1
|
Gobade MB, Kumar T, Ansari SA, Sawarkar A, Garlapati PK, Singh L. Micro and mesofauna: Pioneering sustainable solutions for fly ash rejuvenation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 379:124768. [PMID: 40054362 DOI: 10.1016/j.jenvman.2025.124768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/17/2025] [Accepted: 02/28/2025] [Indexed: 03/22/2025]
Abstract
Persistent accumulation of fly ash, a byproduct of coal combustion, poses significant environmental challenges due to its elevated levels of toxicity, heavy metal contamination, and ecological issues. Present review explores the ecological significance and functional potential of microfauna and mesofauna in mitigating environmental impacts, focusing on their ability to rehabilitate fly ash dump sites into biologically active and sustainable ecosystems. Microfaunal groups, including protozoa, nematodes, and other small invertebrates, play essential roles in promoting soil aggregation, pollutant biotransformation, and nutrient cycling while fostering synergistic interactions with plant communities to accelerate bioremediation processes and biodiversity recovery. The review also examines the constraints imposed by site-specific factors such as extreme pH, heavy metal toxicity, and organic matter deficiencies, offering targeted strategies to enhance remediation efficiency. It includes bioaugmentation with metal-tolerant strains, organic amendments to enrich soil fertility, and the integration of mycorrhizal fungi to optimize nutrient uptake and establishement of vegetation. The findings underscore the transformative potential of microfauna and mesofauna-based approaches for sustainable fly ash management, emphasizing the need for interdisciplinary research and technological innovation to address the ecological and environmental challenges associated with fly ash disposal. This work highlights the promise of advancing microfauna-driven ecological restoration strategies to rehabilitate degraded landscapes and support long-term environmental resilience.
Collapse
Affiliation(s)
- Mahendra Bhimrao Gobade
- CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, Maharashtra, 440 020, India.
| | - Tinku Kumar
- CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, Maharashtra, 440 020, India.
| | - Suhel Aneesh Ansari
- CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, Maharashtra, 440 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Ankush Sawarkar
- Department of Information Technology, Shri Guru Gobind Singh Institute of Engineering & Technology (SGGSIE & T), Nanded, Maharashtra, 431606, India.
| | - Phani Kumar Garlapati
- Defence Food Research Laboratory, Research and Development Organisation (DRDO), Siddhartha Nagar, Mysore, Karnataka, 570011, India.
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, Maharashtra, 440 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Mayes C, Morar N. Environmental Injustices within Us: The Case of the Human Microbiome and the Need for More Creative Bioethics. THE AMERICAN JOURNAL OF BIOETHICS : AJOB 2024; 24:67-70. [PMID: 38394022 DOI: 10.1080/15265161.2024.2303135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
|
3
|
Fieschi-Méric L, van Leeuwen P, Denoël M, Lesbarrères D. Encouraging news for in situ conservation: Translocation of salamander larvae has limited impacts on their skin microbiota. Mol Ecol 2023. [PMID: 36872055 DOI: 10.1111/mec.16914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/07/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
The key role of symbiotic skin bacteria communities in amphibian resistance to emerging pathogens is well recognized, but factors leading to their dysbiosis are not fully understood. In particular, the potential effects of population translocations on the composition and diversity of hosts' skin microbiota have received little attention, although such transfers are widely carried out as a strategy for amphibian conservation. To characterize the potential reorganization of the microbiota over such a sudden environmental change, we conducted a common-garden experiment simulating reciprocal translocations of yellow-spotted salamander larvae across three lakes. We sequenced skin microbiota samples collected before and 15 days after the transfer. Using a database of antifungal isolates, we identified symbionts with known function against the pathogen Batrachochytrium dendrobatidis, a major driver of amphibian declines. Our results indicate an important reorganization of bacterial assemblages throughout ontogeny, with strong changes in composition, diversity and structure of the skin microbiota in both control and translocated individuals over the 15 days of monitoring. Unexpectedly, the diversity and community structure of the microbiota were not significantly affected by the translocation event, thus suggesting a strong resilience of skin bacterial communities to environmental change-at least across the time-window studied here. A few phylotypes were more abundant in the microbiota of translocated larvae, but no differences were found among pathogen-inhibiting symbionts. Taken together, our results support amphibian translocations as a promising strategy for this endangered animal class, with limited impact on their skin microbiota.
