1
|
Kaushal SS, Shelton SA, Mayer PM, Kellmayer B, Utz RM, Reimer JE, Baljunas J, Bhide SV, Mon A, Rodriguez-Cardona BM, Grant SB, Newcomer-Johnson TA, Malin JT, Shatkay RR, Collison DC, Papageorgiou K, Escobar J, Rippy MA, Likens GE, Najjar RG, Mejia AI, Lassiter A, Li M, Chant RJ. Freshwater faces a warmer and saltier future from headwaters to coasts: climate risks, saltwater intrusion, and biogeochemical chain reactions. BIOGEOCHEMISTRY 2025; 168:31. [PMID: 40078318 PMCID: PMC11893707 DOI: 10.1007/s10533-025-01219-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 02/21/2025] [Indexed: 03/14/2025]
Abstract
Alongside global climate change, many freshwater ecosystems are experiencing substantial shifts in the concentrations and compositions of salt ions coming from both land and sea. We synthesize a risk framework for anticipating how climate change and increasing salt pollution coming from both land and saltwater intrusion will trigger chain reactions extending from headwaters to tidal waters. Salt ions trigger 'chain reactions,' where chemical products from one biogeochemical reaction influence subsequent reactions and ecosystem responses. Different chain reactions impact drinking water quality, ecosystems, infrastructure, and energy and food production. Risk factors for chain reactions include shifts in salinity sources due to global climate change and amplification of salinity pulses due to the interaction of precipitation variability and human activities. Depending on climate and other factors, salt retention can range from 2 to 90% across watersheds globally. Salt retained in ecosystems interacts with many global biogeochemical cycles along flowpaths and contributes to 'fast' and 'slow' chain reactions associated with temporary acidification and long-term alkalinization of freshwaters, impacts on nutrient cycling, CO2, CH4, N2O, and greenhouse gases, corrosion, fouling, and scaling of infrastructure, deoxygenation, and contaminant mobilization along the freshwater-marine continuum. Salt also impacts the carbon cycle and the quantity and quality of organic matter transported from headwaters to coasts. We identify the double impact of salt pollution from land and saltwater intrusion on a wide range of ecosystem services. Our salinization risk framework is based on analyses of: (1) increasing temporal trends in salinization of tributaries and tidal freshwaters of the Chesapeake Bay and freshening of the Chesapeake Bay mainstem over 40 years due to changes in streamflow, sea level rise, and watershed salt pollution; (2) increasing long-term trends in concentrations and loads of major ions in rivers along the Eastern U.S. and increased riverine exports of major ions to coastal waters sometimes over 100-fold greater than forest reference conditions; (3) varying salt ion concentration-discharge relationships at U.S. Geological Survey (USGS) sites across the U.S.; (4) empirical relationships between specific conductance and Na+, Cl-, SO4 2-, Ca2+, Mg2+, K+, and N at USGS sites across the U.S.; (5) changes in relationships between concentrations of dissolved organic carbon (DOC) and different salt ions at USGS sites across the U.S.; and (6) original salinization experiments demonstrating changes in organic matter composition, mobilization of nutrients and metals, acidification and alkalinization, changes in oxidation-reduction potentials, and deoxygenation in non-tidal and tidal waters. The interaction of human activities and climate change is altering sources, transport, storage, and reactivity of salt ions and chain reactions along the entire freshwater-marine continuum. Our salinization risk framework helps anticipate, prevent, and manage the growing double impact of salt ions from both land and sea on drinking water, human health, ecosystems, aquatic life, infrastructure, agriculture, and energy production. Supplementary Information The online version contains supplementary material available at 10.1007/s10533-025-01219-6.
Collapse
Affiliation(s)
- Sujay S. Kaushal
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD USA
| | - Sydney A. Shelton
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD USA
| | - Paul M. Mayer
- Pacific Ecological Systems Division, US Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Corvallis, OR USA
| | - Bennett Kellmayer
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD USA
| | | | - Jenna E. Reimer
- Department of Soil & Water Sciences, University of Florida, Gainesville, FL USA
| | | | - Shantanu V. Bhide
- The Charles E. Via Jr Department of Civil and Environmental Engineering, Occoquan Watershed Monitoring Laboratory, Virginia Tech, Manassas, VA USA
| | - Ashley Mon
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD USA
| | - Bianca M. Rodriguez-Cardona
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Université du Québec à Montréal, Montréal, Canada
| | - Stanley B. Grant
- The Charles E. Via Jr Department of Civil and Environmental Engineering, Occoquan Watershed Monitoring Laboratory, Virginia Tech, Manassas, VA USA
| | - Tamara A. Newcomer-Johnson
- Watershed and Ecosystem Characterization Division, US Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Cincinnati, OH USA
| | - Joseph T. Malin
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD USA
| | - Ruth R. Shatkay
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD USA
| | - Daniel C. Collison
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD USA
| | - Kyriaki Papageorgiou
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD USA
| | - Jazmin Escobar
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD USA
| | - Megan A. Rippy
- The Charles E. Via Jr Department of Civil and Environmental Engineering, Occoquan Watershed Monitoring Laboratory, Virginia Tech, Manassas, VA USA
| | - Gene E. Likens
- Cary Institute of Ecosystem Studies, Millbrook, NY USA
- University of Connecticut, Storrs, CT USA
| | - Raymond G. Najjar
- Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, PA USA
| | - Alfonso I. Mejia
- Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA USA
| | - Allison Lassiter
- University of Pennsylvania Weitzman School of Design, Philadelphia, PA USA
| | - Ming Li
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD USA
| | - Robert J. Chant
- Institute of Marine and Coastal Science, Rutgers, The State University of New Jersey, New Brunswick, NJ USA
| |
Collapse
|
2
|
Long S, Rippy MA, Krauss L, Stacey M, Fausey K. The impact of deicer and anti-icer use on plant communities in stormwater detention basins: Characterizing salt stress and phytoremediation potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 962:178310. [PMID: 39818486 DOI: 10.1016/j.scitotenv.2024.178310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 01/18/2025]
Abstract
We present the results of a 1-year study that quantified salt levels in stormwater, soils, and plant tissues from 14 stormwater detention basins across Northern VA in an above-average snow year. We characterize (1) the level of salt stress plants experience, (2) the extent to which current plant communities feature salt tolerant species, and (3) the capacity of these species to phytoremediate soils and reduce the impacts of deicer and anti-icer use. Our results suggest that detention basin vegetation experience a range of salt stress levels that depend on drainage area type (roads: moderate to high > parking lots: low to moderate > pervious areas: none). Established thresholds for salt sensitive vegetation (Na+, Cl+, electrical conductivity, sodium adsorption ratio, exchangeable sodium percentage) were exceeded at least twice in stormwater or soils from all systems draining roads and half of systems draining parking lots. Winter exceedances were most common, but saline conditions did persist into the growing season, particularly at sites draining roads. Two hundred fifty-five plant species were identified across all detention basins, including 48 natives capable of tolerating elevated salt levels (electrical conductivity ≥2 dS/m). Within-tissue concentrations of sodium and chloride ions were highest in Typha (latifolia and angustifolia) (11.1 mg Na+/g; 30 mg Cl-/g), making it our top phytoremediation candidate. Scaling these concentrations up, we estimate that a standard-size highway detention basin (2000-3000 m2) with 100 % cattail cover can phytoremediate up to 100 kg of Na+ and 200 kg of Cl- per year. Uptake at this level is not sufficient to offset winter salt application, constituting only 5-6 % of basin inputs. This suggests that phytoremediation should not be considered a standalone solution to basin salinization, although it could be one approach of many in a broader salt management strategy.
