1
|
O'Brien PA, Bell SC, Rix L, Turnlund AC, Kjeldsen SR, Webster NS, Negri AP, Abdul Wahab MA, Vanwonterghem I. Light and dark biofilm adaptation impacts larval settlement in diverse coral species. ENVIRONMENTAL MICROBIOME 2025; 20:11. [PMID: 39863912 PMCID: PMC11762876 DOI: 10.1186/s40793-025-00670-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Recovery of degraded coral reefs is reliant upon the recruitment of coral larvae, yet the mechanisms behind coral larval settlement are not well understood, especially for non-acroporid species. Biofilms associated with reef substrates, such as coral rubble or crustose coralline algae, can induce coral larval settlement; however, the specific biochemical cues and the microorganisms that produce them remain largely unknown. Here, we assessed larval settlement responses in five non-acroporid broadcast-spawning coral species in the families Merulinidae, Lobophyllidae and Poritidae to biofilms developed in aquaria for either one or two months under light and dark treatments. Biofilms were characterised using 16S rRNA gene sequencing to identify the taxa associated with settlement induction and/or inhibition. RESULTS We show that light and biofilm age are critical factors in the development of settlement inducing biofilms, where different biofilm compositions impacted larval settlement behaviour. Further, we show that specific biofilm taxa were either positively or negatively correlated with coral settlement, indicating potential inducers or inhibitors. Although these taxa were generally specific to each coral species, we observed bacteria classified as Flavobacteriaceae, Rhodobacteraceae, Rhizobiaceae and Pirellulaceae to be consistently correlated with larval settlement across multiple coral species. CONCLUSIONS Our work identifies novel microbial groups that significantly influence coral larval settlement, which can be targeted for the discovery of settlement-inducing metabolites for implementation in reef restoration programs. Furthermore, our results reinforce that the biofilm community on coral reef substrates plays a crucial role in influencing coral larval recruitment, thereby impacting the recovery of coral reefs.
Collapse
Affiliation(s)
- Paul A O'Brien
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.
| | - Sara C Bell
- Australian Institute of Marine Science, Townsville, QLD, Australia
- AIMS@JCU, James Cook University, Townsville, QLD, Australia
| | - Laura Rix
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Abigail C Turnlund
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Shannon R Kjeldsen
- Australian Institute of Marine Science, Townsville, QLD, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, 4811, Australia
| | - Nicole S Webster
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Andrew P Negri
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | | | - Inka Vanwonterghem
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- Commonwealth Scientific and Industrial Research Organisation, Dutton Park, QLD, Australia
| |
Collapse
|
2
|
Yang Q, Yang B, Yang B, Zhang W, Tang X, Sun H, Zhang Y, Li J, Ling J, Dong J. Alleviating Coral Thermal Stress via Inoculation with Quorum Quenching Bacteria. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:951-963. [PMID: 39030411 DOI: 10.1007/s10126-024-10344-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/05/2024] [Indexed: 07/21/2024]
Abstract
In the background of global warming, coral bleaching induced by elevated seawater temperature is the primary cause of coral reef degradation. Coral microbiome engineering using the beneficial microorganisms for corals (BMCs) has become a hot spot in the field of coral reef conservation and restoration. Investigating the potential of alleviating thermal stress by quorum quenching (QQ) bacteria may provide more tools for coral microbial engineering remediation. In this study, QQ bacteria strain Pseudoalteromonas piscicida SCSIO 43740 was screened among 75 coral-derived bacterial strains, and its quorum sensing inhibitor (QSI) compound was isolated and identified as 2,4-di-tert-butylphenol (2,4-DTBP). Then, the thermal stress alleviating potential of QQ bacteria on coral Pocillopora damicornis was tested by a 30-day controlled experiment with three different treatments: control group (Con: 29 °C), high temperature group (HT: 31 °C), and the group of high temperature with QQ bacteria inoculation (HTQQ: 31 °C + QQ bacteria). The results showed that QQ bacteria SCSIO 43740 inoculation can significantly mitigate the loss of symbiotic algae and impairment of photosynthesis efficiency of coral P. damicornis under thermal stress. Significant difference in superoxide dismutase (SOD) and catalase (CAT) enzyme activities between HT and HTQQ was not observed. In addition, QQ bacteria inoculation suppressed the coral microbial community beta-dispersion and improved the stability of microbial co-occurrence network under thermal stress. It was suggested that QQ bacteria inoculation can alleviate coral thermal stress via reshaping microbial interaction and maintain community stability of coral microbiome. This study provided new evidence for the probiotic function of QQ bacteria in corals, which shedding light on the development of new microbiological tools for coral reef conservation.