Collapse
Affiliation(s)
- Léa Fieschi-Méric
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and OCeanic science Unit of reSearch (FOCUS), Université de Liège, Liège, Belgium.,Biology Department, Laurentian University, Sudbury, Ontario, Canada
| | - Pauline van Leeuwen
- Biology Department, Laurentian University, Sudbury, Ontario, Canada.,Conservation Genetics Laboratory, University de Liège, Liège, Belgium
| | - Mathieu Denoël
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and OCeanic science Unit of reSearch (FOCUS), Université de Liège, Liège, Belgium
| | - David Lesbarrères
- Biology Department, Laurentian University, Sudbury, Ontario, Canada.,Environment and Climate Change Canada, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Neidhöfer C, Sib E, Benhsain AH, Mutschnik-Raab C, Schwabe A, Wollkopf A, Wetzig N, Sieber MA, Thiele R, Döhla M, Engelhart S, Mutters NT, Parčina M. Examining Different Analysis Protocols Targeting Hospital Sanitary Facility Microbiomes. Microorganisms 2023; 11:185. [PMID: 36677477 PMCID: PMC9867353 DOI: 10.3390/microorganisms11010185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/02/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
Indoor spaces exhibit microbial compositions that are distinctly dissimilar from one another and from outdoor spaces. Unique in this regard, and a topic that has only recently come into focus, is the microbiome of hospitals. While the benefits of knowing exactly which microorganisms propagate how and where in hospitals are undoubtedly beneficial for preventing hospital-acquired infections, there are, to date, no standardized procedures on how to best study the hospital microbiome. Our study aimed to investigate the microbiome of hospital sanitary facilities, outlining the extent to which hospital microbiome analyses differ according to sample-preparation protocol. For this purpose, fifty samples were collected from two separate hospitals-from three wards and one hospital laboratory-using two different storage media from which DNA was extracted using two different extraction kits and sequenced with two different primer pairs (V1-V2 and V3-V4). There were no observable differences between the sample-preservation media, small differences in detected taxa between the DNA extraction kits (mainly concerning Propionibacteriaceae), and large differences in detected taxa between the two primer pairs V1-V2 and V3-V4. This analysis also showed that microbial occurrences and compositions can vary greatly from toilets to sinks to showers and across wards and hospitals. In surgical wards, patient toilets appeared to be characterized by lower species richness and diversity than staff toilets. Which sampling sites are the best for which assessments should be analyzed in more depth. The fact that the sample processing methods we investigated (apart from the choice of primers) seem to have changed the results only slightly suggests that comparing hospital microbiome studies is a realistic option. The observed differences in species richness and diversity between patient and staff toilets should be further investigated, as these, if confirmed, could be a result of excreted antimicrobials.
