dynamics under the Allee Effect. The model, which does not impose nonlinear birth and death rates, is studied both analytically and numerically. Our results indicate the existence of a survival-extinction boundary with monotonic behavior for weak spatial constraints and a nonmonotonic behavior for strong spatial constraints so that there is an optimal dispersal that maximizes the survival probability. Such optimal dispersal has empirical support from recent experiments with engineered bacteria.
Collapse
Affiliation(s)
- Marcelo A. Pires
- Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro/RJ, Brazil
| | - Sílvio M. Duarte Queirós
- Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro/RJ, Brazil
- National Institute of Science and Technology for Complex Systems, Rio de Janeiro/RJ, Brazil
- * E-mail:
| |
Collapse
|
12
|
Tung S, Mishra A, Gogna N, Aamir Sadiq M, Shreenidhi PM, Shree Sruti VR, Dorai K, Dey S. Evolution of dispersal syndrome and its corresponding metabolomic changes. Evolution 2018; 72:1890-1903. [PMID: 30075053 DOI: 10.1111/evo.13560] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/10/2018] [Indexed: 12/29/2022]
Abstract
Dispersal is one of the strategies for organisms to deal with climate change and habitat degradation. Therefore, investigating the effects of dispersal evolution on natural populations is of considerable interest to ecologists and conservation biologists. Although it is known that dispersal itself can evolve due to selection, the behavioral, life-history and metabolic consequences of dispersal evolution are not well understood. Here, we explore these issues by subjecting four outbred laboratory populations of Drosophila melanogaster to selection for increased dispersal. The dispersal-selected populations had similar values of body size, fecundity, and longevity as the nonselected lines (controls), but evolved significantly greater locomotor activity, exploratory tendency, and aggression. Untargeted metabolomic fingerprinting through NMR spectroscopy suggested that the selected flies evolved elevated cellular respiration characterized by greater amounts of glucose, AMP, and NAD. Concurrent evolution of higher level of Octopamine and other neurotransmitters indicate a possible mechanism for the behavioral changes in the selected lines. We discuss the generalizability of our findings in the context of observations from natural populations. To the best of our knowledge, this is the first report of the evolution of metabolome due to selection for dispersal and its connection to dispersal syndrome evolution.
Collapse
Affiliation(s)
- Sudipta Tung
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research (IISER) Pune, Pune, Maharashtra, India
| | - Abhishek Mishra
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research (IISER) Pune, Pune, Maharashtra, India
| | - Navdeep Gogna
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Mohammed Aamir Sadiq
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research (IISER) Pune, Pune, Maharashtra, India
| | - P M Shreenidhi
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research (IISER) Pune, Pune, Maharashtra, India
| | - V R Shree Sruti
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research (IISER) Pune, Pune, Maharashtra, India
| | - Kavita Dorai
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Sutirth Dey
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research (IISER) Pune, Pune, Maharashtra, India
| |
Collapse
|
13
|
Nurmi T, Parvinen K, Selonen V. Joint evolution of dispersal propensity and site selection in structured metapopulation models. J Theor Biol 2018; 444:50-72. [PMID: 29452172 DOI: 10.1016/j.jtbi.2018.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 02/06/2018] [Accepted: 02/12/2018] [Indexed: 11/30/2022]
Abstract
We propose a novel mathematical model for a metapopulation in which dispersal occurs on two levels: juvenile dispersal from the natal site is mandatory but it may take place either locally within the natal patch or globally between patches. Within each patch, individuals live in sites. Each site can be inhabited by at most one individual at a time and it may be of high or low quality. A disperser immigrates into a high-quality site whenever it obtains one, but it immigrates into a low-quality site only with a certain probability that depends on the time within the dispersal season. The vector of these low-quality-site-acceptance probabilities is the site-selection strategy of an individual. We derive a proxy for the invasion fitness in this model and study the joint evolution of long-distance-dispersal propensity and site-selection strategy. We focus on the way different ecological changes affect the evolutionary dynamics and study the interplay between global patch-to-patch dispersal and local site-selection. We show that ecological changes affect site-selection mainly via the severeness of competition for sites, which often leads to effects that may appear counterintuitive. Moreover, the metapopulation structure may result in extremely complex site-selection strategies and even in evolutionary cycles. The propensity for long-distance dispersal is mainly determined by the metapopulation-level ecological factors. It is, however, also strongly affected by the winter-survival of the site-holders within patches, which results in surprising non-monotonous effects in the evolution of site-selection due to interplay with long-distance dispersal. Altogether, our results give new additional support to the recent general conclusion that evolution of site-selection is often dominated by the indirect factors that take place via density-dependence, which means that evolutionary responses can rarely be predicted by intuition.
