1
|
Xie Y, Yao T, Zhu X, Yang F, Fan H, Cao S, Chen H, Liao M, Xia Y, Liu J, Xiao Z, Yang Z, Xiao Y. High-intensity Focused Ultrasound-A New Choice to Conduct Pulmonary Artery Denervation. J Cardiovasc Transl Res 2024; 17:1353-1364. [PMID: 38971920 PMCID: PMC11635049 DOI: 10.1007/s12265-024-10531-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 05/06/2024] [Indexed: 07/08/2024]
Abstract
This research aimed to explore whether high-intensity focused ultrasound (HIFU) could conduct pulmonary artery denervation (PADN). HIFU was performed in pulmonary arteries of 6 normotensive rabbits at dose of 250W, 6 times for each rabbit, and an additional 6 rabbits served as controls. Then ATEPH was induced in both groups by intravenous infusion of autogeneic thrombus. Hemodynamics and ultrasonography parameters were measured by right heart catheter and echocardiography pre- and post-establishment of ATEPH models in both groups. Histological analysis and immunohistochemistry of tyrosine hydroxylase (TH) were also performed. After PADN procedures, 5 rabbits were successfully conducted PADN, of which ablation zone was also observed in right auricle or right lung in 4 rabbits. Ablation zone was detected only in right lung in 1 rabbit. Compared with control group, milder right heart hemodynamic changes were found in PADN group, accompanied by improved ultrasound parameters in PADN group. HIFU can acutly damage SNs around pulmonary artery successfully, which may be a new choice to conduct PADN. However, the accuracy of HIFU with PADN needs to be improved.
Collapse
Affiliation(s)
- Yonghui Xie
- Academy of Pediatrics, University of South China, Changsha, 410007, China
- Department of Cardiology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, 410007, China
| | - Taoyue Yao
- Department of Ultrasound, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, 410007, China
| | - Xiaogang Zhu
- Department of Obstetrics and Gynecology, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Fan Yang
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Haoqin Fan
- Academy of Pediatrics, University of South China, Changsha, 410007, China
- Department of Cardiology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, 410007, China
| | - Shirui Cao
- Class 2115, Changsha Yali High School, Changsha, 410007, China
| | - Huaiyang Chen
- Academy of Pediatrics, University of South China, Changsha, 410007, China
- Department of Cardiology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, 410007, China
| | - Manzhen Liao
- Academy of Pediatrics, University of South China, Changsha, 410007, China
- Department of Cardiology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, 410007, China
| | - Yuanxi Xia
- Department of Anesthesiology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, 410007, China
| | - Jinqiao Liu
- Department of Ultrasound, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, 410007, China
| | - Zhenghui Xiao
- Department of Pediatric Intensive Care, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, 410007, China
| | - Zhou Yang
- Department of Cardiology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, 410007, China.
| | - Yunbin Xiao
- Department of Cardiology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, 410007, China.
| |
Collapse
|
2
|
Xueyuan L, Yanping X, Jiaoqiong G, Yuehui Y. Autonomic nervous modulation: early treatment for pulmonary artery hypertension. ESC Heart Fail 2024; 11:619-627. [PMID: 38108098 DOI: 10.1002/ehf2.14616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023] Open
Abstract
Pulmonary artery hypertension (PAH) is a chronic vascular disease defined by the elevation of pulmonary vascular resistance and mean pulmonary artery pressure, which arises due to pulmonary vascular remodelling. Prior research has already established a link between the autonomic nervous system (ANS) and PAH. Therefore, the rebalancing of the ANS offers a promising approach for the treatment of PAH. The process of rebalancing involves two key aspects: inhibiting an overactive sympathetic nervous system and fortifying the impaired parasympathetic nervous system through pharmacological or interventional procedures. However, the understanding of the precise mechanisms involved in neuromodulation, whether achieved through medication or intervention, remains insufficient. This limited understanding hinders our ability to determine the appropriate timing and scope of such treatment. This review aims to integrate the findings from clinical and mechanistic studies on ANS rebalancing as a treatment approach for PAH, with the ultimate goal of identifying a path to enhance the safety and efficacy of neuromodulation therapy and improve the prognosis of PAH.