Collapse
Affiliation(s)
- Claudio Neidhöfer
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Esther Sib
- Institute for Hygiene and Public Health, University of Bonn, 53127 Bonn, Germany
| | - Al-Harith Benhsain
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | | | - Anna Schwabe
- Institute for Hygiene and Public Health, University of Bonn, 53127 Bonn, Germany
| | - Alexander Wollkopf
- Institute for Hygiene and Public Health, University of Bonn, 53127 Bonn, Germany
| | - Nina Wetzig
- Institute for Functional Gene Analytics, Bonn-Rhein-Sieg University of Applied Sciences, 53757 Sankt Augustin, Germany
| | - Martin A. Sieber
- Institute for Functional Gene Analytics, Bonn-Rhein-Sieg University of Applied Sciences, 53757 Sankt Augustin, Germany
| | - Ralf Thiele
- Institute for Functional Gene Analytics, Bonn-Rhein-Sieg University of Applied Sciences, 53757 Sankt Augustin, Germany
| | - Manuel Döhla
- Institute for Hygiene and Public Health, University of Bonn, 53127 Bonn, Germany
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, 56072 Koblenz, Germany
| | - Steffen Engelhart
- Institute for Hygiene and Public Health, University of Bonn, 53127 Bonn, Germany
| | - Nico T. Mutters
- Institute for Hygiene and Public Health, University of Bonn, 53127 Bonn, Germany
| | - Marijo Parčina
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
5
|
Tan HE. The microbiota-gut-brain axis in stress and depression. Front Neurosci 2023; 17:1151478. [PMID: 37123352 PMCID: PMC10140437 DOI: 10.3389/fnins.2023.1151478] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Humans and animals are evolved to have instinctive physiological responses to threats. The perception of threat by the brain triggers a multitude of changes across the brain and body. A large body of research have demonstrated that our hardwired survival instinct, the stress response, can become maladaptive and promote major depressive disorders and other neuropsychiatric impairments. However, gaps in our understanding of how chronic stress contributes to depression and mental disorders suggest that we also need to consider factors beyond the biology of the host. The unravelling of the structure and function of microorganisms that humans and animals are host to have driven a paradigm shift in understanding the individual as a collective network composed of the host plus microbes. Well over 90% of bacteria in the body reside in the large intestines, and these microbes in the lower gut function almost like an organ in the body in the way it interacts with the host. Importantly, bidirectional interactions between the gut microbiota and the brain (i.e., the two-way microbiota-gut-brain axis) have been implicated in the pathophysiology of mental disorders including depression. Here, in summarizing the emerging literature, we envisage that further research particularly on the efferent brain-gut-microbiota axis will uncover transformative links in the biology of stress and depression.
Collapse
|
6
|
Höll D, Bossert LN. Introducing the microbiome: Interdisciplinary perspectives. ENDEAVOUR 2022; 46:100817. [PMID: 35667903 PMCID: PMC9412664 DOI: 10.1016/j.endeavour.2022.100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Davina Höll
- Institute for Ethics and History of Medicine, Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), University of Tübingen.
| | - Leonie N Bossert
- International Center for Ethics in the Sciences and Humanities (IZEW), University of Tübingen
| |
Collapse
|
7
|
Droz L, Jannel R, Rupprecht CDD. Living through multispecies societies: Approaching the microbiome with Imanishi Kinji. ENDEAVOUR 2022; 46:100814. [PMID: 35697549 DOI: 10.1016/j.endeavour.2022.100814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/03/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Recent research about the microbiome points to a picture in which we, humans, are 'living through' nature, and nature itself is living in us. Our bodies are hosting-and depend on-the multiple species that constitute human microbiota. This article will discuss current research on the microbiome through the ideas of Japanese ecologist Imanishi Kinji (1902-1992). First, some of Imanishi's key ideas regarding the world of living beings and multispecies societies are presented. Second, seven types of relationships concerning the human microbiome, human beings, and the environment are explored. Third, inspired by Imanishi's work, this paper develops the idea of dynamic, porous, and complex multispecies societies in which different living beings or species are codependent on others, including microbiota and human beings.
Collapse
Affiliation(s)
- Laÿna Droz
- Basque Center for Climate Change, Spain.
| | - Romaric Jannel
- Kyoto University, Institute for Research in Humanities, Japan.
| | - Christoph D D Rupprecht
- Ehime Daigaku, Faculty of Collaborative Regional Innovation, Department of Environmental Design, Matsuyama, Ehime, Japan.