Collapse
Affiliation(s)
- Tuomas Nurmi
- Department of Biology, FIN-20014 University of Turku, Finland.
| | - Kalle Parvinen
- Department of Mathematics and Statistics, FIN-20014 University of Turku, Finland; Evolution and Ecology Program, International Institute for Applied Systems Analysis, A-2361 Laxenburg, Austria
| | - Vesa Selonen
- Department of Biology, FIN-20014 University of Turku, Finland
| |
Collapse
|
14
|
Saastamoinen M, Bocedi G, Cote J, Legrand D, Guillaume F, Wheat CW, Fronhofer EA, Garcia C, Henry R, Husby A, Baguette M, Bonte D, Coulon A, Kokko H, Matthysen E, Niitepõld K, Nonaka E, Stevens VM, Travis JMJ, Donohue K, Bullock JM, Del Mar Delgado M. Genetics of dispersal. Biol Rev Camb Philos Soc 2017; 93:574-599. [PMID: 28776950 PMCID: PMC5811798 DOI: 10.1111/brv.12356] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 12/12/2022]
Abstract
Dispersal is a process of central importance for the ecological and evolutionary dynamics of populations and communities, because of its diverse consequences for gene flow and demography. It is subject to evolutionary change, which begs the question, what is the genetic basis of this potentially complex trait? To address this question, we (i) review the empirical literature on the genetic basis of dispersal, (ii) explore how theoretical investigations of the evolution of dispersal have represented the genetics of dispersal, and (iii) discuss how the genetic basis of dispersal influences theoretical predictions of the evolution of dispersal and potential consequences. Dispersal has a detectable genetic basis in many organisms, from bacteria to plants and animals. Generally, there is evidence for significant genetic variation for dispersal or dispersal‐related phenotypes or evidence for the micro‐evolution of dispersal in natural populations. Dispersal is typically the outcome of several interacting traits, and this complexity is reflected in its genetic architecture: while some genes of moderate to large effect can influence certain aspects of dispersal, dispersal traits are typically polygenic. Correlations among dispersal traits as well as between dispersal traits and other traits under selection are common, and the genetic basis of dispersal can be highly environment‐dependent. By contrast, models have historically considered a highly simplified genetic architecture of dispersal. It is only recently that models have started to consider multiple loci influencing dispersal, as well as non‐additive effects such as dominance and epistasis, showing that the genetic basis of dispersal can influence evolutionary rates and outcomes, especially under non‐equilibrium conditions. For example, the number of loci controlling dispersal can influence projected rates of dispersal evolution during range shifts and corresponding demographic impacts. Incorporating more realism in the genetic architecture of dispersal is thus necessary to enable models to move beyond the purely theoretical towards making more useful predictions of evolutionary and ecological dynamics under current and future environmental conditions. To inform these advances, empirical studies need to answer outstanding questions concerning whether specific genes underlie dispersal variation, the genetic architecture of context‐dependent dispersal phenotypes and behaviours, and correlations among dispersal and other traits.