Collapse
Affiliation(s)
- Liu Xueyuan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xu Yanping
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guan Jiaoqiong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yin Yuehui
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Davies MG, Miserlis D, Hart JP. Current status of pulmonary artery denervation. Front Cardiovasc Med 2022; 9:972256. [PMID: 36262207 PMCID: PMC9573987 DOI: 10.3389/fcvm.2022.972256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/02/2022] [Indexed: 11/22/2022] Open
Abstract
Pulmonary hypertension is a progressive disease with a poor long-term prognosis and high mortality. Pulmonary artery denervation (PADN) is emerging as a potential novel therapy for this condition. The basis of pursuing a sympathetic denervation strategy has its origins in a body of experimental translation work that has demonstrated that denervation can reduce sympathetic nerve activity in various animal models. This reduction in pulmonary sympathetic nerve activity is associated with a reduction in pathological pulmonary hemodynamics in response to mechanical, pharmacological, and toxicologically induced pulmonary hypertension. The most common method of PADN is catheter-directed thermal ablation. Since 2014, there have been 12 reports on the role of PADN in 490 humans with pulmonary hypertension (311:179; treated: control). Of these, six are case series, three are randomized trials, and three are case reports. Ten studies used percutaneous PADN techniques, and two combined PADN with mitral and/or left atrial surgery. PADN treatment has low mortality and morbidity and is associated with an improved 6-minute walking distance, a reduction in both mean pulmonary artery pressure and pulmonary vascular resistance, and an improvement in cardiac output. These improved outcomes were seen over a median follow-up of 12 months (range 2–46 months). A recent meta-analysis of human trials also supports the effectiveness of PADN in carefully selected patients. Based on the current literature, PADN can be effective in select patients with pulmonary hypertension. Additional randomized clinical trials against best medical therapy are required.
Collapse
Affiliation(s)
- Mark G. Davies
- Division of Vascular and Endovascular Surgery, The University of Texas Health at San Antonio, San Antonio, TX, United States,*Correspondence: Mark G. Davies
| | - Dimitrios Miserlis
- Division of Vascular and Endovascular Surgery, The University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Joseph P. Hart
- Division of Vascular and Endovascular Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
4
|
Pan T, Zhang Q, Guo J. Endovascular denervation (EDN): From Hypertension to Non-Hypertension Diseases. J Interv Med 2021; 4:130-135. [PMID: 34805960 PMCID: PMC8562178 DOI: 10.1016/j.jimed.2021.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/22/2021] [Accepted: 05/22/2021] [Indexed: 11/26/2022] Open
Abstract
Recently, the use of endovascular denervation (EDN) to treat resistant hypertension has gained significant attention. In addition to reducing sympathetic activity, EDN might also have beneficial effects on pulmonary arterial hypertension, insulin resistance, chronic kidney disease, atrial fibrillation, heart failure, obstructive sleep apnea syndrome, loin pain hematuria syndrome, cancer pain and so on. In this article we will summarize the progress of EDN in clinical research.
Collapse
Affiliation(s)
- Tao Pan
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Qi Zhang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Jinhe Guo
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China
| |
Collapse
|
5
|
Xie Y, Liu N, Xiao Z, Yang F, Zeng Y, Yang Z, Xia Y, Chen Z, Xiao Y. The progress of pulmonary artery denervation. Cardiol J 2021; 29:381-387. [PMID: 33438182 PMCID: PMC9170319 DOI: 10.5603/cj.a2020.0186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/06/2020] [Indexed: 11/25/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a chronic pulmonary vascular disease characterized by increased pulmonary arterial pressure and pulmonary arterioles remodeling. Some studies have discovered the relationship between sympathetic nerves (SNs) and pathogenesis of PAH. This review is aimed to illustrate the location and components of SNs in the pulmonary artery, along with different methods and effects of pulmonary artery denervation (PADN). Studies have shown that the SNs distributed mainly around the main pulmonary artery and pulmonary artery bifurcation. And the SNs could be destroyed by three ways: the chemical way, the surgical way and the catheter-based way. PADN can significantly decrease pulmonary arterial pressure rapidly, improve hemodynamic varieties, and then palliate PAH. PADN has been recognized as a prospective and effective therapy for PAH patients, especially for those with medication-refractory PAH. However, further enlarged clinical studies are needed to confirm accurate distribution of SNs in the pulmonary artery and the efficacy of PADN.