| |
Collapse
|
8
|
Formosinho J, Bencard A, Whiteley L. Environmentality in biomedicine: microbiome research and the perspectival body. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2022; 91:148-158. [PMID: 34922182 DOI: 10.1016/j.shpsa.2021.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 10/18/2021] [Accepted: 11/07/2021] [Indexed: 06/14/2023]
Abstract
Microbiome research shows that human health is foundationally intertwined with the ecology of microbial communities living on and in our bodies. This challenges the categorical separation of organisms from environments that has been central to biomedicine, and questions the boundaries between them. Biomedicine is left with an empirical problem: how to understand causal pathways between host health, microbiota and environment? We propose a conceptual tool - environmentality - to think through this problem. Environmentality is the state or quality of being an environment for something else in a particular context: a fully perspectival proposition. Its power lies partly in what Isabelle Stengers has called the efficacy of the word itself, contrasting the dominant sense of the word environment as something both external and fixed. Through three case studies, we argue that environmentality can help think about the causality of microbiota vis-a-vis host health in a processual, relational and situated manner, across scales and temporalities. We situate this intervention within historical trajectories of thought in biomedicine, focusing on the challenge microbiome research poses to an aperspectival body. We argue that addressing entanglements between microbial and human lives requires that the environment is brought into the clinic, thus shortening the conceptual gap between medicine and public health.
Collapse
Affiliation(s)
- Joana Formosinho
- Medical Museion, Department of Public Health and Novo Nordisk Foundation Center for Basic Metabolic Research (CBMR), University of Copenhagen, Denmark.
| | - Adam Bencard
- Medical Museion, Department of Public Health and Novo Nordisk Foundation Center for Basic Metabolic Research (CBMR), University of Copenhagen, Denmark
| | - Louise Whiteley
- Medical Museion, Department of Public Health and Novo Nordisk Foundation Center for Basic Metabolic Research (CBMR), University of Copenhagen, Denmark
| |
Collapse
|
9
|
Li X, Bi R, Xiao K, Roy A, Zhang Z, Chen X, Peng J, Wang R, Yang R, Shen X, Irwin DM, Shen Y. Hen raising helps chicks establish gut microbiota in their early life and improve microbiota stability after H9N2 challenge. MICROBIOME 2022; 10:14. [PMID: 35074015 PMCID: PMC8785444 DOI: 10.1186/s40168-021-01200-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/22/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND Early gut microbial colonization is important for postnatal growth and immune development of the chicken. However, at present, commercial chickens are hatched and raised without adult hens, thus are cut off from the microbiota transfer between hens and chicks. In this study, we compared the gut microbiota composition between hen-reared and separately reared chicks, and its impact on the resistance to H9N2 avian influenza virus, with the motive of investigating the impact of this cutoff in microbiota transfer. RESULTS We used the 16SrRNA sequencing method to assess the composition of the gut microbiota in chicks represented by three hen-reared groups and one separately reared group. We found that the diversity of gut microbes in the chicks from the three hen-reared groups was more abundant than in the separately reared group, both at the phylum and genus levels. Our findings highlight the importance of early parental care in influencing the establishment of gut microbiota in the early life of chicks. SourceTracker analysis showed that the feather and cloaca microbiota of hens are the main sources of gut microbiota of chicks. After H9N2 exposure, the viral infection lasted longer in the separately reared chicks, with the viral titers in their oropharyngeal swabs being higher compared to the hen-reared chicks at day 5 post-infection. Interestingly, our results revealed that the gut microbiota of the hen-reared chicks was more stable after H9N2 infection in comparison to that of the separately reared chicks. CONCLUSIONS Microbiota transfer between the hens and their chicks promotes the establishment of a balanced and diverse microbiota in the early life of the chicks and improves microbiota stability after H9N2 challenge. These findings advance our understanding of the protective role of gut microbiota in the early life of chicks and should be instrumental in improving chick rearing in the commercial poultry industry. Video Abstract.
Collapse
Affiliation(s)
- Xiaobing Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Ran Bi
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Kangpeng Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ayan Roy
- Department of Biotechnology, Lovely Professional University, Bengaluru, India
| | - Zhipeng Zhang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoyuan Chen
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jinyu Peng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ruichen Wang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Rou Yang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xuejuan Shen
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, 526238, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S1A8, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, M5S1A8, Canada
| | - Yongyi Shen
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, 526238, China.
