1
|
Chai MW, Lu HP, Liao PC. A Historical Misstep: Niche Shift to Specialisation Is Pushing Insular Ginger Towards an Evolutionary Dead End. Mol Ecol 2025; 34:e17765. [PMID: 40192449 DOI: 10.1111/mec.17765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 03/10/2025] [Accepted: 04/01/2025] [Indexed: 05/06/2025]
Abstract
Niche specialisation is a double-edged sword as it aids species in adapting to a particular environment but makes them more susceptible to environmental change, which may result in species extinction. Although it has long been debated whether niche specialisation necessarily falls into an 'evolutionary dead end', empirical evidence from a population genetics perspective remains scant, especially when comparing both ecological generalists and specialists simultaneously. In this study, we scrutinised two Taiwan endemic gingers (Zingiber pleiostachyum and Z. shuanglongense) to evaluate how their contrasting patterns in niche breadth evolution have shaped their evolutionary trajectories. We utilised a genome-wide sequencing approach to investigate the demographic histories of each species, assess their maladaptation to future climate change, and estimate their mutational loads. Our results revealed distinct demographic histories between these two gingers. Z. shuanglongense, as the specialist, despite an initial increase during the Last Glacial Maximum (~22 Kya), has been subjected to a long-term decrease in effective population size (Ne), while Z. pleiostachyum is on the contrary increasing, leading to a significantly larger current Ne. Furthermore, ecological specialists are much more vulnerable to future climate change and exhibit greater drift-associated deleterious mutations compared to generalists, directly affecting species' fitness. This study strongly supports the idea that the transition in niche breadth towards specialisation will push Z. shuanglongense perilously close to extinction and also sheds light on species conservation within limited migratory space.
Collapse
Affiliation(s)
- Min-Wei Chai
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Hsin-Pei Lu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Pei-Chun Liao
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
2
|
Kaminsky LM, Burghardt L, Bell TH. Evolving a plant-beneficial bacterium in soil vs. nutrient-rich liquid culture has contrasting effects on in-soil fitness. Appl Environ Microbiol 2025; 91:e0208524. [PMID: 40067020 PMCID: PMC12016532 DOI: 10.1128/aem.02085-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/12/2025] [Indexed: 04/24/2025] Open
Abstract
Inoculation of plant-beneficial microbes into agricultural soils can improve crop growth, but such outcomes depend on microbial survival. Here, we assessed how exposure to prior environmental conditions impacts microbial in-soil fitness, particularly focusing on incubation in liquid culture as an unavoidable phase of inoculant production and on pre-incubation in target soils as a potential method to improve performance. We conducted experimental evolution on a phosphorus-solubilizing bacterial species, Priestia megaterium, in (i) soil only, (ii) liquid media only, and (iii) soil followed by liquid media, using population metagenomic sequencing to track mutations over time. Several typical in vitro evolutionary phenomena were observed in liquid media-incubated populations, including clonal interference, genetic hitchhiking, and mutation parallelism between replicate populations, particularly in the sporulation transcription factor spo0A. Liquid media-incubated populations also developed a clear fitness reduction in soil compared to the ancestral isolate. However, soil-incubated populations grew slowly, experienced far fewer generations despite longer absolute time, and accumulated minimal mutational changes. Correspondingly, soil-incubated populations did not display improved survival compared to the ancestral isolate in their target soils, though there did appear to be minor fitness reductions in unfamiliar soil. This work demonstrates that adaptation to liquid media and/or a native soil can impact bacterial fitness in new soil and that bacterial evolution in more complex real-world habitats does not closely resemble bacterial evolution in liquid media. IMPORTANCE Innovative solutions are needed to address emerging challenges in agriculture while reducing its environmental footprint. Management of soil microbiomes could contribute to this effort, as plant growth-promoting microorganisms provide key ecosystem services that support crops. Yet, inoculating beneficial microbes into farm soils yields unreliable results. We require a greater knowledge of the ecology of these taxa to improve their functioning in sustainable agroecosystems. In this report, we demonstrate that exposure to laboratory media and lingering adaptation to another soil can negatively impact the in-soil survival of a phosphorus-solubilizing bacterial species. We go further to highlight the underlying mutations that give rise to these patterns. These insights can be leveraged to improve our understanding of how soil-dwelling beneficial microorganisms adapt to different evolutionary pressures.
Collapse
Affiliation(s)
- Laura M. Kaminsky
- Boyce Thompson Institute, Ithaca, New York, USA
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Liana Burghardt
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Terrence H. Bell
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Rogivue A, Leempoel K, Guillaume AS, Choudhury RR, Felber F, Kasser M, Joost S, Parisod C, Gugerli F. Locally Specific Genome-Wide Signatures of Adaptation to Environmental Variation at High Resolution in an Alpine Plant. Mol Ecol 2025; 34:e17646. [PMID: 39821486 DOI: 10.1111/mec.17646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/16/2024] [Indexed: 01/19/2025]
Abstract
Microevolutionary processes shape adaptive responses to heterogeneous environments, where these effects vary both among and within species. However, it remains largely unknown to which degree signatures of adaptation to environmental drivers can be detected based on the choice of spatial scale and genomic marker. We studied signatures of local adaptation across two levels of spatial extents, investigating complementary types of genomic variants-single-nucleotide polymorphisms (SNPs) and polymorphic transposable elements (TEs)-in populations of the alpine model plant species Arabis alpina . We coupled environmental factors, derived from remote sensed digital elevation models (DEMs) at very high resolution (0.5 m), with whole-genome sequencing data of 304 individuals across four populations. By comparing putatively adaptive loci detected between each local population versus a regional assessment including all populations simultaneously, we demonstrate that responses of A. alpina to similar amounts of abiotic variation are largely governed by local evolutionary processes. Furthermore, we find minimally overlapping signatures of local adaptation between SNPs and polymorphic TEs. Notably, functional annotations of candidate genes for adaptation revealed several symbiosis-related genes associated with the abiotic factors studied, which could represent selective pressures from biotic agents. Our results highlight the importance of considering different spatial extents and types of genomic polymorphisms when searching for signatures of adaptation to environmental variation. Such insights provide key information on microevolutionary processes and could guide management decisions to mitigate negative impacts of climate change on alpine plant populations.