Collapse
Affiliation(s)
- Yonghui Xie
- Academy of Pediatrics, University of South China, Changsha, China
- Department of Cardiology, Hunan Children's Hospital, Changsha, China
| | - Na Liu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, China
| | - Zhenghui Xiao
- Academy of Pediatrics, University of South China, Changsha, China
| | - Fang Yang
- Department of Cardiology, The Second Xiangya Hospital of Central South University, China
| | - Yunhong Zeng
- Academy of Pediatrics, University of South China, Changsha, China
- Department of Cardiology, Hunan Children's Hospital, Changsha, China
| | - Zhou Yang
- Academy of Pediatrics, University of South China, Changsha, China
- Department of Cardiology, Hunan Children's Hospital, Changsha, China
| | - Yuanxi Xia
- Academy of Pediatrics, University of South China, Changsha, China
- Department of Cardiology, Hunan Children's Hospital, Changsha, China
| | - Zhi Chen
- Academy of Pediatrics, University of South China, Changsha, China
- Department of Cardiology, Hunan Children's Hospital, Changsha, China
| | - Yunbin Xiao
- Academy of Pediatrics, University of South China, Changsha, China.
- Department of Cardiology, Hunan Children's Hospital, Changsha, China.
| |
Collapse
|
6
|
Pulmonary artery denervation for pulmonary arterial hypertension. Trends Cardiovasc Med 2020; 31:252-260. [PMID: 32413394 DOI: 10.1016/j.tcm.2020.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 01/18/2023]
Abstract
Pulmonary arterial hypertension remains a progressive, life-limiting disease despite optimal medical therapy. Pulmonary artery denervation has arisen as a novel intervention in the treatment of pulmonary arterial hypertension, and other forms of pulmonary hypertension, with the aim of reducing the sympathetic activity of the pulmonary circulation. Pre-clinical studies and initial clinical trials have demonstrated that the technique can be performed safely with some positive effects on clinical, haemodynamic and echocardiographic markers of disease. The scope of the technique in current practice remains limited given the absence of well-designed, large-scale, international randomised controlled clinical trials. This review provides an overview of this exciting new treatment modality, including pathophysiology, technical innovations and recent trial results.
Collapse
|
7
|
Electrical Stimulation-Guided Approach to Pulmonary Artery Catheter Ablation in Patients with Idiopathic Pulmonary Arterial Hypertension: A Pilot Feasibility Study with a 12-Month Follow-Up. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8919515. [PMID: 32149144 PMCID: PMC7048906 DOI: 10.1155/2020/8919515] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/15/2019] [Accepted: 01/16/2020] [Indexed: 01/09/2023]
Abstract
Background Recently, transcatheter pulmonary artery (PA) ablation aiming at sympathetic denervation has been proposed in pulmonary arterial hypertension (PAH). This pilot feasibility study aimed to assess the feasibility of selective radiofrequency PA ablation based on response to high-frequency stimulation mapping. Methods The study comprised 3 female patients with idiopathic PAH (IPAH). The following reactions to PA stimulation were noted and marked by color points on the three-dimensional map: sinus bradycardia (heart rate decrease ≥15%), tachycardia (heart rate increase ≥15%), phrenic nerve capture, and cough. Since the most appropriate ablation strategy was unknown, two approaches were suggested, according to stimulation results: ablation at points with any heart rate response (either bradycardia or tachycardia)—this approach was applied in patient #1 (IPAH long-term responder to calcium channel blockers); segmental ablation at points with no response and with tachycardia response (one IPAH long-term responder to calcium channel blockers patient and one–IPAH with negative vasoreactive testing). Hemodynamic measurements were performed before and after denervation. Follow-up visits were scheduled at 6 and 12 months. Results Six-months follow-up was uneventful for patients #1 and 3; patient #2 had one syncope and reduced 6-minute walk test distance and peak VO2 consumption. At 12 months, there was a normalization of mean PA pressure and pulmonary vascular resistance (PVR) in patient #1. Patient #2 had no change in PA pressure and PVR at 12 months. Patient #3 remained in II functional class; however, there was an increase in mean PA pressure and loss of vasoreactivity. Conclusions Electrical high-frequency stimulation of the PA identifies several types of evoked reactions: heart rate slowing, acceleration, phrenic nerve capture, and cough. The improvement in clinical and hemodynamic parameters following targeted PA ablation in the IPAH patient with positive vasoreactive testing should be confirmed in larger studies.