Collapse
Affiliation(s)
- Marjo Saastamoinen
- Department of Biosciences, Metapopulation Research Centre, University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland
| | - Greta Bocedi
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, U.K
| | - Julien Cote
- Laboratoire Évolution & Diversité Biologique UMR5174, CNRS, Université Toulouse III Paul Sabatier, 31062 Toulouse, France
| | - Delphine Legrand
- Centre National de la Recherche Scientifique and Université Paul Sabatier Toulouse III, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, 09200 Moulis, France
| | - Frédéric Guillaume
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland
| | - Christopher W Wheat
- Population Genetics, Department of Zoology, Stockholm University, S-10691 Stockholm, Sweden
| | - Emanuel A Fronhofer
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland.,Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dubendorf, Switzerland
| | - Cristina Garcia
- CIBIO-InBIO, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Roslyn Henry
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, U.K.,School of GeoSciences, University of Edinburgh, Edinburgh EH89XP, U.K
| | - Arild Husby
- Department of Biosciences, Metapopulation Research Centre, University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland
| | - Michel Baguette
- Centre National de la Recherche Scientifique and Université Paul Sabatier Toulouse III, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, 09200 Moulis, France.,Museum National d'Histoire Naturelle, Institut Systématique, Evolution, Biodiversité, UMR 7205, F-75005 Paris, France
| | - Dries Bonte
- Department of Biology, Ghent University, B-9000 Ghent, Belgium
| | - Aurélie Coulon
- PSL Research University, CEFE UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, Biogéographie et Ecologie des Vertébrés, 34293 Montpellier, France.,CESCO UMR 7204, Bases écologiques de la conservation, Muséum national d'Histoire naturelle, 75005 Paris, France
| | - Hanna Kokko
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland
| | - Erik Matthysen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Kristjan Niitepõld
- Department of Biosciences, Metapopulation Research Centre, University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland
| | - Etsuko Nonaka
- Department of Biosciences, Metapopulation Research Centre, University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland
| | - Virginie M Stevens
- Centre National de la Recherche Scientifique and Université Paul Sabatier Toulouse III, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, 09200 Moulis, France
| | - Justin M J Travis
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, U.K
| | | | - James M Bullock
- NERC Centre for Ecology & Hydrology, Wallingford OX10 8BB, U.K
| | | |
Collapse
|
15
|
Nurmi T, Parvinen K, Selonen V. The evolution of site-selection strategy during dispersal. J Theor Biol 2017; 425:11-22. [PMID: 28478118 DOI: 10.1016/j.jtbi.2017.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 04/19/2017] [Accepted: 05/03/2017] [Indexed: 11/16/2022]
Abstract
We propose a mathematical model that enables the evolutionary analysis of site-selection process of dispersing individuals that encounter sites of high or low quality. Since each site can be inhabited by at most one individual, all dispersers are not able to obtain a high-quality site. We study the evolutionary dynamics of the low-quality-site acceptance as a function of the time during the dispersal season using adaptive dynamics. We show that environmental changes affect the evolutionary dynamics in two ways: directly and indirectly via density-dependent factors. Direct evolutionary effects usually follow intuition, whereas indirect effects are often counter-intuitive and hence difficult to predict without mechanistic modeling. Therefore, the mechanistic derivation of the fitness function, with careful attention on density- and frequency dependence, is essential for predicting the consequences of environmental changes to site selection. For example, increasing fecundity in high-quality sites makes them more tempting for dispersers and hence the direct effect of this ecological change delays the acceptance of low-quality sites. However, increasing fecundity in high-quality sites also increases the population size, which makes the competition for sites more severe and thus, as an indirect effect, forces evolution to favor less picky individuals. Our results indicate that the indirect effects often dominate the intuitive effects, which emphasizes the need for mechanistic models of the immigration process.