Collapse
Affiliation(s)
- S Long
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 9408 Prince William Street, Manassas, VA, USA
| | - M A Rippy
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 9408 Prince William Street, Manassas, VA, USA; Disaster Resilience and Risk Management (DRRM), 1068A Derring Hall, 405 Perry Street, Blacksburg, VA 17 24061, USA.
| | - L Krauss
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 9408 Prince William Street, Manassas, VA, USA
| | - M Stacey
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 9408 Prince William Street, Manassas, VA, USA
| | - K Fausey
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 9408 Prince William Street, Manassas, VA, USA
| |
Collapse
|
3
|
Conaway CH, Baker NT, Brown CJ, Green CT, Kent DB. Prioritizing US Geological Survey science on salinization and salinity in candidate and selected priority river basins. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 197:59. [PMID: 39680164 PMCID: PMC11649729 DOI: 10.1007/s10661-024-13264-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/16/2024] [Indexed: 12/17/2024]
Abstract
The US Geological Survey (USGS) is selecting and prioritizing basins, known as Integrated Water Science basins, for monitoring and intensive study. Previous efforts to aid in this selection process include a scientifically defensible and quantitative assessment of basins facing human-caused water resource challenges (Van Metre et al. in Environmental Monitoring and Assessment, 192(7), 458 2020). In the present work, we explore this ranking process based on water quality considerations, specifically salinity and salinization. We selected top candidate basins to study salinity and salinization issues in 18 hydrologic regions that include 163 candidate basins. Our prioritization is based on quantitative assessment of sources of salinity, drivers of change, and receptors that must respond to those sources and drivers. Source terms represented in the prioritization include geology, depth to brackish groundwater, stream conductivity, chloride in precipitation, urban and agricultural land use, application of road salt as a deicer, and irrigation. Drivers represented in prioritization include changes in chemical weathering as a result of changes in rainwater chemistry. Receptors include measures of water stress, measurements of stream ecological health, and socioeconomic factors. In addition, we present research activities for the USGS on salinity and salinization that can be pursued in these basins including assessment of sources, pathways, and loadings; predicting and understanding changes in sources, peaks, and trends; understanding the components of salinity and mobilization of contaminants; understanding the relationship between salinization and changing ecosystems; and developing knowledge on the causes and distribution of groundwater salinity, brackish water resources, and challenges related to desalination.
Collapse
Affiliation(s)
| | - Nancy T Baker
- US Geological Survey, Ohio-Kentucky-Indiana Water Science Center, Indianapolis, IN, USA
| | - Craig J Brown
- US Geological Survey, New England Water Science Center, East Hartford, CT, USA
| | | | - Douglas B Kent
- US Geological Survey, Water Resources Mission Area, Moffett Field, CA, USA
| |
Collapse
|
4
|
Brown A, Hoffman MC, McPhillips LE. Impacts of Deicer Salt on Water Quality Performance of Stormwater Bioretention Systems with Varied Vegetation and Hydrology. ACS ES&T WATER 2024; 4:2882-2893. [PMID: 39021577 PMCID: PMC11251420 DOI: 10.1021/acsestwater.4c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024]
Abstract
Sodium chloride (NaCl) deicers contaminate bioretention and influence effluent water quality, the effects of which are not yet fully understood. We tested this by constructing 48 mesocosms in a greenhouse, each having Panicum virgatum, Eutrochium purpureum, or no vegetation; having an internal water storage (IWS) zone or not; and being exposed to high or low NaCl doses in the late winters of 2022 and 2023. Synthetic stormwater was applied and effluent was monitored through May 2023 with an end-of-experiment analysis of soil and plant biomass for nitrogen, phosphorus, copper, zinc, and total suspended solids (TSS). Average effluent loads increased in spring, after NaCl application, for total phosphorus (+61%), copper (+61%), zinc (+88%), and TSS (+66%). These four analytes recovered by summer, with average annual percent removals >85%. Vegetation and IWS reduced annual phosphorus (by -33 and -70%, respectively) and copper (by -24 and -40%) loads, while higher NaCl concentrations increased annual phosphorus (+107%), copper (+22%), and TSS (+51%) loads. Nitrogen removal was not linked with NaCl but was dependent upon the presence of IWS or vegetation. Post-NaCl effluent spikes pose seasonal risks to aquatic ecosystems, emphasizing the need for active maintenance, redundant removal mechanisms, and minimized exposure to NaCl.