Collapse
|
8
|
Zhao Y, Xiang R, Peng X, Dong Q, Li D, Yu G, Xiao L, Qin S, Huang W. Transection of the cervical sympathetic trunk inhibits the progression of pulmonary arterial hypertension via ERK-1/2 Signalling. Respir Res 2019; 20:121. [PMID: 31200778 PMCID: PMC6567667 DOI: 10.1186/s12931-019-1090-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 06/03/2019] [Indexed: 12/26/2022] Open
Abstract
Background Abnormal sympathetic hyperactivity has been shown to lead to pulmonary arterial hypertension (PAH) deterioration. The purpose of this study was to examine whether the transection of the cervical sympathetic trunk (TCST) can inhibit the progression of PAH in a monocrotaline (MCT)-induced PAH model and elucidate the underlying mechanisms. Methods Rats were randomly divided into four groups, including a control group, an MCT group, an MCT + sham group and an MCT + TCST group. After performing haemodynamic and echocardiographic measurements, the rats were sacrificed for the histological study, and the norepinephrine (NE) concentrations and protein expression level of tyrosine hydroxylase (TH) were evaluated. The protein expression levels of extracellular signal-regulated kinase (ERK)-1/2, proliferating cell nuclear antigen (PCNA), cyclin A2 and cyclin D1 in pulmonary artery vessels and pulmonary arterial smooth muscle cells (PASMCs) were determined. Results Compared with the MCT + sham group, TCST profoundly reduced the mean pulmonary arterial pressure (mPAP) (22.02 ± 4.03 mmHg vs. 31.71 ± 2.94 mmHg), right ventricular systolic pressure (RVSP) (35.21 ± 5.59 mmHg vs. 48.36 ± 5.44 mmHg), medial wall thickness (WT%) (22.48 ± 1.75% vs. 46.10 ± 3.16%), and right ventricular transverse diameter (RVTD) (3.78 ± 0.40 mm vs. 4.36 ± 0.29 mm) and increased the tricuspid annular plane systolic excursion (TAPSE) (2.00 ± 0.12 mm vs. 1.41 ± 0.24 mm) (all P < 0.05). The NE concentrations and protein expression levels of TH were increased in the PAH rats but significantly decreased after TCST. Furthermore, TCST reduced the increased protein expression of PCNA, cyclin A2 and cyclin D1 induced by MCT in vivo. We also found that NE promoted PASMC viability and activated the ERK-1/2 pathway. However, the abovementioned NE-induced changes could be suppressed by the specific ERK-1/2 inhibitor U0126. Conclusion TCST can suppress pulmonary artery remodelling and right heart failure in MCT-induced PAH. The main mechanism may be that TCST decreases the NE concentrations in lung tissues, thereby preventing NE from promoting PASMC proliferation mediated by the ERK-1/2 signalling pathway. Electronic supplementary material The online version of this article (10.1186/s12931-019-1090-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yongpeng Zhao
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Rui Xiang
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Xin Peng
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Qian Dong
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Dan Li
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Guiquan Yu
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Lei Xiao
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, USA.,Present Address: Lung Vascular Biology Program, NHLBI/NIH, Bethesda, MD, USA
| | - Shu Qin
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Wei Huang
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, China.