Collapse
Affiliation(s)
- Aude Rogivue
- Swiss Federal Research Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | - Kevin Leempoel
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering (ENAC), Geospatial Molecular Epidemiology Group (GEOME), Laboratory for Biological Geochemistry (LGB), Lausanne, Switzerland
| | - Annie S Guillaume
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering (ENAC), Geospatial Molecular Epidemiology Group (GEOME), Laboratory for Biological Geochemistry (LGB), Lausanne, Switzerland
| | | | - François Felber
- Musée et Jardins Botaniques Cantonaux, Lausanne, Switzerland
| | - Michel Kasser
- Haute-Ecole d'Ingénierie et de Gestion (HEIG), INSIT Laboratory, Switzerland
| | - Stéphane Joost
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering (ENAC), Geospatial Molecular Epidemiology Group (GEOME), Laboratory for Biological Geochemistry (LGB), Lausanne, Switzerland
| | | | - Felix Gugerli
- Swiss Federal Research Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| |
Collapse
|
4
|
Beer MA, Trumbo DR, Rautsaw RM, Kozakiewicz CP, Epstein B, Hohenlohe PA, Alford RA, Schwarzkopf L, Storfer A. Spatial variation in genomic signatures of local adaptation during the cane toad invasion of Australia. Mol Ecol 2024; 33:e17464. [PMID: 38994885 DOI: 10.1111/mec.17464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 06/09/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
Adaptive evolution can facilitate species' range expansions across environmentally heterogeneous landscapes. However, serial founder effects can limit the efficacy of selection, and the evolution of increased dispersal during range expansions may result in gene flow swamping local adaptation. Here, we study how genetic drift, gene flow and selection interact during the cane toad's (Rhinella marina) invasion across the heterogeneous landscape of Australia. Following its introduction in 1935, the cane toad colonised eastern Australia and established several stable range edges. The ongoing, more rapid range expansion in north-central Australia has occurred concomitant with an evolved increase in dispersal capacity. Using reduced representation genomic data of Australian cane toads from the expansion front and from two areas of their established range, we test the hypothesis that high gene flow constrains local adaptation at the expansion front relative to established areas. Genetic analyses indicate the three study areas are genetically distinct but show similar levels of allelic richness, heterozygosity and inbreeding. Markedly higher gene flow or recency of colonisation at the expansion front have likely hindered local adaptation at the time of sampling, as indicated by reduced slopes of genetic-environment associations (GEAs) estimated using a novel application of geographically weighted regression that accounts for allele surfing; GEA slopes are significantly steeper in established parts of the range. Our work bolsters evidence supporting adaptation of invasive species post-introduction and adds novel evidence for differing strengths of evolutionary forces among geographic areas with different invasion histories.
Collapse
Affiliation(s)
- Marc A Beer
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Daryl R Trumbo
- Department of Biology, Colorado State University Pueblo, Pueblo, Colorado, USA
| | - Rhett M Rautsaw
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Christopher P Kozakiewicz
- W.K. Kellogg Biological Station, Department of Integrative Biology, Michigan State University, Hickory Corners, Michigan, USA
| | - Brendan Epstein
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, Minnesota, USA
| | - Paul A Hohenlohe
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Ross A Alford
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Lin Schwarzkopf
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
5
|
Mee JA, Carson B, Yeaman S. Conditionally Deleterious Mutation Load Accumulates in Genomic Islands of Local Adaptation but Can Be Purged with Sufficient Genotypic Redundancy. Am Nat 2024; 204:43-54. [PMID: 38857343 DOI: 10.1086/730186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
AbstractLocal adaptation frequently evolves in patches or environments that are connected via migration. In these cases, genomic regions that are linked to a locally adapted locus experience reduced effective migration rates. Via individual-based simulations of a two-patch system, we show that this reduced effective migration results in the accumulation of conditionally deleterious mutations, but not universally deleterious mutations, adjacent to adaptive loci. When there is redundancy in the genetic basis of local adaptation (i.e., genotypic redundancy), turnover of locally adapted polymorphisms allows conditionally deleterious mutation load to be purged. The amount of mutational load that accumulates adjacent to locally adapted loci is dependent on redundancy, recombination rate, migration rate, population size, strength of selection, and the phenotypic effect size of adaptive alleles. Our results highlight the need to be cautious when interpreting patterns of local adaptation at the level of phenotype or fitness, as the genetic basis of local adaptation can be transient, and evolution may confer a degree of maladaptation to nonlocal environments.
Collapse
|
6
|
Wilder AP, Steiner CC, Hendricks S, Haller BC, Kim C, Korody ML, Ryder OA. Genetic load and viability of a future restored northern white rhino population. Evol Appl 2024; 17:e13683. [PMID: 38617823 PMCID: PMC11009427 DOI: 10.1111/eva.13683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 04/16/2024] Open
Abstract
As biodiversity loss outpaces recovery, conservationists are increasingly turning to novel tools for preventing extinction, including cloning and in vitro gametogenesis of biobanked cells. However, restoration of populations can be hindered by low genetic diversity and deleterious genetic load. The persistence of the northern white rhino (Ceratotherium simum cottoni) now depends on the cryopreserved cells of 12 individuals. These banked genomes have higher genetic diversity than southern white rhinos (C. s. simum), a sister subspecies that successfully recovered from a severe bottleneck, but the potential impact of genetic load is unknown. We estimated how demographic history has shaped genome-wide genetic load in nine northern and 13 southern white rhinos. The bottleneck left southern white rhinos with more fixed and homozygous deleterious alleles and longer runs of homozygosity, whereas northern white rhinos retained more deleterious alleles masked in heterozygosity. To gauge the impact of genetic load on the fitness of a northern white rhino population restored from biobanked cells, we simulated recovery using fitness of southern white rhinos as a benchmark for a viable population. Unlike traditional restoration, cell-derived founders can be reintroduced in subsequent generations to boost lost genetic diversity and relieve inbreeding. In simulations with repeated reintroduction of founders into a restored population, the fitness cost of genetic load remained lower than that borne by southern white rhinos. Without reintroductions, rapid growth of the restored population (>20-30% per generation) would be needed to maintain comparable fitness. Our results suggest that inbreeding depression from genetic load is not necessarily a barrier to recovery of the northern white rhino and demonstrate how restoration from biobanked cells relieves some constraints of conventional restoration from a limited founder pool. Established conservation methods that protect healthy populations will remain paramount, but emerging technologies hold promise to bolster these tools to combat the extinction crisis.