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China.
| |
Collapse
|
10
|
Abbott KC, Eppinga MB, Umbanhowar J, Baudena M, Bever JD. Microbiome influence on host community dynamics: Conceptual integration of microbiome feedback with classical host-microbe theory. Ecol Lett 2021; 24:2796-2811. [PMID: 34608730 PMCID: PMC9292004 DOI: 10.1111/ele.13891] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/28/2021] [Accepted: 08/31/2021] [Indexed: 01/11/2023]
Abstract
Microbiomes have profound effects on host fitness, yet we struggle to understand the implications for host ecology. Microbiome influence on host ecology has been investigated using two independent frameworks. Classical ecological theory powerfully represents mechanistic interactions predicting environmental dependence of microbiome effects on host ecology, but these models are notoriously difficult to evaluate empirically. Alternatively, host-microbiome feedback theory represents impacts of microbiome dynamics on host fitness as simple net effects that are easily amenable to experimental evaluation. The feedback framework enabled rapid progress in understanding microbiomes' impacts on plant ecology, and can also be applied to animal hosts. We conceptually integrate these two frameworks by deriving expressions for net feedback in terms of mechanistic model parameters. This generates a precise mapping between net feedback theory and classic population modelling, thereby merging mechanistic understanding with experimental tractability, a necessary step for building a predictive understanding of microbiome influence on host ecology.
Collapse
Affiliation(s)
| | - Maarten B Eppinga
- University of Zurich, Zurich, Switzerland.,Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
| | | | - Mara Baudena
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands.,National Research Council of Italy, Institute of Atmospheric Sciences, and Climate (CNR-ISAC), Torino, Italy
| | | |
Collapse
|
11
|
Ishaq SL, Parada FJ, Wolf PG, Bonilla CY, Carney MA, Benezra A, Wissel E, Friedman M, DeAngelis KM, Robinson JM, Fahimipour AK, Manus MB, Grieneisen L, Dietz LG, Pathak A, Chauhan A, Kuthyar S, Stewart JD, Dasari MR, Nonnamaker E, Choudoir M, Horve PF, Zimmerman NB, Kozik AJ, Darling KW, Romero-Olivares AL, Hariharan J, Farmer N, Maki KA, Collier JL, O’Doherty KC, Letourneau J, Kline J, Moses PL, Morar N. Introducing the Microbes and Social Equity Working Group: Considering the Microbial Components of Social, Environmental, and Health Justice. mSystems 2021; 6:e0047121. [PMID: 34313460 PMCID: PMC8407420 DOI: 10.1128/msystems.00471-21] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Humans are inextricably linked to each other and our natural world, and microorganisms lie at the nexus of those interactions. Microorganisms form genetically flexible, taxonomically diverse, and biochemically rich communities, i.e., microbiomes that are integral to the health and development of macroorganisms, societies, and ecosystems. Yet engagement with beneficial microbiomes is dictated by access to public resources, such as nutritious food, clean water and air, safe shelter, social interactions, and effective medicine. In this way, microbiomes have sociopolitical contexts that must be considered. The Microbes and Social Equity (MSE) Working Group connects microbiology with social equity research, education, policy, and practice to understand the interplay of microorganisms, individuals, societies, and ecosystems. Here, we outline opportunities for integrating microbiology and social equity work through broadening education and training; diversifying research topics, methods, and perspectives; and advocating for evidence-based public policy that supports sustainable, equitable, and microbial wealth for all.