Collapse
Affiliation(s)
- Alexander
H. Brown
- Department
of Civil and Environmental Engineering, The Pennsylvania State University, 408 Sackett Building, University
Park, Pennsylvania 16802, United States
| | - Margaret C. Hoffman
- Department
of Plant Science, The Pennsylvania State
University, 306 Tyson
Building, University Park, Pennsylvania 16802, United States
| | - Lauren Elyse McPhillips
- Department
of Civil and Environmental Engineering, The Pennsylvania State University, 226B Sackett Building, University Park, Pennsylvania 16802, United States
| |
Collapse
|
5
|
Shelton SA, Kaushal SS, Mayer PM, Shatkay RR, Rippy MA, Grant SB, Newcomer-Johnson TA. Salty chemical cocktails as water quality signatures: Longitudinal trends and breakpoints along different U.S. streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172777. [PMID: 38670384 PMCID: PMC11371123 DOI: 10.1016/j.scitotenv.2024.172777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Along urban streams and rivers, various processes, including road salt application, sewage leaks, and weathering of the built environment, contribute to novel chemical cocktails made up of metals, salts, nutrients, and organic matter. In order to track the impacts of urbanization and management strategies on water quality, we conducted longitudinal stream synoptic (LSS) monitoring in nine watersheds in five major metropolitan areas of the U.S. During each LSS monitoring survey, 10-53 sites were sampled along the flowpath of streams as they flowed along rural to urban gradients. Results demonstrated that major ions derived from salts (Ca2+, Mg2+, Na+, and K+) and correlated elements (e.g. Sr2+, N, Cu) formed 'salty chemical cocktails' that increased along rural to urban flowpaths. Salty chemical cocktails explained 46.1% of the overall variability in geochemistry among streams and showed distinct typologies, trends, and transitions along flowpaths through metropolitan regions. Multiple linear regression predicted 62.9% of the variance in the salty chemical cocktails using the six following significant drivers (p < 0.05): percent urban land, wastewater treatment plant discharge, mean annual precipitation, percent silicic residual material, percent volcanic material, and percent carbonate residual material. Mean annual precipitation and percent urban area were the most important in the regression, explaining 29.6% and 13.0% of the variance. Different pollution sources (wastewater, road salt, urban runoff) in streams were tracked downstream based on salty chemical cocktails. Streams flowing through stream-floodplain restoration projects and conservation areas with extensive riparian forest buffers did not show longitudinal increases in salty chemical cocktails, suggesting that there could be attenuation via conservation and restoration. Salinization represents a common urban water quality signature and longitudinal patterns of distinct chemical cocktails and ionic mixtures have the potential to track the sources, fate, and transport of different point and nonpoint pollution sources along streams across different regions.
Collapse
Affiliation(s)
- Sydney A Shelton
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, Geology Building 237, College Park, MD 20742, USA; ORISE Fellow at Pacific Ecological Systems Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, 200 SW 35th Street, Corvallis, OR 97333, USA.
| | - Sujay S Kaushal
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, Geology Building 237, College Park, MD 20742, USA.
| | - Paul M Mayer
- Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, U.S. Environmental Protection Agency, 200 SW 35th Street, Corvallis, OR 97333, USA.
| | - Ruth R Shatkay
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, Geology Building 237, College Park, MD 20742, USA.
| | - Megan A Rippy
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via Jr Department of Civil and Environmental Engineering, Virginia Tech, 9408 Prince William St, Manassas, VA 20110, USA; Center for Coastal Studies, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Stanley B Grant
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via Jr Department of Civil and Environmental Engineering, Virginia Tech, 9408 Prince William St, Manassas, VA 20110, USA; Center for Coastal Studies, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Tammy A Newcomer-Johnson
- United States Environmental Protection Agency, Center for Environmental Measurement and Modeling, Watershed and Ecosystem Characterization Division, 26 Martin Luther King Dr W, Cincinnati, OH 45220, USA.
| |
Collapse
|
6
|
Mayer PM, Moran KD, Miller EL, Brander SM, Harper S, Garcia-Jaramillo M, Carrasco-Navarro V, Ho KT, Burgess RM, Thornton Hampton LM, Granek EF, McCauley M, McIntyre JK, Kolodziej EP, Hu X, Williams AJ, Beckingham BA, Jackson ME, Sanders-Smith RD, Fender CL, King GA, Bollman M, Kaushal SS, Cunningham BE, Hutton SJ, Lang J, Goss HV, Siddiqui S, Sutton R, Lin D, Mendez M. Where the rubber meets the road: Emerging environmental impacts of tire wear particles and their chemical cocktails. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171153. [PMID: 38460683 PMCID: PMC11214769 DOI: 10.1016/j.scitotenv.2024.171153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/11/2024]
Abstract
About 3 billion new tires are produced each year and about 800 million tires become waste annually. Global dependence upon tires produced from natural rubber and petroleum-based compounds represents a persistent and complex environmental problem with only partial and often-times, ineffective solutions. Tire emissions may be in the form of whole tires, tire particles, and chemical compounds, each of which is transported through various atmospheric, terrestrial, and aquatic routes in the natural and built environments. Production and use of tires generates multiple heavy metals, plastics, PAH's, and other compounds that can be toxic alone or as chemical cocktails. Used tires require storage space, are energy intensive to recycle, and generally have few post-wear uses that are not also potential sources of pollutants (e.g., crumb rubber, pavements, burning). Tire particles emitted during use are a major component of microplastics in urban runoff and a source of unique and highly potent toxic substances. Thus, tires represent a ubiquitous and complex pollutant that requires a comprehensive examination to develop effective management and remediation. We approach the issue of tire pollution holistically by examining the life cycle of tires across production, emissions, recycling, and disposal. In this paper, we synthesize recent research and data about the environmental and human health risks associated with the production, use, and disposal of tires and discuss gaps in our knowledge about fate and transport, as well as the toxicology of tire particles and chemical leachates. We examine potential management and remediation approaches for addressing exposure risks across the life cycle of tires. We consider tires as pollutants across three levels: tires in their whole state, as particulates, and as a mixture of chemical cocktails. Finally, we discuss information gaps in our understanding of tires as a pollutant and outline key questions to improve our knowledge and ability to manage and remediate tire pollution.
Collapse
Affiliation(s)
- Paul M Mayer
- US Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, Corvallis, OR 97333, United States of America.
| | - Kelly D Moran
- San Francisco Estuary Institute, 4911 Central Ave, Richmond, CA 94804, United States of America.
| | - Ezra L Miller
- San Francisco Estuary Institute, 4911 Central Ave, Richmond, CA 94804, United States of America.
| | - Susanne M Brander
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Corvallis, OR 97331, United States of America.
| | - Stacey Harper
- Department of Environmental and Molecular Toxicology, School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97333, United States of America.
| | - Manuel Garcia-Jaramillo
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States of America.
| | - Victor Carrasco-Navarro
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus, Yliopistonranta 1 E, 70211 Kuopio, Finland.
| | - Kay T Ho
- US Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, Narragansett, RI 02882, United States of America.
| | - Robert M Burgess
- US Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, Narragansett, RI 02882, United States of America.