Collapse
Affiliation(s)
- Qingsong Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Shantou, 515041, People's Republic of China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China
| | - Bing Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Shantou, 515041, People's Republic of China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China
| | - Wenqian Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyu Tang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China
| | - Huiming Sun
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China
| | - Yanying Zhang
- University of Chinese Academy of Sciences, Beijing, China
- Yantai University, Yantai, 264003, China
| | - Jie Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Shantou, 515041, People's Republic of China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China
| | - Juan Ling
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China.
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China.
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Shantou, 515041, People's Republic of China.
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China.
| | - Junde Dong
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Guangzhou, 510301, China.
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, People's Republic of China.
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China, Sea Institute of Oceanology , Chinese Academy of Sciences, Shantou, 515041, People's Republic of China.
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 511458, China.
| |
Collapse
|
3
|
Zhang Y, Zhang Y, Tang X, Guo X, Yang Q, Sun H, Wang H, Ling J, Dong J. A transcriptome-wide analysis provides novel insights into how Metabacillus indicus promotes coral larvae metamorphosis and settlement. BMC Genomics 2024; 25:840. [PMID: 39242500 PMCID: PMC11380378 DOI: 10.1186/s12864-024-10742-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Coral reefs experience frequent and severe disturbances that can overwhelm their natural resilience. In such cases, ecological restoration is essential for coral reef recovery. Sexual reproduction has been reported to present the simplest and most cost-effective means for coral reef restoration. However, larval settlement and post-settlement survival represent bottlenecks for coral recruitment in sexual reproduction. While bacteria play a significant role in triggering coral metamorphosis and settlement in many coral species, the underlying molecular mechanisms remain largely unknown. In this study, we employed a transcriptome-level analysis to elucidate the intricate interactions between bacteria and coral larvae that are crucial for the settlement process. RESULTS High Metabacillus indicus strain cB07 inoculation densities resulted in the successful induction of metamorphosis and settlement of coral Pocillopora damicoris larvae. Compared with controls, inoculated coral larvae exhibited a pronounced increase in the abundance of strain cB07 during metamorphosis and settlement, followed by a significant decrease in total lipid contents during the settled stage. The differentially expressed genes (DEGs) during metamorphosis were significantly enriched in amino acid, protein, fatty acid, and glucose related metabolic pathways. In settled coral larvae induced by strain cB07, there was a significant enrichment of DEGs with essential roles in the establishment of a symbiotic relationship between coral larvae and their symbiotic partners. The photosynthetic efficiency of strain cB07 induced primary polyp holobionts was improved compared to those of the negative controls. In addition, coral primary polyps induced by strain cB07 showed significant improvements in energy storage and survival. CONCLUSIONS Our findings revealed that strain cB07 can promote coral larval settlement and enhance post-settlement survival and fitness. Manipulating coral sexual reproduction with strain cB07 can overcome the current recruitment bottleneck. This innovative approach holds promise for future coral reef restoration efforts.
Collapse
Affiliation(s)
- Yanying Zhang
- Ocean School, Yantai University, Yantai, 264005, China.
| | - Ying Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xiaoyu Tang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xiangrui Guo
- Ocean School, Yantai University, Yantai, 264005, China
| | - Qingsong Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou, 515041, PR China
| | - Hao Sun
- Ocean School, Yantai University, Yantai, 264005, China
| | - Hanzhang Wang
- Ocean School, Yantai University, Yantai, 264005, China
| | - Juan Ling
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou, 515041, PR China
| | - Junde Dong
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China.