Collapse
Affiliation(s)
- Suzanne L. Ishaq
- University of Maine, School of Food and Agriculture, Orono, Maine, USA
| | - Francisco J. Parada
- Centro de Estudios en Neurociencia Humana y Neuropsicología, Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
| | - Patricia G. Wolf
- Institute for Health Research and Policy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Carla Y. Bonilla
- Gonzaga University, Department of Biology, Spokane, Washington, USA
| | - Megan A. Carney
- University of Arizona, School of Anthropology, Tucson, Arizona, USA
| | - Amber Benezra
- Stevens Institute of Technology, Science and Technology Studies, Hoboken, New Jersey, USA
| | | | - Michael Friedman
- American International College of Arts and Sciences of Antigua, Antigua, Antigua and Barbuda, West Indies
| | - Kristen M. DeAngelis
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jake M. Robinson
- University of Sheffield, Department of Landscape Architecture, Sheffield, United Kingdom
| | - Ashkaan K. Fahimipour
- Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, California, USA
- National Oceanic and Atmospheric Administration, Southwest Fisheries Science Center, Santa Cruz, California, USA
| | - Melissa B. Manus
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Laura Grieneisen
- Department of Genetics, Cell, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Leslie G. Dietz
- University of Oregon, Biology and the Built Environment Center, Eugene, Oregon, USA
| | - Ashish Pathak
- School of the Environment, Florida Agricultural and Mechanical University, Tallahassee, Florida, USA
| | - Ashvini Chauhan
- School of the Environment, Florida Agricultural and Mechanical University, Tallahassee, Florida, USA
| | - Sahana Kuthyar
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | - Justin D. Stewart
- Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mauna R. Dasari
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Emily Nonnamaker
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Mallory Choudoir
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Patrick F. Horve
- University of Oregon, Biology and the Built Environment Center, Eugene, Oregon, USA
| | - Naupaka B. Zimmerman
- University of San Francisco, Department of Biology, San Francisco, California, USA
| | - Ariangela J. Kozik
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Katherine Weatherford Darling
- Social Science Program, University of Maine at Augusta, Augusta, Maine, USA
- University of Maine, Graduate School of Biomedical Science & Engineering, Bangor, Maine, USA
| | | | - Janani Hariharan
- Field of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Nicole Farmer
- National Institutes of Health, Clinical Center, Bethesda, Maryland, USA
| | - Katherine A. Maki
- National Institutes of Health, Clinical Center, Bethesda, Maryland, USA
| | - Jackie L. Collier
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA
| | | | - Jeffrey Letourneau
- Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | | | - Peter L. Moses
- Robert Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
- Finch Therapeutics, Somerville, Massachusetts, USA
| | - Nicolae Morar
- Environmental Studies Program, University of Oregon, Eugene, Oregon, USA
- Department of Philosophy, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
12
|
Schneider T. The holobiont self: understanding immunity in context. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2021; 43:99. [PMID: 34370107 PMCID: PMC8350931 DOI: 10.1007/s40656-021-00454-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 07/26/2021] [Indexed: 05/31/2023]
Abstract
Both concepts of the holobiont and the immune system are at the heart of an ongoing scientific and philosophical examination concerning questions of the organism's individuality and identity as well as the relations between organisms and their environment. Examining the holobiont, the question of boundaries and individuality is challenging because it is both an assemblage of organisms with physiological cohesive aspects. I discuss the concept of immunity and the immune system function from the holobiont perspective. Because of the host-microbial close relations of codependence and interdependence, the holobiont is more often than not confused with the host, as the host is the domain in which this entity exists. I discuss the holobiont unique ecological characteristics of microbial assemblages connected to a host in a network of interactions in which the host is one of the organisms in the community but also its landscape. Therefore, I suggest viewing the holobiont as a host-ecosystem and discuss the implication of such a view on the concept of immunity and the meaning of protection. Furthermore, I show that viewing the holobiont as a host ecosystem opens the possibility of using the same ecological definition of boundaries and immunity dealing with an ecological system. Thus, the holobiont's boundaries and immunity are defined by the persistence of its complex system of interactions integrating existing and new interactions. This way of thinking presents a notion of immunity that materializes as the result of the complex interdependence relations between the different organisms composing the holobiont similar to that of an ecosystem. Taking this view further, I discuss the notion of immunogenicity that is ontologically heterogeneous with various causal explanations of the processes of tolerance and targeted immune response. Finally, I discuss the possible conceptualization of already existing and new biomedical practices.