Collapse
Affiliation(s)
- Aryn P. Wilder
- Conservation GeneticsSan Diego Zoo Wildlife AllianceEscondidoCaliforniaUSA
| | - Cynthia C. Steiner
- Conservation GeneticsSan Diego Zoo Wildlife AllianceEscondidoCaliforniaUSA
| | - Sarah Hendricks
- Conservation GeneticsSan Diego Zoo Wildlife AllianceEscondidoCaliforniaUSA
- Institute for Interdisciplinary Data SciencesUniversity of IdahoMoscowIdahoUSA
| | | | - Chang Kim
- University of CaliforniaSanta Cruz Genomics InstituteSanta CruzCaliforniaUSA
- Department of Neurological SurgeryUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Marisa L. Korody
- Conservation GeneticsSan Diego Zoo Wildlife AllianceEscondidoCaliforniaUSA
| | - Oliver A. Ryder
- Conservation GeneticsSan Diego Zoo Wildlife AllianceEscondidoCaliforniaUSA
| |
Collapse
|
7
|
Mathur S, Mason AJ, Bradburd GS, Gibbs HL. Functional genomic diversity is correlated with neutral genomic diversity in populations of an endangered rattlesnake. Proc Natl Acad Sci U S A 2023; 120:e2303043120. [PMID: 37844221 PMCID: PMC10614936 DOI: 10.1073/pnas.2303043120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/19/2023] [Indexed: 10/18/2023] Open
Abstract
Theory predicts that genetic erosion in small, isolated populations of endangered species can be assessed using estimates of neutral genetic variation, yet this widely used approach has recently been questioned in the genomics era. Here, we leverage a chromosome-level genome assembly of an endangered rattlesnake (Sistrurus catenatus) combined with whole genome resequencing data (N = 110 individuals) to evaluate the relationship between levels of genome-wide neutral and functional diversity over historical and future timescales. As predicted, we found positive correlations between genome-wide estimates of neutral genetic diversity (π) and inferred levels of adaptive variation and an estimate of inbreeding mutation load, and a negative relationship between neutral diversity and an estimate of drift mutation load. However, these correlations were half as strong for projected future levels of neutral diversity based on contemporary effective population sizes. Broadly, our results confirm that estimates of neutral genetic diversity provide an accurate measure of genetic erosion in populations of a threatened vertebrate. They also provide nuance to the neutral-functional diversity controversy by suggesting that while these correlations exist, anthropogenetic impacts may have weakened these associations in the recent past and into the future.
Collapse
Affiliation(s)
- Samarth Mathur
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH48824
- Ohio Biodiversity Conservation Partnership, The Ohio State University, Columbus, OH43210
| | - Andrew J. Mason
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH48824
- Ohio Biodiversity Conservation Partnership, The Ohio State University, Columbus, OH43210
| | - Gideon S. Bradburd
- Evolution and Behavior Program, Department of Integrative Biology, Ecology, Michigan State University, East Lansing, MI48824
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI48109
| | - H. Lisle Gibbs
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH48824
- Ohio Biodiversity Conservation Partnership, The Ohio State University, Columbus, OH43210
| |
Collapse
|
8
|
Miller CL, Sun D, Thornton LH, McGuigan K. The Contribution of Mutation to Variation in Temperature-Dependent Sprint Speed in Zebrafish, Danio rerio. Am Nat 2023; 202:519-533. [PMID: 37792923 DOI: 10.1086/726011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
AbstractThe contribution of new mutations to phenotypic variation and the consequences of this variation for individual fitness are fundamental concepts for understanding genetic variation and adaptation. Here, we investigated how mutation influenced variation in a complex trait in zebrafish, Danio rerio. Typical of many ecologically relevant traits in ectotherms, swimming speed in fish is temperature dependent, with evidence of adaptive evolution of thermal performance. We chemically induced novel germline point mutations in males and measured sprint speed in their sons at six temperatures (between 16°C and 34°C). Heterozygous mutational effects on speed were strongly positively correlated among temperatures, resulting in statistical support for only a single axis of mutational variation, reflecting temperature-independent variation in speed (faster-slower mode). These results suggest pleiotropic effects on speed across different temperatures; however, spurious correlations arise via linkage or heterogeneity in mutation number when mutations have consistent directional effects on each trait. Here, mutation did not change mean speed, indicating no directional bias in mutational effects. The results contribute to emerging evidence that mutations may predominantly have synergistic cross-environment effects, in contrast to conditionally neutral or antagonistic effects that underpin thermal adaptation. We discuss several aspects of experimental design that may affect resolution of mutations with nonsynergistic effects.
Collapse
|
9
|
Oakley CG, Schemske DW, McKay JK, Ågren J. Ecological genetics of local adaptation in Arabidopsis: An 8-year field experiment. Mol Ecol 2023; 32:4570-4583. [PMID: 37317048 DOI: 10.1111/mec.17045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
There is considerable evidence for local adaptation in nature, yet important questions remain regarding its genetic basis. How many loci are involved? What are their effect sizes? What is the relative importance of conditional neutrality versus genetic trade-offs? Here we address these questions in the self-pollinating, annual plant Arabidopsis thaliana. We used 400 recombinant inbred lines (RILs) derived from two locally adapted populations in Italy and Sweden, grew the RILs and parents at the parental locations, and mapped quantitative trait loci (QTL) for mean fitness (fruits/seedling planted). We previously published results from the first 3 years of the study, and here add five additional years, providing a unique opportunity to assess how temporal variation in selection might affect QTL detection and classification. We found 10 adaptive and one maladaptive QTL in Italy, and six adaptive and four maladaptive QTL in Sweden. The discovery of maladaptive QTL at both sites suggests that even locally adapted populations are not always at their genotypic optimum. Mean effect sizes for adaptive QTL, 0.97 and 0.55 fruits in Italy and Sweden, respectively, were large relative to the mean fitness of the RILs (approximately 8 fruits/seedling planted at both sites). Both genetic trade-offs (four cases) and conditional neutrality (seven cases) contribute to local adaptation in this system. The 8-year dataset provided greater power to detect QTL and to estimate their locations compared to our previous 3-year study, identifying one new genetic trade-off and resolving one genetic trade-off into two conditionally adaptive QTL.
Collapse
Affiliation(s)
- Christopher G Oakley
- Department of Botany and Plant Pathology, and the Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Douglas W Schemske
- Department of Plant Biology and W. K. Kellogg Biological Station, Michigan State University, East Lansing, Michigan, USA
| | - John K McKay
- College of Agricultural Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Jon Ågren
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Wilder AP, Supple MA, Subramanian A, Mudide A, Swofford R, Serres-Armero A, Steiner C, Koepfli KP, Genereux DP, Karlsson EK, Lindblad-Toh K, Marques-Bonet T, Munoz Fuentes V, Foley K, Meyer WK, Consortium Z, Ryder OA, Shapiro B. The contribution of historical processes to contemporary extinction risk in placental mammals. Science 2023; 380:eabn5856. [PMID: 37104572 PMCID: PMC10184782 DOI: 10.1126/science.abn5856] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/08/2023] [Indexed: 04/29/2023]
Abstract
Species persistence can be influenced by the amount, type, and distribution of diversity across the genome, suggesting a potential relationship between historical demography and resilience. In this study, we surveyed genetic variation across single genomes of 240 mammals that compose the Zoonomia alignment to evaluate how historical effective population size (Ne) affects heterozygosity and deleterious genetic load and how these factors may contribute to extinction risk. We find that species with smaller historical Ne carry a proportionally larger burden of deleterious alleles owing to long-term accumulation and fixation of genetic load and have a higher risk of extinction. This suggests that historical demography can inform contemporary resilience. Models that included genomic data were predictive of species' conservation status, suggesting that, in the absence of adequate census or ecological data, genomic information may provide an initial risk assessment.