| |
Collapse
|
9
|
Kiely DG, Levin DL, Hassoun PM, Ivy D, Jone PN, Bwika J, Kawut SM, Lordan J, Lungu A, Mazurek JA, Moledina S, Olschewski H, Peacock AJ, Puri G, Rahaghi FN, Schafer M, Schiebler M, Screaton N, Tawhai M, van Beek EJ, Vonk-Noordegraaf A, Vandepool R, Wort SJ, Zhao L, Wild JM, Vogel-Claussen J, Swift AJ. EXPRESS: Statement on imaging and pulmonary hypertension from the Pulmonary Vascular Research Institute (PVRI). Pulm Circ 2019; 9:2045894019841990. [PMID: 30880632 PMCID: PMC6732869 DOI: 10.1177/2045894019841990] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/01/2019] [Indexed: 01/08/2023] Open
Abstract
Pulmonary hypertension (PH) is highly heterogeneous and despite treatment advances it remains a life-shortening condition. There have been significant advances in imaging technologies, but despite evidence of their potential clinical utility, practice remains variable, dependent in part on imaging availability and expertise. This statement summarizes current and emerging imaging modalities and their potential role in the diagnosis and assessment of suspected PH. It also includes a review of commonly encountered clinical and radiological scenarios, and imaging and modeling-based biomarkers. An expert panel was formed including clinicians, radiologists, imaging scientists, and computational modelers. Section editors generated a series of summary statements based on a review of the literature and professional experience and, following consensus review, a diagnostic algorithm and 55 statements were agreed. The diagnostic algorithm and summary statements emphasize the key role and added value of imaging in the diagnosis and assessment of PH and highlight areas requiring further research.
Collapse
Affiliation(s)
- David G. Kiely
- Sheffield Pulmonary Vascular Disease
Unit, Royal Hallamshire Hospital, Sheffield, UK
- Department of Infection, Immunity and
Cardiovascular Disease and Insigneo Institute, University of Sheffield, Sheffield,
UK
| | - David L. Levin
- Department of Radiology, Mayo Clinic,
Rochester, MN, USA
| | - Paul M. Hassoun
- Department of Medicine John Hopkins
University, Baltimore, MD, USA
| | - Dunbar Ivy
- Paediatric Cardiology, Children’s
Hospital, University of Colorado School of Medicine, Denver, CO, USA
| | - Pei-Ni Jone
- Paediatric Cardiology, Children’s
Hospital, University of Colorado School of Medicine, Denver, CO, USA
| | | | - Steven M. Kawut
- Department of Medicine, Perelman School
of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jim Lordan
- Freeman Hospital, Newcastle Upon Tyne,
Newcastle, UK
| | - Angela Lungu
- Technical University of Cluj-Napoca,
Cluj-Napoca, Romania
| | - Jeremy A. Mazurek
- Division of Cardiovascular Medicine,
Hospital
of the University of Pennsylvania,
Philadelphia, PA, USA
| | | | - Horst Olschewski
- Division of Pulmonology, Ludwig
Boltzmann Institute Lung Vascular Research, Graz, Austria
| | - Andrew J. Peacock
- Scottish Pulmonary Vascular Disease,
Unit, University of Glasgow, Glasgow, UK
| | - G.D. Puri
- Department of Anaesthesiology and
Intensive Care, Post Graduate Institute of Medical Education and Research,
Chandigarh, India
| | - Farbod N. Rahaghi
- Brigham and Women’s Hospital, Harvard
Medical School, Boston, MA, USA
| | - Michal Schafer
- Paediatric Cardiology, Children’s
Hospital, University of Colorado School of Medicine, Denver, CO, USA
| | - Mark Schiebler
- Department of Radiology, University of
Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | - Merryn Tawhai
- Auckland Bioengineering Institute,
Auckland, New Zealand
| | - Edwin J.R. van Beek
- Edinburgh Imaging, Queens Medical
Research Institute, University of Edinburgh, Edinburgh, UK
| | | | - Rebecca Vandepool
- University of Arizona, Division of
Translational and Regenerative Medicine, Tucson, AZ, USA
| | - Stephen J. Wort
- Royal Brompton Hospital, London,
UK
- Imperial College, London, UK
| | | | - Jim M. Wild
- Department of Infection, Immunity and