| | - Leah M Thornton Hampton
- Southern California Coastal Water Research Project, 3535 Harbor Blvd, Suite 110, Costa Mesa, CA 92626, United States of America.
| | - Elise F Granek
- Environmental Science & Management, Portland State University, Portland, OR 97201, United States of America.
| | - Margaret McCauley
- US Environmental Protection Agency, Region 10, Seattle, WA 98101, United States of America.
| | - Jenifer K McIntyre
- School of the Environment, Washington State University, Puyallup Research & Extension Center, Washington Stormwater Center, 2606 W Pioneer Ave, Puyallup, WA 98371, United States of America.
| | - Edward P Kolodziej
- Interdisciplinary Arts and Sciences (UW Tacoma), Civil and Environmental Engineering (UW Seattle), Center for Urban Waters, University of Washington, Tacoma, WA 98402, United States of America.
| | - Ximin Hu
- Civil and Environmental Engineering (UW Seattle), University of Washington, Seattle, WA 98195, United States of America.
| | - Antony J Williams
- US Environmental Protection Agency, Center for Computational Toxicology and Exposure, Chemical Characterization and Exposure Division, Computational Chemistry & Cheminformatics Branch, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711, United States of America.
| | - Barbara A Beckingham
- Department of Geology & Environmental Geosciences, College of Charleston, Charleston, SC, 66 George Street Charleston, SC 29424, United States of America.
| | - Miranda E Jackson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States of America.
| | - Rhea D Sanders-Smith
- Washington State Department of Ecology, 300 Desmond Drive SE, Lacey, WA 98503, United States of America.
| | - Chloe L Fender
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States of America.
| | - George A King
- CSS, Inc., 200 SW 35th St, Corvallis, OR 97333, United States of America.
| | - Michael Bollman
- US Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, Corvallis, OR 97333, United States of America.
| | - Sujay S Kaushal
- Department of Geology and Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, United States of America.
| | - Brittany E Cunningham
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97333, United States of America.
| | - Sara J Hutton
- GSI Environmental, Inc., Olympia, Washington 98502, USA.
| | - Jackelyn Lang
- Department of Anatomy, Physiology, and Cell Biology, Department of Medicine and Epidemiology and the Karen C. Drayer Wildlife Health Center, University of California, Davis School of Veterinary Medicine, Davis, CA 95616, United States of America.
| | - Heather V Goss
- US Environmental Protection Agency, Office of Water, Office of Wastewater Management, Washington, DC 20004, United States of America.
| | - Samreen Siddiqui
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Corvallis, OR 97331, United States of America.
| | - Rebecca Sutton
- San Francisco Estuary Institute, 4911 Central Ave, Richmond, CA 94804, United States of America.
| | - Diana Lin
- San Francisco Estuary Institute, 4911 Central Ave, Richmond, CA 94804, United States of America.
| | - Miguel Mendez
- San Francisco Estuary Institute, 4911 Central Ave, Richmond, CA 94804, United States of America.
| |
Collapse
|
7
|
Malin JT, Kaushal SS, Mayer PM, Maas CM, Hohman SP, Rippy MA. Longitudinal stream synoptic (LSS) monitoring to evaluate water quality in restored streams. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:437. [PMID: 38592553 PMCID: PMC11069387 DOI: 10.1007/s10661-024-12570-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/23/2024] [Indexed: 04/10/2024]
Abstract
Impervious surface cover increases peak flows and degrades stream health, contributing to a variety of hydrologic, water quality, and ecological symptoms, collectively known as the urban stream syndrome. Strategies to combat the urban stream syndrome often employ engineering approaches to enhance stream-floodplain reconnection, dissipate erosive forces from urban runoff, and enhance contaminant retention, but it is not always clear how effective such practices are or how to monitor for their effectiveness. In this study, we explore applications of longitudinal stream synoptic (LSS) monitoring (an approach where multiple samples are collected along stream flowpaths across both space and time) to narrow this knowledge gap. Specifically, we investigate (1) whether LSS monitoring can be used to detect changes in water chemistry along longitudinal flowpaths in response to stream-floodplain reconnection and (2) what is the scale over which restoration efforts improve stream quality. We present results for four different classes of water quality constituents (carbon, nutrients, salt ions, and metals) across five watersheds with varying degrees of stream-floodplain reconnection. Our work suggests that LSS monitoring can be used to evaluate stream restoration strategies when implemented at meter to kilometer scales. As streams flow through restoration features, concentrations of nutrients, salts, and metals significantly decline (p < 0.05) or remain unchanged. This same pattern is not evident in unrestored streams, where salt ion concentrations (e.g., Na+, Ca2+, K+) significantly increase with increasing impervious cover. When used in concert with statistical approaches like principal component analysis, we find that LSS monitoring reveals changes in entire chemical mixtures (e.g., salts, metals, and nutrients), not just individual water quality constituents. These chemical mixtures are locally responsive to restoration projects, but can be obscured at the watershed scale and overwhelmed during storm events.
Collapse
Affiliation(s)
- Joseph T Malin
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, 20742, USA.
- Environmental Quality Resources, L.L.C., 2391 Brandermill Blvd., Suite 301, Gambrills, MD, 21054, USA.