Collapse
Affiliation(s)
- Tuomas Nurmi
- Department of Biology, University of Turku, FIN-20014, Finland.
| | - Kalle Parvinen
- Department of Mathematics and Statistics, University of Turku, FIN-20014, Finland; Evolution and Ecology Program, International Institute for Applied Systems Analysis, Laxenburg A-2361, Austria
| | - Vesa Selonen
- Department of Biology, University of Turku, FIN-20014, Finland
| |
Collapse
|
16
|
Tung S, Mishra A, Shreenidhi PM, Sadiq MA, Joshi S, Sruti VRS, Dey S. Simultaneous evolution of multiple dispersal components and kernel. OIKOS 2017. [DOI: 10.1111/oik.04618] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sudipta Tung
- Population Biology Laboratory, Biology Division, Indian Inst. of Science Education and Research-Pune; Dr. Homi Bhabha Road Pune Maharashtra 411 0081 India
| | - Abhishek Mishra
- Population Biology Laboratory, Biology Division, Indian Inst. of Science Education and Research-Pune; Dr. Homi Bhabha Road Pune Maharashtra 411 0081 India
| | - P. M. Shreenidhi
- Population Biology Laboratory, Biology Division, Indian Inst. of Science Education and Research-Pune; Dr. Homi Bhabha Road Pune Maharashtra 411 0081 India
| | - Mohammed Aamir Sadiq
- Population Biology Laboratory, Biology Division, Indian Inst. of Science Education and Research-Pune; Dr. Homi Bhabha Road Pune Maharashtra 411 0081 India
| | - Sripad Joshi
- Population Biology Laboratory, Biology Division, Indian Inst. of Science Education and Research-Pune; Dr. Homi Bhabha Road Pune Maharashtra 411 0081 India
- Dept of Plant Science; McGill Univ.; Ste. Anne de Bellevue QC Canada
| | - V. R. Shree Sruti
- Population Biology Laboratory, Biology Division, Indian Inst. of Science Education and Research-Pune; Dr. Homi Bhabha Road Pune Maharashtra 411 0081 India
| | - Sutirth Dey
- Population Biology Laboratory, Biology Division, Indian Inst. of Science Education and Research-Pune; Dr. Homi Bhabha Road Pune Maharashtra 411 0081 India
| |
Collapse
|
17
|
Shaw AK, Kokko H, Neubert MG. Sex difference and Allee effects shape the dynamics of sex-structured invasions. J Anim Ecol 2017; 87:36-46. [PMID: 28220487 DOI: 10.1111/1365-2656.12658] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 12/13/2016] [Indexed: 11/30/2022]
Abstract
The rate at which a population grows and spreads can depend on individual behaviour and interactions with others. In many species with two sexes, males and females differ in key life-history traits (e.g. growth, survival and dispersal), which can scale up to affect population rates of growth and spread. In sexually reproducing species, the mechanics of locating mates and reproducing successfully introduce further complications for predicting the invasion speed (spread rate), as both can change nonlinearly with density. Most models of population spread are based on one sex, or include limited aspects of sex differences. Here we ask whether and how the dynamics of finding mates interact with sex-specific life-history traits to influence the rate of population spread. We present a hybrid approach for modelling invasions of populations with two sexes that links individual-level mating behaviour (in an individual-based model) to population-level dynamics (in an integrodifference equation model). We find that limiting the amount of time during which individuals can search for mates causes a demographic Allee effect which can slow, delay, or even prevent an invasion. Furthermore, any sex-based asymmetries in life history or behaviour (skewed sex ratio, sex-biased dispersal, and sex-specific mating behaviours) amplify these effects. In contrast, allowing individuals to mate more than once ameliorates these effects, enabling polygynandrous populations to invade under conditions where monogamously mating populations would fail to establish. We show that details of individuals' mating behaviour can impact the rate of population spread. Based on our results, we propose a stricter definition of a mate-finding Allee effect, which is not met by the commonly used minimum mating function. Our modelling approach, which links individual- and population-level dynamics in a single model, may be useful for exploring other aspects of individual behaviour that are thought to impact the rate of population spread.