Collapse
Affiliation(s)
- Aryn P. Wilder
- Conservation Genetics, San Diego Zoo Wildlife Alliance; Escondido, CA 92027, USA
| | - Megan A Supple
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz; Santa Cruz, CA 95064, USA
- Howard Hughes Medical Institute, University of California Santa Cruz; Santa Cruz, CA 95064, USA
| | | | | | - Ross Swofford
- Broad Institute of MIT and Harvard; Cambridge, MA 02139, USA
| | - Aitor Serres-Armero
- Institute of Evolutionary Biology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra; Barcelona, 08003, Spain
| | - Cynthia Steiner
- Conservation Genetics, San Diego Zoo Wildlife Alliance; Escondido, CA 92027, USA
| | - Klaus-Peter Koepfli
- Smithsonian-Mason School of Conservation, George Mason University; Front Royal, VA 22630, USA
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park; Washington, DC, 30008, USA
- Computer Technologies Laboratory, ITMO University; St. Petersburg, 197101, Russia
| | | | - Elinor K. Karlsson
- Broad Institute of MIT and Harvard; Cambridge, MA 02139, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School; Worcester, MA 01605, USA
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard; Cambridge, MA 02139, USA
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University; Uppsala, 751 32, Sweden
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra; Barcelona, 08003, Spain
- Catalan Institution of Research and Advanced Studies; Barcelona, 08010, Spain
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology; Barcelona, 08028, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona; Barcelona, 08193, Spain
| | - Violeta Munoz Fuentes
- European Molecular Biology Laboratory-European Bioinformatics Institute, Wellcome Genome Campus; Hinxton, UK
| | - Kathleen Foley
- College of Law, University of Iowa; Iowa City, IA 52242, USA
- Lehigh University, Biological Sciences; Bethlehem, PA 18015, USA
| | - Wynn K. Meyer
- Lehigh University, Biological Sciences; Bethlehem, PA 18015, USA
| | | | - Oliver A. Ryder
- Conservation Genetics, San Diego Zoo Wildlife Alliance; Escondido, CA 92027, USA
- Department of Evolution, Behavior and Ecology, Division of Biology, University of California, San Diego; La Jolla, CA 92039 USA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz; Santa Cruz, CA 95064, USA
- Howard Hughes Medical Institute, University of California Santa Cruz; Santa Cruz, CA 95064, USA
| |
Collapse
|
11
|
Genome-Wide Association Studies across Environmental and Genetic Contexts Reveal Complex Genetic Architecture of Symbiotic Extended Phenotypes. mBio 2022; 13:e0182322. [PMID: 36286519 PMCID: PMC9765617 DOI: 10.1128/mbio.01823-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A goal of modern biology is to develop the genotype-phenotype (G→P) map, a predictive understanding of how genomic information generates trait variation that forms the basis of both natural and managed communities. As microbiome research advances, however, it has become clear that many of these traits are symbiotic extended phenotypes, being governed by genetic variation encoded not only by the host's own genome, but also by the genomes of myriad cryptic symbionts. Building a reliable G→P map therefore requires accounting for the multitude of interacting genes and even genomes involved in symbiosis. Here, we use naturally occurring genetic variation in 191 strains of the model microbial symbiont Sinorhizobium meliloti paired with two genotypes of the host Medicago truncatula in four genome-wide association studies (GWAS) to determine the genomic architecture of a key symbiotic extended phenotype-partner quality, or the fitness benefit conferred to a host by a particular symbiont genotype, within and across environmental contexts and host genotypes. We define three novel categories of loci in rhizobium genomes that must be accounted for if we want to build a reliable G→P map of partner quality; namely, (i) loci whose identities depend on the environment, (ii) those that depend on the host genotype with which rhizobia interact, and (iii) universal loci that are likely important in all or most environments. IMPORTANCE Given the rapid rise of research on how microbiomes can be harnessed to improve host health, understanding the contribution of microbial genetic variation to host phenotypic variation is pressing, and will better enable us to predict the evolution of (and select more precisely for) symbiotic extended phenotypes that impact host health. We uncover extensive context-dependency in both the identity and functions of symbiont loci that control host growth, which makes predicting the genes and pathways important for determining symbiotic outcomes under different conditions more challenging. Despite this context-dependency, we also resolve a core set of universal loci that are likely important in all or most environments, and thus, serve as excellent targets both for genetic engineering and future coevolutionary studies of symbiosis.
Collapse
|
12
|
Weng X, Haque T, Zhang L, Razzaque S, Lovell JT, Palacio-Mejía JD, Duberney P, Lloyd-Reilley J, Bonnette J, Juenger TE. A Pleiotropic Flowering Time QTL Exhibits Gene-by-Environment Interaction for Fitness in a Perennial Grass. Mol Biol Evol 2022; 39:msac203. [PMID: 36149808 PMCID: PMC9550986 DOI: 10.1093/molbev/msac203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Appropriate flowering time is a crucial adaptation impacting fitness in natural plant populations. Although the genetic basis of flowering variation has been extensively studied, its mechanisms in nonmodel organisms and its adaptive value in the field are still poorly understood. Here, we report new insights into the genetic basis of flowering time and its effect on fitness in Panicum hallii, a native perennial grass. Genetic mapping in populations derived from inland and coastal ecotypes identified flowering time quantitative trait loci (QTL) and many exhibited extensive QTL-by-environment interactions. Patterns of segregation within recombinant hybrids provide strong support for directional selection driving ecotypic divergence in flowering time. A major QTL on chromosome 5 (q-FT5) was detected in all experiments. Fine-mapping and expression studies identified a gene with orthology to a rice FLOWERING LOCUS T-like 9 (PhFTL9) as the candidate underlying q-FT5. We used a reciprocal transplant experiment to test for local adaptation and the specific impact of q-FT5 on performance. We did not observe local adaptation in terms of fitness tradeoffs when contrasting ecotypes in home versus away habitats. However, we observed that the coastal allele of q-FT5 conferred a fitness advantage only in its local habitat but not at the inland site. Sequence analyses identified an excess of low-frequency polymorphisms at the PhFTL9 promoter in the inland lineage, suggesting a role for either selection or population expansion on promoter evolution. Together, our findings demonstrate the genetic basis of flowering variation in a perennial grass and provide evidence for conditional neutrality underlying flowering time divergence.