| | - Sujay S Kaushal
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, 20742, USA
| | - Paul M Mayer
- Environmental Protection Agency, 805 SW Broadway #500, Portland, OR, 97205, USA
| | - Carly M Maas
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, 20742, USA
- United States Geological Survey, 1730 E Parham Road, Richmond, VA, 23228, USA
| | - Steven P Hohman
- Environmental Protection Agency, 1650 Arch St, Philadelphia, PA, 19103, USA
| | - Megan A Rippy
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 9408 Prince William Street, Manassas, VA, USA
- Center for Coastal Studies, Virginia Tech, 1068A Derring Hall (0420), Blacksburg, VA, USA
- Disaster Resilience and Risk Management (DRRM), 1068A Derring Hall, 405 Perry Street, Blacksburg, VA, 24061, USA
| |
Collapse
|
8
|
Moyano Salcedo AJ, Prat N, Bertrans-Tubau L, Piñero-Fernandez M, Cunillera-Montcusí D, López-Doval JC, Abril M, Proia L, Cañedo-Argüelles M. What happens when salinization meets eutrophication? A test using stream microcosms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168824. [PMID: 38030007 DOI: 10.1016/j.scitotenv.2023.168824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/25/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Nutrient and salt pollution often co-occur in rivers and streams due to human activities (e.g., agriculture, urbanization). Thus, understanding the interactive effects of nutrients and salinity on freshwater ecosystems is critical for environmental management. We experimentally assessed the interactive effects of nutrient and salt pollution on stream microcosms using biofilm and macroinvertebrates as model systems. Six treatments were performed in triplicate: control (C: N-NH4+ = 0.05; P- PO43- = 0.037; Cl- = 33.5 mg L-1), intermediate nutrient (IN: N-NH4+ = 0.4; P- PO43- = 0.271; Cl- = 33. 5 mg L-1), high nutrient (HN: N-NH4+ = 0.84; P- PO43- = 0.80; Cl- = 33.5 mg L-1), salt (S: N-NH4+ = 0.05; P- PO43- = 0.037; Cl- = 3000 mg L-1), salt with intermediate nutrient (SIN: N-NH4+ = 0.4; P- PO43- = 0.27; Cl- = 3000 mg L-1) and salt with high nutrient (SHN: N-NH4+ = 0.84; P- PO43- = 0.80; Cl- = 3000 mg L-1). After 14 days of exposure, biofilm chlorophyll-a increased across all treatments, with cyanobacteria replacing diatoms and green algae. Treatments with no added nutrients (C and S) had more P uptake capacity than the rest. The indicator species analysis showed 8 significant taxa, with Orthocladius (Orthocladius) gr. Wetterensis and Virganytarsus significantly associated with the salinity treatment. Overall, salt pollution led to a very strong decline in macroinvertebrate richness and diversity. However, salt toxicity seemed to be ameliorated by nutrient addition. Finally, both structural equation models and biotic-abiotic interaction networks showed that complex biological interactions could be modulating the response of the biological communities to our treatments. Thus, our study calls for species-level assessments of salt and nutrient effects on river ecosystems and advocates for better management of co-occurring pollutants.
Collapse
Affiliation(s)
- Alvaro Javier Moyano Salcedo
- FEHM-Lab (Freshwater Ecology, Hydrology and Management), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Geohazards and Civil Engineering Research Group, Department of Civil Engineering, Saint Thomas Villavicencio University, C/22 No 1a, 500003 Villavicencio, Colombia; Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Carrer de Jordi Girona, 18-26, 08034 Barcelona, Spain.
| | - Narcís Prat
- FEHM-Lab (Freshwater Ecology, Hydrology and Management), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Lluís Bertrans-Tubau
- BETA Technological Center, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Barcelona, Spain
| | - Martí Piñero-Fernandez
- FEHM-Lab (Freshwater Ecology, Hydrology and Management), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - David Cunillera-Montcusí
- FEHM-Lab (Freshwater Ecology, Hydrology and Management), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; WasserCluster Lunz - Biologische Station GmbH, Lunz am See, Austria
| | - Julio C López-Doval
- BETA Technological Center, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Barcelona, Spain
| | - Meritxell Abril
- BETA Technological Center, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Barcelona, Spain
| | - Lorenzo Proia
- BETA Technological Center, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Barcelona, Spain
| | - Miguel Cañedo-Argüelles
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Carrer de Jordi Girona, 18-26, 08034 Barcelona, Spain
| |
Collapse
|
9
|
Galella JG, Kaushal SS, Mayer PM, Maas CM, Shatkay RR, Inamdar S, Belt KT. Freshwater Salinization Syndrome Alters Nitrogen Transport in Urban Watersheds. WATER 2023; 15:1-22. [PMID: 38313692 PMCID: PMC10831318 DOI: 10.3390/w15223956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Anthropogenic salt inputs have impacted many streams in the U.S. for over a century. Urban stream salinity is often chronically elevated and punctuated by episodic salinization events, which can last hours to days after snowstorms and the application of road salt. Here, we investigated the impacts of freshwater salinization on total dissolved nitrogen (TDN) and NO 3 - / NO 2 - concentrations and fluxes across time in urban watersheds in the Baltimore-Washington D.C. metropolitan area of the Chesapeake Bay region. Episodic salinization from road salt applications and snowmelt quickly mobilized TDN in streams likely through soil ion exchange, hydrologic flushing, and other biogeochemical processes. Previous experimental work from other studies has shown that salinization can mobilize nitrogen from sediments, but less work has investigated this phenomenon with high-frequency sensors and targeted monitoring during road salt events. We found that urban streams exhibited elevated concentrations and fluxes of TDN, NO 3 - / NO 2 - , and specific conductance that rapidly peaked during and after winter road salt events, and then rapidly declined afterwards. We observed plateaus in TDN concentrations in the ranges of the highest specific conductance values (between 1000 and 2000 μS/cm) caused by road salt events. Plateaus in TDN concentrations beyond a certain threshold of specific conductance values suggested source limitation of TDN in watersheds (at the highest ranges in chloride concentrations and ranges); salts were likely extracting nitrogen from soils and streams through ion exchange in soils and sediments, ion pairing in soils and waters, and sodium dispersion of soils to a certain threshold level. When watershed transport was compared across land use, including a forested reference watershed, there was a positive relationship between Cl- loads and NO 3 - / NO 2 - loads. This relationship occurred across all sites regardless of land use, which suggests that the mass transport of Cl- and NO 3 - / NO 2 - are likely influenced by similar factors such as soil ion exchange, ion pairing, sodium dispersion of soils, hydrologic flushing, and biogeochemical processes. Freshwater salinization has the potential to alter the magnitude and timing of total dissolved nitrogen delivery to receiving waters during winter months following road salt applications, and further work should investigate the seasonal relationships of N transport with salinization in urban watersheds.