Collapse
Affiliation(s)
- Allison K Shaw
- Department of Ecology, Evolution, and Behavior, University of Minnesota, MN, 55108, USA
| | - Hanna Kokko
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Michael G Neubert
- Biology Department, MS 34, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| |
Collapse
|
18
|
Berec L, Kramer AM, Bernhauerová V, Drake JM. Density-dependent selection on mate search and evolution of Allee effects. J Anim Ecol 2017; 87:24-35. [PMID: 28240356 DOI: 10.1111/1365-2656.12662] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/31/2017] [Indexed: 01/18/2023]
Abstract
Sexually reproducing organisms require males and females to find each other. Increased difficulty of females finding mates as male density declines is the most frequently reported mechanism of Allee effects in animals. Evolving more effective mate search may alleviate Allee effects, but may depend on density regimes a population experiences. In particular, high-density populations may evolve mechanisms that induce Allee effects which become detrimental when populations are reduced and maintained at a low density. We develop an individual-based, eco-genetic model to study how mating systems and fitness trade-offs interact with changes in population density to drive evolution of the rate at which males or females search for mates. Finite mate search rate triggers Allee effects in our model and we explore how these Allee effects respond to such evolution. We allow a population to adapt to several population density regimes and examine whether high-density populations are likely to reverse adaptations attained at low densities. We find density-dependent selection in most of scenarios, leading to search rates that result in lower Allee thresholds in populations kept at lower densities. This mainly occurs when fecundity costs are imposed on mate search, and provides an explanation for why Allee effects are often observed in anthropogenically rare species. Optimizing selection, where the attained trait value minimizes the Allee threshold independent of population density, depended on the trade-off between search and survival, combined with monogamy when females were searching. Other scenarios led to runaway selection on the mate search rate, including evolutionary suicide. Trade-offs involved in mate search may thus be crucial to determining how density influences the evolution of Allee effects. Previous studies did not examine evolution of a trait related to the strength of Allee effects under density variation. We emphasize the crucial role that mating systems, fitness trade-offs and the evolving sex have in determining the density threshold for population persistence, in particular since evolution need not always take the Allee threshold to its minimum value.
Collapse
Affiliation(s)
- Luděk Berec
- Department of Ecology, Institute of Entomology, Biology Centre CAS, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Andrew M Kramer
- Odum School of Ecology, University of Georgia, 140 E. Green St., Athens, GA, 30602-2202, USA
| | - Veronika Bernhauerová
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - John M Drake
- Odum School of Ecology, University of Georgia, 140 E. Green St., Athens, GA, 30602-2202, USA
| |
Collapse
|
19
|
Rapid trait evolution drives increased speed and variance in experimental range expansions. Nat Commun 2017; 8:14303. [PMID: 28128350 PMCID: PMC5290145 DOI: 10.1038/ncomms14303] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 12/12/2016] [Indexed: 01/11/2023] Open
Abstract
Range expansions are central to two ecological issues reshaping patterns of global biodiversity: biological invasions and climate change. Traditional theory considers range expansion as the outcome of the demographic processes of birth, death and dispersal, while ignoring the evolutionary implications of such processes. Recent research suggests evolution could also play a critical role in determining expansion speed but controlled experiments are lacking. Here we use flour beetles (Tribolium castaneum) to show experimentally that mean expansion speed and stochastic variation in speed are both increased by rapid evolution of traits at the expansion edge. We find that higher dispersal ability and lower intrinsic growth rates evolve at the expansion edge compared with spatially nonevolving controls. Furthermore, evolution of these traits is variable, leading to enhanced variance in speed among replicate population expansions. Our results demonstrate that evolutionary processes must be considered alongside demographic ones to better understand and predict range expansions. Spatial structure provides unique opportunities for evolution during range expansions. Here, the authors show experimentally using the red flour beetle, Tribolium castaneum, that dispersal and growth can evolve through spatial processes, increasing expansion speed and its variance.