Collapse
Affiliation(s)
- Xiaoyu Weng
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Taslima Haque
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Li Zhang
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Samsad Razzaque
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - John T Lovell
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Juan Diego Palacio-Mejía
- Corporación Colombiana de Investigación Agropecuaria – AGROSAVIA, Centro de Investigación Tibaitatá. Kilómetro 14 vía Mosquera-Bogotá, Mosquera. Código postal 250047, Colombia
| | - Perla Duberney
- Kika de la Garza Plant Materials Center, USDA-NRCS, Kingsville, TX, USA
| | | | - Jason Bonnette
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
13
|
Somovilla P, Rodríguez-Moreno A, Arribas M, Manrubia S, Lázaro E. Standing Genetic Diversity and Transmission Bottleneck Size Drive Adaptation in Bacteriophage Qβ. Int J Mol Sci 2022; 23:ijms23168876. [PMID: 36012143 PMCID: PMC9408265 DOI: 10.3390/ijms23168876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 01/15/2023] Open
Abstract
A critical issue to understanding how populations adapt to new selective pressures is the relative contribution of the initial standing genetic diversity versus that generated de novo. RNA viruses are an excellent model to study this question, as they form highly heterogeneous populations whose genetic diversity can be modulated by factors such as the number of generations, the size of population bottlenecks, or exposure to new environment conditions. In this work, we propagated at nonoptimal temperature (43 °C) two bacteriophage Qβ populations differing in their degree of heterogeneity. Deep sequencing analysis showed that, prior to the temperature change, the most heterogeneous population contained some low-frequency mutations that had previously been detected in the consensus sequences of other Qβ populations adapted to 43 °C. Evolved populations with origin in this ancestor reached similar growth rates, but the adaptive pathways depended on the frequency of these standing mutations and the transmission bottleneck size. In contrast, the growth rate achieved by populations with origin in the less heterogeneous ancestor did depend on the transmission bottleneck size. The conclusion is that viral diversification in a particular environment may lead to the emergence of mutants capable of accelerating adaptation when the environment changes.
Collapse
Affiliation(s)
- Pilar Somovilla
- Centro de Astrobiología (CAB), CSIC-INTA, Ctra. de Torrejón Km 4, Torrejón de Ardoz, 28850 Madrid, Spain
| | - Alicia Rodríguez-Moreno
- Centro de Astrobiología (CAB), CSIC-INTA, Ctra. de Torrejón Km 4, Torrejón de Ardoz, 28850 Madrid, Spain
| | - María Arribas
- Centro de Astrobiología (CAB), CSIC-INTA, Ctra. de Torrejón Km 4, Torrejón de Ardoz, 28850 Madrid, Spain
| | - Susanna Manrubia
- Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin 3, 28049 Madrid, Spain
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
| | - Ester Lázaro
- Centro de Astrobiología (CAB), CSIC-INTA, Ctra. de Torrejón Km 4, Torrejón de Ardoz, 28850 Madrid, Spain
- Correspondence:
| |
Collapse
|
14
|
Gramlich S, Liu X, Favre A, Buerkle CA, Karrenberg S. A polygenic architecture with habitat-dependent effects underlies ecological differentiation in Silene. THE NEW PHYTOLOGIST 2022; 235:1641-1652. [PMID: 35586969 PMCID: PMC9544174 DOI: 10.1111/nph.18260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 05/04/2022] [Indexed: 05/27/2023]
Abstract
Ecological differentiation can drive speciation but it is unclear how the genetic architecture of habitat-dependent fitness contributes to lineage divergence. We investigated the genetic architecture of cumulative flowering, a fitness component, in second-generation hybrids between Silene dioica and Silene latifolia transplanted into the natural habitat of each species. We used reduced-representation sequencing and Bayesian sparse linear mixed models (BSLMMs) to analyze the genetic control of cumulative flowering in each habitat. Our results point to a polygenic architecture of cumulative flowering. Allelic effects were mostly beneficial or deleterious in one habitat and neutral in the other. Positive-effect alleles often were derived from the native species, whereas negative-effect alleles, at other loci, tended to originate from the non-native species. We conclude that ecological differentiation is governed and maintained by many loci with small, habitat-dependent effects consistent with conditional neutrality. This pattern may result from differences in selection targets in the two habitats and from environmentally dependent deleterious load. Our results further suggest that selection for native alleles and against non-native alleles acts as a barrier to gene flow between species.
Collapse
Affiliation(s)
- Susanne Gramlich
- Department of Ecology and Genetics, Plant Ecology and EvolutionUppsala UniversityNorbyvägen 18D75267UppsalaSweden
| | - Xiaodong Liu
- Department of Ecology and Genetics, Plant Ecology and EvolutionUppsala UniversityNorbyvägen 18D75267UppsalaSweden
- Department of Biology, The Bioinformatics CenterUniversity of CopenhagenOle Maaløes Vej 52200CopenhagenDenmark
| | - Adrien Favre
- Senckenberg Research Institute and Natural History MuseumSenckenberganlage 2560325Frankfurt/MainGermany
| | - C. Alex Buerkle
- Department of BotanyUniversity of Wyoming1000 E. University AveLaramieWY82071USA
| | - Sophie Karrenberg
- Department of Ecology and Genetics, Plant Ecology and EvolutionUppsala UniversityNorbyvägen 18D75267UppsalaSweden
| |
Collapse
|
15
|
Genetic load: genomic estimates and applications in non-model animals. Nat Rev Genet 2022; 23:492-503. [PMID: 35136196 DOI: 10.1038/s41576-022-00448-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2022] [Indexed: 12/11/2022]
Abstract
Genetic variation, which is generated by mutation, recombination and gene flow, can reduce the mean fitness of a population, both now and in the future. This 'genetic load' has been estimated in a wide range of animal taxa using various approaches. Advances in genome sequencing and computational techniques now enable us to estimate the genetic load in populations and individuals without direct fitness estimates. Here, we review the classic and contemporary literature of genetic load. We describe approaches to quantify the genetic load in whole-genome sequence data based on evolutionary conservation and annotations. We show that splitting the load into its two components - the realized load (or expressed load) and the masked load (or inbreeding load) - can improve our understanding of the population genetics of deleterious mutations.