Cardiovascular Disease and Insigneo Institute, University of Sheffield, Sheffield,
UK
- Academic Department of Radiology,
University of Sheffield, Sheffield, UK
| | - Jens Vogel-Claussen
- Institute of diagnostic and
Interventional Radiology, Medical Hospital Hannover, Hannover, Germany
| | - Andrew J. Swift
- Department of Infection, Immunity and
Cardiovascular Disease and Insigneo Institute, University of Sheffield, Sheffield,
UK
- Academic Department of Radiology,
University of Sheffield, Sheffield, UK
| |
Collapse
|
10
|
Effect of pulmonary artery denervation in postcapillary pulmonary hypertension: results of a randomized controlled translational study. Basic Res Cardiol 2019; 114:5. [DOI: 10.1007/s00395-018-0714-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/27/2018] [Indexed: 10/27/2022]
|
11
|
Fujisawa T, Kataoka M, Kawakami T, Isobe S, Nakajima K, Kunitomi A, Kashimura S, Katsumata Y, Nishiyama T, Kimura T, Nishiyama N, Aizawa Y, Murata M, Fukuda K, Takatsuki S. Response by Fujisawa et al to Letter Regarding Article, "Pulmonary Artery Denervation by Determining Targeted Ablation Sites for Treatment of Pulmonary Arterial Hypertension". Circ Cardiovasc Interv 2018; 11:e006244. [PMID: 29371214 DOI: 10.1161/circinterventions.117.006244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Taishi Fujisawa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Masaharu Kataoka
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Kawakami
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Sarasa Isobe
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuaki Nakajima
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Akira Kunitomi
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Shin Kashimura
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | | | - Takahiko Nishiyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Takehiro Kimura
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Nobuhiro Nishiyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshiyasu Aizawa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Mitsushige Murata
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Seiji Takatsuki
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Gorter TM, van Veldhuisen DJ, Bauersachs J, Borlaug BA, Celutkiene J, Coats AJS, Crespo-Leiro MG, Guazzi M, Harjola VP, Heymans S, Hill L, Lainscak M, Lam CSP, Lund LH, Lyon AR, Mebazaa A, Mueller C, Paulus WJ, Pieske B, Piepoli MF, Ruschitzka F, Rutten FH, Seferovic PM, Solomon SD, Shah SJ, Triposkiadis F, Wachter R, Tschöpe C, de Boer RA. Right heart dysfunction and failure in heart failure with preserved ejection fraction: mechanisms and management. Position statement on behalf of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2017; 20:16-37. [PMID: 29044932 DOI: 10.1002/ejhf.1029] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/16/2017] [Accepted: 09/05/2017] [Indexed: 12/28/2022] Open
Abstract
There is an unmet need for effective treatment strategies to reduce morbidity and mortality in patients with heart failure with preserved ejection fraction (HFpEF). Until recently, attention in patients with HFpEF was almost exclusively focused on the left side. However, it is now increasingly recognized that right heart dysfunction is common and contributes importantly to poor prognosis in HFpEF. More insights into the development of right heart dysfunction in HFpEF may aid to our knowledge about this complex disease and may eventually lead to better treatments to improve outcomes in these patients. In this position paper from the Heart Failure Association of the European Society of Cardiology, the Committee on Heart Failure with Preserved Ejection Fraction reviews the prevalence, diagnosis, and pathophysiology of right heart dysfunction and failure in patients with HFpEF. Finally, potential treatment strategies, important knowledge gaps and future directions regarding the right side in HFpEF are discussed.