Collapse
Affiliation(s)
- Tamar Schneider
- Cohn Institute for History and Philosophy of Science and Ideas, Humanities Faculty, Tel Aviv University, Ramat Aviv, 6997801, Tel Aviv, Israel.
| |
Collapse
|
13
|
The Epistemic Revolution Induced by Microbiome Studies: An Interdisciplinary View. BIOLOGY 2021; 10:biology10070651. [PMID: 34356506 PMCID: PMC8301382 DOI: 10.3390/biology10070651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022]
Abstract
Simple Summary This interdisciplinary study, conducted by experts in evolutionary biology, ecology, ecosystem studies, arts, medicine, forensic analyses, agriculture, law, and philosophy of science describe how microbiome studies are convergently affecting the concepts and practices of diverse fields and practices, that now consider microbiomes within their legitimate scope. Consequently, it describes what seems to be an ongoing pluridisciplinary epistemic revolution, with the potential to fundamentally change how we understand the world through an ecologization of pre-existing concepts, a greater focus on interactions, the use of multi-scalar interaction networks as explanatory frameworks, the reconceptualization of the usual definitions of individuals, and a de-anthropocentrification of our perception of phenomena. Abstract Many separate fields and practices nowadays consider microbes as part of their legitimate focus. Therefore, microbiome studies may act as unexpected unifying forces across very different disciplines. Here, we summarize how microbiomes appear as novel major biological players, offer new artistic frontiers, new uses from medicine to laws, and inspire novel ontologies. We identify several convergent emerging themes across ecosystem studies, microbial and evolutionary ecology, arts, medicine, forensic analyses, law and philosophy of science, as well as some outstanding issues raised by microbiome studies across these disciplines and practices. An ‘epistemic revolution induced by microbiome studies’ seems to be ongoing, characterized by four features: (i) an ecologization of pre-existing concepts within disciplines, (ii) a growing interest in systemic analyses of the investigated or represented phenomena and a greater focus on interactions as their root causes, (iii) the intent to use openly multi-scalar interaction networks as an explanatory framework to investigate phenomena to acknowledge the causal effects of microbiomes, (iv) a reconceptualization of the usual definitions of which individuals are worth considering as an explanans or as an explanandum by a given field, which result in a fifth strong trend, namely (v) a de-anthropocentrification of our perception of the world.
Collapse
|
14
|
Del Frari G, Ferreira RB. Microbial Blends: Terminology Overview and Introduction of the Neologism "Skopobiota". Front Microbiol 2021; 12:659592. [PMID: 34276594 PMCID: PMC8283781 DOI: 10.3389/fmicb.2021.659592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/07/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Giovanni Del Frari
- LEAF-Linking Landscape, Environment, Agriculture and Food-Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Ricardo Boavida Ferreira
- LEAF-Linking Landscape, Environment, Agriculture and Food-Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
15
|
Parke EC. Trivial, Interesting, or Overselling? The Microbiome and “What It Means to Be Human”. Bioscience 2021. [DOI: 10.1093/biosci/biab009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
Discussions of microbiome research increasingly refer to the microbiome's impact on what it means to be human. These claims are rarely carefully explained or justified. Given the increasing importance of microbiome research across the life sciences, philosophy, and the public sphere, it is worth exercising more care in these discussions. This article offers a guide for doing so. There are many different ways to interpret the details of ambiguous claims about the microbiome and what it means to be human. I discuss some possible interpretations and show how the resulting claims can range from trivial to suggestive of interesting research to controversial and overhyped. I recommend greater caution and clarity in ongoing discussions of microbiome research and its implications.