Collapse
Affiliation(s)
- Joseph G. Galella
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20140, USA
| | - Sujay S. Kaushal
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20140, USA
| | - Paul M. Mayer
- US Environmental Protection Agency Office of Research and Development, Center for Public Health and Environmental Assessment, Corvallis, OR 97333, USA
| | - Carly M. Maas
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20140, USA
| | - Ruth R. Shatkay
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20140, USA
| | - Shreeram Inamdar
- Water Science and Policy Graduate Program, University of Delaware, Newark, DE 19716, USA
| | - Kenneth T. Belt
- Department of Geography and Environmental Systems, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| |
Collapse
|
10
|
Kaushal SS, Likens GE, Mayer PM, Shatkay RR, Shelton SA, Grant SB, Utz RM, Yaculak AM, Maas CM, Reimer JE, Bhide SV, Malin JT, Rippy MA. The Anthropogenic Salt Cycle. NATURE REVIEWS. EARTH & ENVIRONMENT 2023; 4:770-784. [PMID: 38515734 PMCID: PMC10953805 DOI: 10.1038/s43017-023-00485-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 03/23/2024]
Abstract
Increasing salt production and use is shifting the natural balances of salt ions across Earth systems, causing interrelated effects across biophysical systems collectively known as freshwater salinization syndrome. In this Review, we conceptualize the natural salt cycle and synthesize increasing global trends of salt production and riverine salt concentrations and fluxes. The natural salt cycle is primarily driven by relatively slow geologic and hydrologic processes that bring different salts to the surface of the Earth. Anthropogenic activities have accelerated the processes, timescales and magnitudes of salt fluxes and altered their directionality, creating an anthropogenic salt cycle. Global salt production has increased rapidly over the past century for different salts, with approximately 300 Mt of NaCl produced per year. A salt budget for the USA suggests that salt fluxes in rivers can be within similar orders of magnitude as anthropogenic salt fluxes, and there can be substantial accumulation of salt in watersheds. Excess salt propagates along the anthropogenic salt cycle, causing freshwater salinization syndrome to extend beyond freshwater supplies and affect food and energy production, air quality, human health and infrastructure. There is a need to identify environmental limits and thresholds for salt ions and reduce salinization before planetary boundaries are exceeded, causing serious or irreversible damage across Earth systems.
Collapse
Affiliation(s)
- Sujay S Kaushal
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Gene E Likens
- Cary Institute of Ecosystem Studies, Millbrook, NY, USA
- University of Connecticut, Storrs, CT, USA
| | - Paul M Mayer
- US Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, OR, USA
| | - Ruth R Shatkay
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Sydney A Shelton
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Stanley B Grant
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via Jr Department of Civil and Environmental Engineering, Virginia Tech, Manassas, VA, USA
- Center for Coastal Studies, Virginia Tech, Blacksburg, VA, USA
| | | | - Alexis M Yaculak
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Carly M Maas
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Jenna E Reimer
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Shantanu V Bhide
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via Jr Department of Civil and Environmental Engineering, Virginia Tech, Manassas, VA, USA
| | - Joseph T Malin
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Megan A Rippy
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via Jr Department of Civil and Environmental Engineering, Virginia Tech, Manassas, VA, USA
- Center for Coastal Studies, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
11
|
Maas CM, Kaushal SS, Rippy MA, Mayer PM, Grant SB, Shatkay RR, Malin JT, Bhide SV, Vikesland P, Krauss L, Reimer JE, Yaculak AM. Freshwater salinization syndrome limits management efforts to improve water quality. FRONTIERS IN ENVIRONMENTAL SCIENCE 2023; 11:1-20. [PMID: 37841559 PMCID: PMC10568995 DOI: 10.3389/fenvs.2023.1106581] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Freshwater Salinization Syndrome (FSS) refers to groups of biological, physical, and chemical impacts which commonly occur together in response to salinization. FSS can be assessed by the mobilization of chemical mixtures, termed "chemical cocktails", in watersheds. Currently, we do not know if salinization and mobilization of chemical cocktails along streams can be mitigated or reversed using restoration and conservation strategies. We investigated 1) the formation of chemical cocktails temporally and spatially along streams experiencing different levels of restoration and riparian forest conservation and 2) the potential for attenuation of chemical cocktails and salt ions along flowpaths through conservation and restoration areas. We monitored high-frequency temporal and longitudinal changes in streamwater chemistry in response to different pollution events (i.e., road salt, stormwater runoff, wastewater effluent, and baseflow conditions) and several types of watershed management or conservation efforts in six urban watersheds in the Chesapeake Bay watershed. Principal component analysis (PCA) indicates that chemical cocktails which formed along flowpaths (i.e., permanent reaches of a stream) varied due to pollution events. In response to winter road salt applications, the chemical cocktails were enriched in salts and metals (e.g., Na+, Mn, and Cu). During most baseflow and stormflow conditions, chemical cocktails were less enriched in salt ions and trace metals. Downstream attenuation of salt ions occurred during baseflow and stormflow conditions along flowpaths through regional parks, stream-floodplain restorations, and a national park. Conversely, chemical mixtures of salt ions and metals, which formed in response to multiple road salt applications or prolonged road salt exposure, did not show patterns of rapid attenuation downstream. Multiple linear regression was used to investigate variables that influence changes in chemical cocktails along flowpaths. Attenuation and dilution of salt ions and chemical cocktails along stream flowpaths was significantly related to riparian forest buffer width, types of salt pollution, and distance downstream. Although salt ions and chemical cocktails can be attenuated and diluted in response to conservation and restoration efforts at lower concentration ranges, there can be limitations in attenuation during road salt events, particularly if storm drains bypass riparian buffers.