Collapse
|
16
|
The genetic architecture underlying prey-dependent performance in a microbial predator. Nat Commun 2022; 13:319. [PMID: 35031602 PMCID: PMC8760311 DOI: 10.1038/s41467-021-27844-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 12/10/2021] [Indexed: 11/30/2022] Open
Abstract
Natural selection should favour generalist predators that outperform specialists across all prey types. Two genetic solutions could explain why intraspecific variation in predatory performance is, nonetheless, widespread: mutations beneficial on one prey type are costly on another (antagonistic pleiotropy), or mutational effects are prey-specific, which weakens selection, allowing variation to persist (relaxed selection). To understand the relative importance of these alternatives, we characterised natural variation in predatory performance in the microbial predator Dictyostelium discoideum. We found widespread nontransitive differences among strains in predatory success across different bacterial prey, which can facilitate stain coexistence in multi-prey environments. To understand the genetic basis, we developed methods for high throughput experimental evolution on different prey (REMI-seq). Most mutations (~77%) had prey-specific effects, with very few (~4%) showing antagonistic pleiotropy. This highlights the potential for prey-specific effects to dilute selection, which would inhibit the purging of variation and prevent the emergence of an optimal generalist predator. What prevents a generalist predator from evolving and outperforming specialist predators? By combing analyses of natural variation with experimental evolution, Stewart et al. suggest that predator variation persists because most mutations have prey-specific effects, which results in relaxed selection
Collapse
|
17
|
Chang CW, Fridman E, Mascher M, Himmelbach A, Schmid K. Physical geography, isolation by distance and environmental variables shape genomic variation of wild barley (Hordeum vulgare L. ssp. spontaneum) in the Southern Levant. Heredity (Edinb) 2022; 128:107-119. [PMID: 35017679 PMCID: PMC8814169 DOI: 10.1038/s41437-021-00494-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 01/12/2023] Open
Abstract
Determining the extent of genetic variation that reflects local adaptation in crop-wild relatives is of interest for the purpose of identifying useful genetic diversity for plant breeding. We investigated the association of genomic variation with geographical and environmental factors in wild barley (Hordeum vulgare L. ssp. spontaneum) populations of the Southern Levant using genotyping by sequencing (GBS) of 244 accessions in the Barley 1K+ collection. The inference of population structure resulted in four genetic clusters that corresponded to eco-geographical habitats and a significant association between lower gene flow rates and geographical barriers, e.g. the Judaean Mountains and the Sea of Galilee. Redundancy analysis (RDA) revealed that spatial autocorrelation explained 45% and environmental variables explained 15% of total genomic variation. Only 4.5% of genomic variation was solely attributed to environmental variation if the component confounded with spatial autocorrelation was excluded. A synthetic environmental variable combining latitude, solar radiation, and accumulated precipitation explained the highest proportion of genomic variation (3.9%). When conditioned on population structure, soil water capacity was the most important environmental variable explaining 1.18% of genomic variation. Genome scans with outlier analysis and genome-environment association studies were conducted to identify adaptation signatures. RDA and outlier methods jointly detected selection signatures in the pericentromeric regions, which have reduced recombination, of the chromosomes 3H, 4H, and 5H. However, selection signatures mostly disappeared after correction for population structure. In conclusion, adaptation to the highly diverse environments of the Southern Levant over short geographical ranges had a limited effect on the genomic diversity of wild barley. This highlighted the importance of nonselective forces in genetic differentiation.
Collapse
Affiliation(s)
| | - Eyal Fridman
- Plant Sciences Institute, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZion, Israel
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland OT Gatersleben, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland OT Gatersleben, Germany
| | - Karl Schmid
- University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
18
|
Yeaman S. Evolution of polygenic traits under global vs local adaptation. Genetics 2022; 220:iyab134. [PMID: 35134196 PMCID: PMC8733419 DOI: 10.1093/genetics/iyab134] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022] Open
Abstract
Observations about the number, frequency, effect size, and genomic distribution of alleles associated with complex traits must be interpreted in light of evolutionary process. These characteristics, which constitute a trait's genetic architecture, can dramatically affect evolutionary outcomes in applications from agriculture to medicine, and can provide a window into how evolution works. Here, I review theoretical predictions about the evolution of genetic architecture under spatially homogeneous, global adaptation as compared with spatially heterogeneous, local adaptation. Due to the tension between divergent selection and migration, local adaptation can favor "concentrated" genetic architectures that are enriched for alleles of larger effect, clustered in a smaller number of genomic regions, relative to expectations under global adaptation. However, the evolution of such architectures may be limited by many factors, including the genotypic redundancy of the trait, mutation rate, and temporal variability of environment. I review the circumstances in which predictions differ for global vs local adaptation and discuss where progress can be made in testing hypotheses using data from natural populations and lab experiments. As the field of comparative population genomics expands in scope, differences in architecture among traits and species will provide insights into how evolution works, and such differences must be interpreted in light of which kind of selection has been operating.
Collapse
Affiliation(s)
- Sam Yeaman
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
19
|
Wright SJ, Goad DM, Gross BL, Muñoz PR, Olsen KM. Genetic trade-offs underlie divergent life history strategies for local adaptation in white clover. Mol Ecol 2021; 31:3742-3760. [PMID: 34532899 DOI: 10.1111/mec.16180] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/25/2021] [Accepted: 09/02/2021] [Indexed: 01/26/2023]
Abstract
Local adaptation is common in plants, yet characterization of its underlying genetic basis is rare in herbaceous perennials. Moreover, while many plant species exhibit intraspecific chemical defence polymorphisms, their importance for local adaptation remains poorly understood. We examined the genetic architecture of local adaptation in a perennial, obligately-outcrossing herbaceous legume, white clover (Trifolium repens). This widespread species displays a well-studied chemical defence polymorphism for cyanogenesis (HCN release following tissue damage) and has evolved climate-associated cyanogenesis clines throughout its range. Two biparental F2 mapping populations, derived from three parents collected in environments spanning the U.S. latitudinal species range (Duluth, MN, St. Louis, MO and Gainesville, FL), were grown in triplicate for two years in reciprocal common garden experiments in the parental environments (6,012 total plants). Vegetative growth and reproductive fitness traits displayed trade-offs across reciprocal environments, indicating local adaptation. Genetic mapping of fitness traits revealed a genetic architecture characterized by allelic trade-offs between environments, with 100% and 80% of fitness QTL in the two mapping populations showing significant QTL×E interactions, consistent with antagonistic pleiotropy. Across the genome there were three hotspots of QTL colocalization. Unexpectedly, we found little evidence that the cyanogenesis polymorphism contributes to local adaptation. Instead, divergent life history strategies in reciprocal environments were major fitness determinants: selection favoured early investment in flowering at the cost of multiyear survival in the southernmost site versus delayed flowering and multiyear persistence in the northern environments. Our findings demonstrate that multilocus genetic trade-offs contribute to contrasting life history characteristics that allow for local adaptation in this outcrossing herbaceous perennial.