Collapse
Affiliation(s)
- Thomas M Gorter
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Dirk J van Veldhuisen
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Medical School Hannover, Hannover, Germany
| | - Barry A Borlaug
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jelena Celutkiene
- Clinic of Cardiac and Vascular Diseases, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Andrew J S Coats
- Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia.,University of Warwick, Kirby Corner Road, Coventry CV4 8UW, UK
| | - Marisa G Crespo-Leiro
- Advanced Heart Failure and Heart Transplant Unit, Servicio de Cardiologia-CIBERCV, Complejo Hospitalario Universitario A Coruña (CHUAC), Instituto Investigación Biomedica A Coruña (INIBIC), Universidad da Coruña (UDC), La Coruña, Spain
| | - Marco Guazzi
- Heart Failure Unit, University of Milan, IRCCS Policlinico San Donato, Milan, Italy
| | - Veli-Pekka Harjola
- Emergency Medicine, University of Helsinki, Department of Emergency Medicine and Services, Helsinki University Hospital, Helsinki, Finland
| | - Stephane Heymans
- Department of Cardiology, CARIM, Maastricht University Medical Centre, Maastricht, the Netherlands
| | | | - Mitja Lainscak
- Department of Internal Medicine, General Hospital Murska Sobota, Murska Sobota, Slovenia
| | - Carolyn S P Lam
- Department of Cardiology, National Heart Center Singapore, Singapore Duke-NUS Graduate Medical School, Singapore
| | - Lars H Lund
- Department of Medicine, Karolinska Institutet and Heart and Vascular Theme, Karolinska University Hospital, Stockholm, Sweden
| | - Alexander R Lyon
- National Heart and Lung Institute, Imperial College London and Royal Brompton Hospital, London, UK
| | - Alexandre Mebazaa
- Department of Anesthesiology and Critical Care, APHP - Saint Louis Lariboisière University Hospitals, University Paris Diderot, Paris, France
| | - Christian Mueller
- Department of Cardiology, Cardiovascular Research Institute Basel, University Hospital Basel, Basel, Switzerland
| | - Walter J Paulus
- Department of Cardiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité University Medicine, Berlin, Germany, and Department of Internal Medicine Cardiology, German Heart Center Berlin, DZHK (German Center for Cardiovascular Research) and Berlin Institute of Health (BIH), Berlin, Germany
| | - Massimo F Piepoli
- Heart Failure Unit, Cardiac Department, G. da Saliceto Hospital, Piacenza, Italy
| | - Frank Ruschitzka
- Clinic for Cardiology, University Hospital Zurich, Zürich, Switzerland
| | - Frans H Rutten
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Petar M Seferovic
- Cardiology Department, Clinical Centre Serbia, Medical School, Belgrade, Serbia
| | - Scott D Solomon
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Sanjiv J Shah
- Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Rolf Wachter
- Clinic and Policlinic for Cardiology, University Hospital Leipzig, Leipzig, Germany and German Cardiovascular Research Center, partner site Göttingen
| | - Carsten Tschöpe
- Department of Internal Medicine and Cardiology, Charité University Medicine, Berlin, Germany, and Department of Internal Medicine Cardiology, German Heart Center Berlin, DZHK (German Center for Cardiovascular Research) and Berlin Institute of Health (BIH), Berlin, Germany
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
13
|
Perros F, de Man FS, Bogaard HJ, Antigny F, Simonneau G, Bonnet S, Provencher S, Galiè N, Humbert M. Use of β-Blockers in Pulmonary Hypertension. Circ Heart Fail 2017; 10:CIRCHEARTFAILURE.116.003703. [DOI: 10.1161/circheartfailure.116.003703] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/24/2017] [Indexed: 12/13/2022]
Abstract
Contrasting with the major attention that left heart failure has received, right heart failure remains understudied both at the preclinical and clinical levels. However, right ventricle failure is a major predictor of outcomes in patients with precapillary pulmonary hypertension because of pulmonary arterial hypertension, and in patients with postcapillary pulmonary hypertension because of left heart disease. In pulmonary hypertension, the status of the right ventricle is one of the most important predictors of both morbidity and mortality. Paradoxically, there are currently no approved therapies targeting the right ventricle in pulmonary hypertension. By analogy with the key role of β-blockers in the management of left heart failure, some authors have proposed to use these agents to support the right ventricle function in pulmonary hypertension. In this review, we summarize the current knowledge on the use of β-blockers in pulmonary hypertension.