Collapse
Affiliation(s)
- Carly M. Maas
- Department of Geology and Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | - Sujay S. Kaushal
- Department of Geology and Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | - Megan A. Rippy
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Manassas, VA, United States
- Center for Coastal Studies, Virginia Tech, Blacksburg, VA, United States
| | - Paul M. Mayer
- US Environmental Protection Agency, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, Corvallis, OR, United States
| | - Stanley B. Grant
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Manassas, VA, United States
- Center for Coastal Studies, Virginia Tech, Blacksburg, VA, United States
| | - Ruth R. Shatkay
- Department of Geology and Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | - Joseph T. Malin
- Department of Geology and Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | - Shantanu V. Bhide
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Manassas, VA, United States
| | - Peter Vikesland
- The Charles E. Via Jr Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Lauren Krauss
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Manassas, VA, United States
| | - Jenna E. Reimer
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, FL, United States
| | - Alexis M. Yaculak
- Water Sciences and Policy Graduate Program, University of Delaware, Newark, DE, United States
| |
Collapse
|
12
|
Kaushal SS, Maas CM, Mayer PM, Newcomer-Johnson TA, Grant SB, Rippy MA, Shatkay RR, Leathers J, Gold AJ, Smith C, McMullen EC, Haq S, Smith R, Duan S, Malin J, Yaculak A, Reimer JE, Newcomb KD, Raley AS, Collison DC, Galella JG, Grese M, Sivirichi G, Doody TR, Vikesland P, Bhide SV, Krauss L, Daugherty M, Stavrou C, Etheredge M, Ziegler J, Kirschnick A, England W, Belt KT. Longitudinal stream synoptic monitoring tracks chemicals along watershed continuums: a typology of trends. FRONTIERS IN ENVIRONMENTAL SCIENCE 2023; 11:1-28. [PMID: 37475839 PMCID: PMC10355011 DOI: 10.3389/fenvs.2023.1122485] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
There are challenges in monitoring and managing water quality due to spatial and temporal heterogeneity in contaminant sources, transport, and transformations. We demonstrate the importance of longitudinal stream synoptic (LSS) monitoring, which can track combinations of water quality parameters along flowpaths across space and time. Specifically, we analyze longitudinal patterns of chemical mixtures of carbon, nutrients, greenhouse gasses, salts, and metals concentrations along 10 flowpaths draining 1,765 km2 of the Chesapeake Bay region. These 10 longitudinal stream flowpaths are drained by watersheds experiencing either urban degradation, forest and wetland conservation, or stream and floodplain restoration. Along the 10 longitudinal stream flowpaths, we monitored over 300 total sampling sites along a combined stream length of 337 km. Synoptic monitoring along longitudinal flowpaths revealed: (1) increasing, decreasing, piecewise, or no trends and transitions in water quality with increasing distance downstream, which provide insights into water quality processes along flowpaths; (2) longitudinal trends and transitions in water quality along flowpaths can be quantified and compared using simple linear and non-linear statistical relationships with distance downstream and/or land use/land cover attributes, (3) attenuation and transformation of chemical cocktails along flowpaths depend on: spatial scales, pollution sources, and transitions in land use and management, hydrology, and restoration. We compared our LSS patterns with others from the global literature to synthesize a typology of longitudinal water quality trends and transitions in streams and rivers based on hydrological, biological, and geochemical processes. Applications of LSS monitoring along flowpaths from our results and the literature reveal: (1) if there are shifts in pollution sources, trends, and transitions along flowpaths, (2) which pollution sources can spread further downstream to sensitive receiving waters such as drinking water supplies and coastal zones, and (3) if transitions in land use, conservation, management, or restoration can attenuate downstream transport of pollution sources. Our typology of longitudinal water quality responses along flowpaths combines many observations across suites of chemicals that can follow predictable patterns based on watershed characteristics. Our typology of longitudinal water quality responses also provides a foundation for future studies, watershed assessments, evaluating watershed management and stream restoration, and comparing watershed responses to non-point and point pollution sources along streams and rivers. LSS monitoring, which integrates both spatial and temporal dimensions and considers multiple contaminants together (a chemical cocktail approach), can be a comprehensive strategy for tracking sources, fate, and transport of pollutants along stream flowpaths and making comparisons of water quality patterns across different watersheds and regions.
Collapse
Affiliation(s)
- Sujay S. Kaushal
- Department of Geology, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | - Carly M. Maas
- Department of Geology, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | - Paul M. Mayer
- United States Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, Corvallis, OR, United States
| | - Tammy A. Newcomer-Johnson
- United States Environmental Protection Agency, Center for Environmental Measurement and Modeling, Watershed and Ecosystem Characterization Division, Cincinnati, OH, United States
| | - Stanley B. Grant
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Manassas, VA, United States
- Center for Coastal Studies, Virginia Tech, Blacksburg, VA, United States
| | - Megan A. Rippy
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Manassas, VA, United States
- Center for Coastal Studies, Virginia Tech, Blacksburg, VA, United States
| | - Ruth R. Shatkay
- Department of Geology, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | | | - Arthur J. Gold
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI, United States
| | - Cassandra Smith
- Department of Geology, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | - Evan C. McMullen
- Department of Geology, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | - Shahan Haq
- Department of Geology, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | - Rose Smith
- Department of Geology, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | - Shuiwang Duan
- Department of Geology, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | - Joseph Malin
- Department of Geology, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | - Alexis Yaculak
- Department of Geology, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | - Jenna E. Reimer
- Department of Geology, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | - Katie Delaney Newcomb
- Department of Geology, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | - Ashley Sides Raley
- Department of Geology, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | - Daniel C. Collison
- Department of Geology, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | - Joseph G. Galella
- Department of Geology, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | | | | | - Thomas R. Doody
- Department of Geology, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | - Peter Vikesland
- The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Shantanu V. Bhide
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Manassas, VA, United States
| | - Lauren Krauss
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Manassas, VA, United States
| | | | | | | | | | | | | | - Kenneth T. Belt
- Department of Geography and Environmental Systems, University of Maryland Baltimore County, Baltimore, MD, United States
| |
Collapse
|
13
|
Galella JG, Kaushal SS, Mayer PM, Maas CM, Shatkay RR, Stutzke RA. Stormwater Best Management Practices: Experimental Evaluation of Chemical Cocktails Mobilized by Freshwater Salinization Syndrome. FRONTIERS IN ENVIRONMENTAL SCIENCE 2023; 11:1-20. [PMID: 37234950 PMCID: PMC10208307 DOI: 10.3389/fenvs.2023.1020914] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Freshwater Salinization Syndrome (FSS) refers to the suite of physical, biological, and chemical impacts of salt ions on the degradation of natural, engineered, and social systems. Impacts of FSS on mobilization of chemical cocktails has been documented in streams and groundwater, but little research has focused on the effects of FSS on stormwater best management practices (BMPs) such as: constructed wetlands, bioswales, ponds, and bioretention. However emerging research suggests that stormwater BMPs may be both sources and sinks of contaminants, shifting seasonally with road salt applications. We conducted lab experiments to investigate this premise; replicate water and soil samples were collected from four distinct stormwater feature types (bioretention, bioswale, constructed wetlands and retention ponds) and were used in salt incubation experiments conducted under six different salinities with three different salts (NaCl, CaCl2, and MgCl2). Increased salt concentrations had profound effects on major and trace element mobilization, with all three salts showing significant positive relationships across nearly all elements analyzed. Across all sites, mean salt retention was 34%, 28%, and 26% for Na+, Mg2+ and Ca2+ respectively, and there were significant differences among stormwater BMPs. Salt type showed preferential mobilization of certain elements. NaCl mobilized Cu, a potent toxicant to aquatic biota, at rates over an order of magnitude greater than both CaCl2 and MgCl2. Stormwater BMP type also had a significant effect on elemental mobilization, with ponds mobilizing significantly more Mn than other sites. However, salt concentration and salt type consistently had significant effects on mean concentrations of elements mobilized across all stormwater BMPs (p<0.05), suggesting that processes such as ion exchange mobilize metals mobilize metals and salt ions regardless of BMP type. Our results suggest that decisions regarding the amounts and types of salts used as deicers can have significant effects on reducing contaminant mobilization to freshwater ecosystems.