Collapse
Affiliation(s)
- Sara J Wright
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - David M Goad
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - Briana L Gross
- Biology Department, University of Minnesota-Duluth, Duluth, Minnesota, USA
| | - Patricio R Muñoz
- Horticultural Science Department, University of Florida, Gainesville, Florida, USA
| | - Kenneth M Olsen
- Department of Biology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
20
|
Zhou C, Feng Y, Li G, Wang M, Jian J, Wang Y, Zhang W, Song Z, Li L, Lu B, Yang J. The New Is Old: Novel Germination Strategy Evolved From Standing Genetic Variation in Weedy Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:699464. [PMID: 34234803 PMCID: PMC8256273 DOI: 10.3389/fpls.2021.699464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/28/2021] [Indexed: 06/01/2023]
Abstract
Feralization of crop plants has aroused an increasing interest in recent years, not only for the reduced yield and quality of crop production caused by feral plants but also for the rapid evolution of novel traits that facilitate the evolution and persistence of weedy forms. Weedy rice (Oryza sativa f. spontanea) is a conspecific weed of cultivated rice, with separate and independent origins. The weedy rice distributed in eastern and northeastern China did not diverge from their cultivated ancestors by reverting to the pre-domestication trait of seed dormancy during feralization. Instead, they developed a temperature-sensing mechanism to control the timing of seed germination. Subsequent divergence in the minimum critical temperature for germination has been detected between northeastern and eastern populations. An integrative analysis was conducted using combinations of phenotypic, genomic and transcriptomic data to investigate the genetic mechanism underlying local adaptation and feralization. A dozen genes were identified, which showed extreme allele frequency differences between eastern and northeastern populations, and high correlations between allele-specific gene expression and feral phenotypes. Trancing the origin of potential adaptive alleles based on genomic sequences revealed the presence of most selected alleles in wild and cultivated rice genomes, indicating that weedy rice drew upon pre-existing, "conditionally neutral" alleles to respond to the feral selection regimes. The cryptic phenotype was exposed by activating formerly silent alleles to facilitate the transition from cultivation to wild existence, promoting the evolution and persistence of weedy forms.
Collapse
Affiliation(s)
- Chengchuan Zhou
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Fudan University, Shanghai, China
| | - Yang Feng
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Fudan University, Shanghai, China
| | - Gengyun Li
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Fudan University, Shanghai, China
| | - Mengli Wang
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Fudan University, Shanghai, China
| | - Jinjing Jian
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Fudan University, Shanghai, China
| | - Yuguo Wang
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Fudan University, Shanghai, China
| | - Wenju Zhang
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Fudan University, Shanghai, China
| | - Zhiping Song
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Fudan University, Shanghai, China
| | - Linfeng Li
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Fudan University, Shanghai, China
| | - Baorong Lu
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Fudan University, Shanghai, China
| | - Ji Yang
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| |
Collapse
|
21
|
Consequences of mutation accumulation for growth performance are more likely to be resource-dependent at higher temperatures. BMC Ecol Evol 2021; 21:109. [PMID: 34092227 PMCID: PMC8180013 DOI: 10.1186/s12862-021-01846-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/31/2021] [Indexed: 11/10/2022] Open
Abstract
Background Mutation accumulation (MA) has profound ecological and evolutionary consequences. One example is that accumulation of conditionally neutral mutations leads to fitness trade-offs among heterogenous habitats which cause population divergence. Here we suggest that temperature, which controls the rates of all biochemical and biophysical processes, should play a crucial role for determining mutational effects. Particularly, warmer temperatures may mitigate the effects of some, not all, deleterious mutations and cause stronger environmental dependence in MA effects. Results We experimentally tested the above hypothesis by measuring the growth performance of ten Escherichia coli genotypes on six carbon resources across ten temperatures, where the ten genotypes were derived from a single ancestral strain and accumulated spontaneous mutations. We analyzed resource dependence of MA consequences for growth yields. The MA genotypes typically showed reduced growth yields relative to the ancestral type; and the magnitude of reduction was smaller at intermediate temperatures. Stronger resource dependence in MA consequences for growth performance was observed at higher temperatures. Specifically, the MA genotypes were more likely to show impaired growth performance on all the six carbon resources when grown at lower temperatures; but suffered growth performance loss only on some, not all the six, carbon substrates at higher temperatures. Conclusions Higher temperatures increase the chance that MA causes conditionally neutral fitness effects while MA is more likely to cause fitness loss regardless of available resources at lower temperatures. This finding has implications for understanding how geographic patterns in population divergence may emerge, and how conservation practices, particularly protection of diverse microhabitats, may mitigate the impacts of global warming. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01846-1.
Collapse
|
22
|
Coggins BL, Pearson AC, Yampolsky LY. Does geographic variation in thermal tolerance in Daphnia represent trade-offs or conditional neutrality? J Therm Biol 2021; 98:102934. [PMID: 34016356 DOI: 10.1016/j.jtherbio.2021.102934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/20/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
Geographic variation in thermal tolerance in Daphnia seems to represent genetic load at the loci specifically responsible for heat tolerance resulting from conditional neutrality. We see no evidence of trade-offs between fitness-related traits at 25 °C vs. 10 °C or between two algal diets across Daphnia magna clones from a variety of locations representing the opposite ends of the distribution of long-term heat tolerance. Likewise, we found no evidence of within-environment trade-offs between heat tolerance and fitness-related traits in any of the environments. Neither short-term and long-term heat tolerance shows any consistent relationship with lipid fluorescence polarization and lipid peroxidation across clones or environments. Pervasive positive correlations between fitness-related traits indicate differences in genetic load rather than trade-off based local adaptation or thermal specialization. For heat tolerance such differences may be caused by either relaxation of stabilizing selection due to lower exposure to high temperature extremes, i.e., conditional neutrality, or by small effective population size followed by the recent range expansion.
Collapse
Affiliation(s)
- B L Coggins
- Department of Biological Sciences, East Tennessee State University, Johnson City TN, 37601, USA; Department of Biological Sciences, University of Notre Dame, IN, 46556, USA
| | - A C Pearson
- Department of Biological Sciences, East Tennessee State University, Johnson City TN, 37601, USA
| | - L Y Yampolsky
- Department of Biological Sciences, East Tennessee State University, Johnson City TN, 37601, USA; University of Basel, Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland.
| |
Collapse
|
23
|
Limberger R, Fussmann GF. Adaptation and competition in deteriorating environments. Proc Biol Sci 2021; 288:20202967. [PMID: 33715427 PMCID: PMC7944114 DOI: 10.1098/rspb.2020.2967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/16/2021] [Indexed: 11/12/2022] Open
Abstract
Evolution might rescue populations from extinction in changing environments. Using experimental evolution with microalgae, we investigated if competition influences adaptation to an abiotic stressor, and vice versa, if adaptation to abiotic change influences competition. In a first set of experiments, we propagated monocultures of five species with and without increasing salt stress for approximately 180 generations. When assayed in monoculture, two of the five species showed signatures of adaptation, that is, lines with a history of salt stress had higher population growth rates at high salt than lines without prior exposure to salt. When assayed in mixtures of species, however, only one of these two species had increased population size at high salt, indicating that competition can alter how adaptation to abiotic change influences population dynamics. In a second experiment, we cultivated two species in monocultures and in pairs, with and without increasing salt. While we found no effect of competition on adaptation to salt, our experiment revealed that evolutionary responses to salt can influence competition. Specifically, one of the two species had reduced competitive ability in the no-salt environment after long-term exposure to salt stress. Collectively, our results highlight the complex interplay of adaptation to abiotic change and competitive interactions.