Collapse
Affiliation(s)
- Emily C Parke
- Department of Philosophy, School of Humanities, University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
Fontaine SS, Kohl KD. Optimal integration between host physiology and functions of the gut microbiome. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190594. [PMID: 32772673 DOI: 10.1098/rstb.2019.0594] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Host-associated microbial communities have profound impacts on animal physiological function, especially nutrition and metabolism. The hypothesis of 'symmorphosis', which posits that the physiological systems of animals are regulated precisely to meet, but not exceed, their imposed functional demands, has been used to understand the integration of physiological systems across levels of biological organization. Although this idea has been criticized, it is recognized as having important heuristic value, even as a null hypothesis, and may, therefore, be a useful tool in understanding how hosts evolve in response to the function of their microbiota. Here, through a hologenomic lens, we discuss how the idea of symmorphosis may be applied to host-microbe interactions. Specifically, we consider scenarios in which host physiology may have evolved to collaborate with the microbiota to perform important functions, and, on the other hand, situations in which services have been completely outsourced to the microbiota, resulting in relaxed selection on host pathways. Following this theoretical discussion, we finally suggest strategies by which these currently speculative ideas may be explicitly tested to further our understanding of host evolution in response to their associated microbial communities. This article is part of the theme issue 'The role of the microbiome in host evolution'.
Collapse
Affiliation(s)
- Samantha S Fontaine
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Kevin D Kohl
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
17
|
Campos-Cerda F, Bohannan BJM. The Nidobiome: A Framework for Understanding Microbiome Assembly in Neonates. Trends Ecol Evol 2020; 35:573-582. [PMID: 32360079 DOI: 10.1016/j.tree.2020.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/08/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023]
Abstract
The importance of microbial associations to animals' development, physiology, and fitness is widely recognized. In most animals, these microbial associations must be developed anew with every generation, making microbiome assembly a critical ecological and evolutionary process. To fully understand neonate microbial colonization, we need to study the interacting effects of neonate, parents, nest, and external environment. We propose an integrative approach based on the concept of the 'nidobiome', a new unit of microbiome-host interactions, which brings together these key elements. We discuss the contribution of each element on microbial colonization at different stages of host development, and we provide a framework based on key developmental events to compare microbiome assembly across animal species.
Collapse
Affiliation(s)
- Felipe Campos-Cerda
- Institute of Ecology and Evolution, Biology Department, University of Oregon, Eugene, OR 97405, USA.
| | - Brendan J M Bohannan
- Institute of Ecology and Evolution, Biology Department, University of Oregon, Eugene, OR 97405, USA
| |
Collapse
|
18
|
|
19
|
Tsolis RM, Bäumler AJ. Gastrointestinal host-pathogen interaction in the age of microbiome research. Curr Opin Microbiol 2020; 53:78-89. [PMID: 32344325 DOI: 10.1016/j.mib.2020.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023]
Abstract
The microbiota is linked to human health by governing susceptibility to infection. However, the interplay between enteric pathogens, the host, and its microbiota is complex, encompassing host cell manipulation by virulence factors, immune responses, and a diverse gut ecosystem. The host represents a foundation species that uses its immune system as a habitat filter to shape the gut microbiota. In turn, the gut microbiota protects against ecosystem invasion by opportunistic pathogens through priority effects that are based on niche modification or niche preemption. Frank pathogens can overcome these priority effects by using their virulence factors to manipulate host-derived habitat filters, thereby constructing new nutrient-niches in the intestinal lumen that support ecosystem invasion. The emerging picture identifies pathogens as ecosystem engineers and suggests that virulence factors are useful tools for identifying host-derived habitat filters that balance the microbiota.
Collapse
Affiliation(s)
- Renée M Tsolis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, CA 95616, USA.
| |
Collapse
|
20
|
Affiliation(s)
| | - Daniel T. Blumstein
- Department of Ecology and Evolutionary Biology University of California Los Angeles CA USA
| | | | - Sasha G. Tetu
- Department of Molecular Sciences Macquarie University North Ryde NSW Australia
| | - Michael R. Gillings
- Department of Biological Sciences Macquarie University North Ryde NSW Australia
| |
Collapse
|