Collapse
Affiliation(s)
- Joseph G Galella
- Department of Geology & Earth System Science Interdisciplinary Center University of Maryland College Park, MD 20140
| | - Sujay S Kaushal
- Department of Geology & Earth System Science Interdisciplinary Center University of Maryland College Park, MD 20140
| | - Paul M Mayer
- US Environmental Protection Agency Office of Research and Development Center for Public Health and Environmental Assessment Corvallis, OR 97333
| | - Carly M Maas
- Department of Geology & Earth System Science Interdisciplinary Center University of Maryland College Park, MD 20140
| | - Ruth R Shatkay
- Department of Geology & Earth System Science Interdisciplinary Center University of Maryland College Park, MD 20140
| | - Robert A Stutzke
- Department of Geology & Earth System Science Interdisciplinary Center University of Maryland College Park, MD 20140
| |
Collapse
|
14
|
Kaushal SS, Mayer PM, Likens GE, Reimer JE, Maas CM, Rippy MA, Grant SB, Hart I, Utz RM, Shatkay RR, Wessel BM, Maietta CE, Pace ML, Duan S, Boger WL, Yaculak AM, Galella JG, Wood KL, Morel CJ, Nguyen W, Querubin SEC, Sukert RA, Lowien A, Houde AW, Roussel A, Houston AJ, Cacopardo A, Ho C, Talbot-Wendlandt H, Widmer JM, Slagle J, Bader JA, Chong JH, Wollney J, Kim J, Shepherd L, Wilfong MT, Houlihan M, Sedghi N, Butcher R, Chaudhary S, Becker WD. Five state factors control progressive stages of freshwater salinization syndrome. LIMNOLOGY AND OCEANOGRAPHY LETTERS 2023; 8:190-211. [PMID: 37539375 PMCID: PMC10395323 DOI: 10.1002/lol2.10248] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 02/21/2022] [Indexed: 08/05/2023]
Abstract
Factors driving freshwater salinization syndrome (FSS) influence the severity of impacts and chances for recovery. We hypothesize that spread of FSS across ecosystems is a function of interactions among five state factors: human activities, geology, flowpaths, climate, and time. (1) Human activities drive pulsed or chronic inputs of salt ions and mobilization of chemical contaminants. (2) Geology drives rates of erosion, weathering, ion exchange, and acidification-alkalinization. (3) Flowpaths drive salinization and contaminant mobilization along hydrologic cycles. (4) Climate drives rising water temperatures, salt stress, and evaporative concentration of ions and saltwater intrusion. (5) Time influences consequences, thresholds, and potentials for ecosystem recovery. We hypothesize that state factors advance FSS in distinct stages, which eventually contribute to failures in systems-level functions (supporting drinking water, crops, biodiversity, infrastructure, etc.). We present future research directions for protecting freshwaters at risk based on five state factors and stages from diagnosis to prognosis to cure.
Collapse
Affiliation(s)
- Sujay S. Kaushal
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
| | - Paul M. Mayer
- Pacific Ecological Systems Division, US Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Corvallis, Oregon
| | - Gene E. Likens
- Cary Institute of Ecosystem Studies, Millbrook, New York
- University of Connecticut, Storrs, Connecticut
| | - Jenna E. Reimer
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
| | - Carly M. Maas
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
| | - Megan A. Rippy
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via Jr Department of Civil and Environmental Engineering, Virginia Tech, Manassas, Virginia
- Center for Coastal Studies, Virginia Tech, Blacksburg, Virginia
| | - Stanley B. Grant
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via Jr Department of Civil and Environmental Engineering, Virginia Tech, Manassas, Virginia
- Center for Coastal Studies, Virginia Tech, Blacksburg, Virginia
| | - Ian Hart
- Chatham University, Gibsonia, Pennsylvania
| | | | - Ruth R. Shatkay
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
| | - Barret M. Wessel
- Department of Environmental Science and Technology, University of Maryland, College Park, Maryland
| | - Christine E. Maietta
- Department of Environmental Science and Technology, University of Maryland, College Park, Maryland
| | - Michael L. Pace
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia
| | - Shuiwang Duan
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
| | - Walter L. Boger
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
| | - Alexis M. Yaculak
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
| | - Joseph G. Galella
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
| | - Kelsey L. Wood
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
| | - Carol J. Morel
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
| | - William Nguyen
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
| | - Shane Elizabeth C. Querubin
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
| | - Rebecca A. Sukert
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
| | - Anna Lowien
- Environmental Science & Policy Program, University of Maryland, College Park, Maryland
| | - Alyssa Wellman Houde
- Department of Environmental Science and Technology, University of Maryland, College Park, Maryland
| | - Anaïs Roussel
- Department of Biology, Georgetown University, Washington, District of Columbia
| | - Andrew J. Houston
- Department of Geology, University of Maryland, College Park, Maryland
| | - Ari Cacopardo
- Department of Geology, University of Maryland, College Park, Maryland
| | - Cristy Ho
- Department of Geology, University of Maryland, College Park, Maryland
| | | | - Jacob M. Widmer
- Department of Geology, University of Maryland, College Park, Maryland
| | - Jairus Slagle
- Department of Geology, University of Maryland, College Park, Maryland
| | - James A. Bader
- Department of Geology, University of Maryland, College Park, Maryland
| | - Jeng Hann Chong
- Department of Geology, University of Maryland, College Park, Maryland
| | - Jenna Wollney
- Department of Geology, University of Maryland, College Park, Maryland
| | - Jordan Kim
- Department of Environmental Science and Technology, University of Maryland, College Park, Maryland
| | - Lauren Shepherd
- Department of Geology, University of Maryland, College Park, Maryland
| | - Matthew T. Wilfong
- Department of Environmental Science and Technology, University of Maryland, College Park, Maryland
| | - Megan Houlihan
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
| | - Nathan Sedghi
- Department of Environmental Science and Technology, University of Maryland, College Park, Maryland
| | - Rebecca Butcher
- Department of Geology, University of Maryland, College Park, Maryland
| | - Sona Chaudhary
- Department of Geology, University of Maryland, College Park, Maryland
| | - William D. Becker
- Department of Geology, University of Maryland, College Park, Maryland
| |
Collapse
|