Collapse
|
20
|
Perkins TA, Boettiger C, Phillips BL. After the games are over: life-history trade-offs drive dispersal attenuation following range expansion. Ecol Evol 2016; 6:6425-6434. [PMID: 27777719 PMCID: PMC5058517 DOI: 10.1002/ece3.2314] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/11/2016] [Accepted: 06/16/2016] [Indexed: 01/15/2023] Open
Abstract
Increased dispersal propensity often evolves on expanding range edges due to the Olympic Village effect, which involves the fastest and fittest finding themselves together in the same place at the same time, mating, and giving rise to like individuals. But what happens after the range's leading edge has passed and the games are over? Although empirical studies indicate that dispersal propensity attenuates following range expansion, hypotheses about the mechanisms driving this attenuation have not been clearly articulated or tested. Here, we used a simple model of the spatiotemporal dynamics of two phenotypes, one fast and the other slow, to propose that dispersal attenuation beyond preexpansion levels is only possible in the presence of trade‐offs between dispersal and life‐history traits. The Olympic Village effect ensures that fast dispersers preempt locations far from the range's previous limits. When trade‐offs are absent, this preemptive spatial advantage has a lasting impact, with highly dispersive individuals attaining equilibrium frequencies that are strictly higher than their introduction frequencies. When trade‐offs are present, dispersal propensity decays rapidly at all locations. Our model's results about the postcolonization trajectory of dispersal evolution are clear and, in principle, should be observable in field studies. We conclude that empirical observations of postcolonization dispersal attenuation offer a novel way to detect the existence of otherwise elusive trade‐offs between dispersal and life‐history traits.
Collapse
Affiliation(s)
- T Alex Perkins
- Department of Biological Sciences and Eck Institute for Global Health University of Notre Dame Notre Dame Indiana
| | - Carl Boettiger
- Department of Environmental Science, Policy, & Management University of California, Berkeley Berkeley California
| | | |
Collapse
|
21
|
Hamelin FM, Castella F, Doli V, Marçais B, Ravigné V, Lewis MA. Mate Finding, Sexual Spore Production, and the Spread of Fungal Plant Parasites. Bull Math Biol 2016; 78:695-712. [DOI: 10.1007/s11538-016-0157-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 03/14/2016] [Indexed: 12/25/2022]
|
22
|
Gyllenberg M, Kisdi É, Weigang HC. On the evolution of patch-type dependent immigration. J Theor Biol 2016; 395:115-125. [DOI: 10.1016/j.jtbi.2016.01.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 01/21/2016] [Accepted: 01/23/2016] [Indexed: 10/22/2022]
|
23
|
Grossenbacher D, Briscoe Runquist R, Goldberg EE, Brandvain Y. Geographic range size is predicted by plant mating system. Ecol Lett 2015; 18:706-13. [PMID: 25980327 DOI: 10.1111/ele.12449] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/13/2015] [Accepted: 04/09/2015] [Indexed: 11/30/2022]
Abstract
Species' geographic ranges vary enormously, and even closest relatives may differ in range size by several orders of magnitude. With data from hundreds of species spanning 20 genera in 15 families, we show that plant species that autonomously reproduce via self-pollination consistently have larger geographic ranges than their close relatives that generally require two parents for reproduction. Further analyses strongly implicate autonomous self-fertilisation in causing this relationship, as it is not driven by traits such as polyploidy or annual life history whose evolution is sometimes correlated with selfing. Furthermore, we find that selfers occur at higher maximum latitudes and that disparity in range size between selfers and outcrossers increases with time since their evolutionary divergence. Together, these results show that autonomous reproduction--a critical biological trait that eliminates mate limitation and thus potentially increases the probability of establishment--increases range size.
Collapse
Affiliation(s)
- Dena Grossenbacher
- Department of Plant Biology, University of Minnesota, St. Paul, MN, 55108, USA
| | | | - Emma E Goldberg
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, 55108, USA
| | - Yaniv Brandvain
- Department of Plant Biology, University of Minnesota, St. Paul, MN, 55108, USA
| |
Collapse
|