Collapse
Affiliation(s)
- Romana Limberger
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
- Department of Biology, McGill University, Montreal, Quebec, Canada
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | |
Collapse
|
24
|
Bautista C, Marsit S, Landry CR. Interspecific hybrids show a reduced adaptive potential under DNA damaging conditions. Evol Appl 2021; 14:758-769. [PMID: 33767750 PMCID: PMC7980265 DOI: 10.1111/eva.13155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022] Open
Abstract
Hybridization may increase the probability of adaptation to extreme stresses. This advantage could be caused by an increased genome plasticity in hybrids, which could accelerate the search for adaptive mutations. High ultraviolet (UV) radiation is a particular challenge in terms of adaptation because it affects the viability of organisms by directly damaging DNA, while also challenging future generations by increasing mutation rate. Here we test whether hybridization accelerates adaptive evolution in response to DNA damage, using yeast as a model. We exposed 180 populations of hybrids between species (Saccharomyces cerevisiae and Saccharomyces paradoxus) and their parental strains to UV mimetic and control conditions for approximately 100 generations. Although we found that adaptation occurs in both hybrids and parents, hybrids achieved a lower rate of adaptation, contrary to our expectations. Adaptation to DNA damage conditions comes with a large and similar cost for parents and hybrids, suggesting that this cost is not responsible for the lower adaptability of hybrids. We suggest that the lower adaptive potential of hybrids in this condition may result from the interaction between DNA damage and the inherent genetic instability of hybrids.
Collapse
Affiliation(s)
- Carla Bautista
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
- Département de BiologieFaculté des Sciences et de GénieUniversité LavalQuébecQCCanada
- Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO)Université LavalQuébecQCCanada
- Centre de Recherche en Données Massives (CRDM)Université LavalQuébecQCCanada
| | - Souhir Marsit
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
- Département de BiologieFaculté des Sciences et de GénieUniversité LavalQuébecQCCanada
- Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO)Université LavalQuébecQCCanada
- Centre de Recherche en Données Massives (CRDM)Université LavalQuébecQCCanada
| | - Christian R. Landry
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
- Département de BiologieFaculté des Sciences et de GénieUniversité LavalQuébecQCCanada
- Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO)Université LavalQuébecQCCanada
- Centre de Recherche en Données Massives (CRDM)Université LavalQuébecQCCanada
- Département de Biochimie, de Microbiologie et de Bio‐informatiqueFaculté des Sciences et de GénieUniversité LavalQuébecQCCanada
| |
Collapse
|
25
|
Booker TR, Yeaman S, Whitlock MC. Global adaptation complicates the interpretation of genome scans for local adaptation. Evol Lett 2020; 5:4-15. [PMID: 33552532 PMCID: PMC7857299 DOI: 10.1002/evl3.208] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/27/2020] [Accepted: 11/12/2020] [Indexed: 12/14/2022] Open
Abstract
Spatially varying selection promotes variance in allele frequencies, increasing genetic differentiation between the demes of a metapopulation. For that reason, outliers in the genome‐wide distribution of summary statistics measuring genetic differentiation, such as FST, are often interpreted as evidence for alleles that contribute to local adaptation. However, theoretical studies have shown that in spatially structured populations the spread of beneficial mutations with spatially uniform fitness effects can also induce transient genetic differentiation. In recent years, numerous empirical studies have suggested that such species‐wide, or global, adaptation makes a substantial contribution to molecular evolution. In this perspective, we discuss how commonly such global adaptation may influence the genome‐wide distribution of FST and generate genetic differentiation patterns, which could be mistaken for local adaptation. To illustrate this, we use forward‐in‐time population genetic simulations assuming parameters for the rate and strength of beneficial mutations consistent with estimates from natural populations. We demonstrate that the spread of globally beneficial mutations in parapatric populations may frequently generate FST outliers, which could be misinterpreted as evidence for local adaptation. The spread of beneficial mutations causes selective sweeps at flanking sites, so in some cases, the effects of global versus local adaptation may be distinguished by examining patterns of nucleotide diversity within and between populations in addition to FST. However, when local adaptation has been only recently established, it may be much more difficult to distinguish from global adaptation, due to less accumulation of linkage disequilibrium at flanking sites. Through our discussion, we conclude that a large fraction of FST outliers that are presumed to arise from local adaptation may instead be due to global adaptation.
Collapse
Affiliation(s)
- Tom R Booker
- Department of Forest and Conservation Sciences University of British Columbia Vancouver Canada.,Biodiversity Research Centre University of British Columbia Vancouver Canada
| | - Sam Yeaman
- Department of Biological Sciences University of Calgary Calgary Canada
| | - Michael C Whitlock
- Biodiversity Research Centre University of British Columbia Vancouver Canada.,Department of Zoology University of British Columbia Vancouver Canada
| |
Collapse
|
26
|
Brady SP, Bolnick DI, Barrett RDH, Chapman L, Crispo E, Derry AM, Eckert CG, Fraser DJ, Fussmann GF, Gonzalez A, Guichard F, Lamy T, Lane J, McAdam AG, Newman AEM, Paccard A, Robertson B, Rolshausen G, Schulte PM, Simons AM, Vellend M, Hendry A. Understanding Maladaptation by Uniting Ecological and Evolutionary Perspectives. Am Nat 2019; 194:495-515. [PMID: 31490718 DOI: 10.1086/705020] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Evolutionary biologists have long trained their sights on adaptation, focusing on the power of natural selection to produce relative fitness advantages while often ignoring changes in absolute fitness. Ecologists generally have taken a different tack, focusing on changes in abundance and ranges that reflect absolute fitness while often ignoring relative fitness. Uniting these perspectives, we articulate various causes of relative and absolute maladaptation and review numerous examples of their occurrence. This review indicates that maladaptation is reasonably common from both perspectives, yet often in contrasting ways. That is, maladaptation can appear strong from a relative fitness perspective, yet populations can be growing in abundance. Conversely, resident individuals can appear locally adapted (relative to nonresident individuals) yet be declining in abundance. Understanding and interpreting these disconnects between relative and absolute maladaptation, as well as the cases of agreement, is increasingly critical in the face of accelerating human-mediated environmental change. We therefore present a framework for studying maladaptation, focusing in particular on the relationship between absolute and relative fitness, thereby drawing together evolutionary and ecological perspectives. The unification of these ecological and evolutionary perspectives has the potential to bring together previously disjunct research areas while addressing key conceptual issues and specific practical problems.
Collapse
|