Collapse
Affiliation(s)
- Frédéric Perros
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (F.P., F.A., G.S., M.H.); Department of Pulmonology, VU University Medical Centre, Amsterdam, The Netherlands (F.S.d.M., H.J.B.); Pulmonary Hypertension Research Group, Centre de Recherche de
| | - Frances S. de Man
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (F.P., F.A., G.S., M.H.); Department of Pulmonology, VU University Medical Centre, Amsterdam, The Netherlands (F.S.d.M., H.J.B.); Pulmonary Hypertension Research Group, Centre de Recherche de
| | - Harm J. Bogaard
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (F.P., F.A., G.S., M.H.); Department of Pulmonology, VU University Medical Centre, Amsterdam, The Netherlands (F.S.d.M., H.J.B.); Pulmonary Hypertension Research Group, Centre de Recherche de
| | - Fabrice Antigny
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (F.P., F.A., G.S., M.H.); Department of Pulmonology, VU University Medical Centre, Amsterdam, The Netherlands (F.S.d.M., H.J.B.); Pulmonary Hypertension Research Group, Centre de Recherche de
| | - Gérald Simonneau
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (F.P., F.A., G.S., M.H.); Department of Pulmonology, VU University Medical Centre, Amsterdam, The Netherlands (F.S.d.M., H.J.B.); Pulmonary Hypertension Research Group, Centre de Recherche de
| | - Sébastien Bonnet
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (F.P., F.A., G.S., M.H.); Department of Pulmonology, VU University Medical Centre, Amsterdam, The Netherlands (F.S.d.M., H.J.B.); Pulmonary Hypertension Research Group, Centre de Recherche de
| | - Steeve Provencher
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (F.P., F.A., G.S., M.H.); Department of Pulmonology, VU University Medical Centre, Amsterdam, The Netherlands (F.S.d.M., H.J.B.); Pulmonary Hypertension Research Group, Centre de Recherche de
| | - Nazzareno Galiè
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (F.P., F.A., G.S., M.H.); Department of Pulmonology, VU University Medical Centre, Amsterdam, The Netherlands (F.S.d.M., H.J.B.); Pulmonary Hypertension Research Group, Centre de Recherche de
| | - Marc Humbert
- From the University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France (F.P., F.A., G.S., M.H.); Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (F.P., F.A., G.S., M.H.); Department of Pulmonology, VU University Medical Centre, Amsterdam, The Netherlands (F.S.d.M., H.J.B.); Pulmonary Hypertension Research Group, Centre de Recherche de
| |
Collapse
|
14
|
Simonneau G, Hoeper MM, McLaughlin V, Rubin L, Galiè N. Future perspectives in pulmonary arterial hypertension. Eur Respir Rev 2016; 25:381-389. [PMID: 27903660 PMCID: PMC9487553 DOI: 10.1183/16000617.0084-2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/27/2016] [Indexed: 11/23/2022] Open
Abstract
While there have been advances in the field of pulmonary arterial hypertension (PAH), disease management remains suboptimal for many patients. The development of novel treatments and strategies can provide opportunities to target other mechanisms that play a role in the complex pathobiology of PAH outside of the three main pathophysiological pathways. In this review, we highlight some of the potential PAH therapies or techniques that are being, or have been, investigated in phase II clinical trials. This review also discusses potential points for consideration in the development of novel therapies that target putative disease mediators or modifiers. Novel therapies and well-designed trials are important for improving the management of PAH patientshttp://ow.ly/YHPY304XdvH
Collapse
|