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou, 515041, PR China.
| |
Collapse
|
4
|
Subbaiyan R, Ganesan A, Dhanuskodi S. Scientific Investigation of Antifouling Activity from Biological Agents and Distribution of Marine Foulers-Coastal Areas of Tamil Nadu. Appl Biochem Biotechnol 2024; 196:1752-1766. [PMID: 37436546 DOI: 10.1007/s12010-023-04600-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/13/2023]
Abstract
Biofouling is the result of a biological process that is the accumulation of micro- and macro-organisms on the surfaces of the ship which causes serious environmental problems. The consequence of biofouling includes modifying the hydrodynamic response, affecting heat exchange, can make structures heavier, accelerate or generating corrosion, biodegradation, increasing the fatigue of certain materials, and blocking mechanical functions. It causes severe problems for the objects in the water such as ships and buoys. Also, its impact on shellfish and other aquaculture was sometimes devastating. The main scope of this study is to review the currently available biocides from biological agents for marine submerged foulants and marine foulers that are present around the coastal areas of Tamil Nadu. Biological anti-fouling methods are preferred than that of the chemical and physical anti-fouling methods as it have some toxic effects on the non targeted marine biodiversity. This study focuses on the marine foulers that are present around the coastal areas of Tamil Nadu which will be helpful for the researchers to discover the suitable anti-foulers from a biological source, which will be very useful to protect the marine ecosystem and marine economy. A total of 182 antifouling compounds from marine biological sources were discovered. The marine microbes, Penicillium sp. and Pseudoalteromonas issachenkonii, were reported to possess EC50. The survey results obtained from this study show that Chennai coastal region has a lot of barnacles, and 8 different species were present in Pondicherry region.
Collapse
Affiliation(s)
- Rubavathi Subbaiyan
- Department of Biotechnology, K.S. Rangasamy College of Technology, Tiruchengode, 637 215, Tamil Nadu, India
| | - Ayyappadasan Ganesan
- Department of Biotechnology, K.S. Rangasamy College of Technology, Tiruchengode, 637 215, Tamil Nadu, India.
| | - Saranya Dhanuskodi
- Department of Biotechnology, K.S. Rangasamy College of Technology, Tiruchengode, 637 215, Tamil Nadu, India
| |
Collapse
|
5
|
Jensen N, Weiland-Bräuer N, Joel S, Chibani CM, Schmitz RA. The Life Cycle of Aurelia aurita Depends on the Presence of a Microbiome in Polyps Prior to Onset of Strobilation. Microbiol Spectr 2023; 11:e0026223. [PMID: 37378516 PMCID: PMC10433978 DOI: 10.1128/spectrum.00262-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Aurelia aurita's intricate life cycle alternates between benthic polyp and pelagic medusa stages. The strobilation process, a critical asexual reproduction mechanism in this jellyfish, is severely compromised in the absence of the natural polyp microbiome, with limited production and release of ephyrae. Yet, the recolonization of sterile polyps with a native polyp microbiome can correct this defect. Here, we investigated the precise timing necessary for recolonization as well as the host-associated molecular processes involved. We deciphered that a natural microbiota had to be present in polyps prior to the onset of strobilation to ensure normal asexual reproduction and a successful polyp-to-medusa transition. Providing the native microbiota to sterile polyps after the onset of strobilation failed to restore the normal strobilation process. The absence of a microbiome was associated with decreased transcription of developmental and strobilation genes as monitored by reverse transcription-quantitative PCR. Transcription of these genes was exclusively observed for native polyps and sterile polyps that were recolonized before the initiation of strobilation. We further propose that direct cell contact between the host and its associated bacteria is required for the normal production of offspring. Overall, our findings indicate that the presence of a native microbiome at the polyp stage prior to the onset of strobilation is essential to ensure a normal polyp-to-medusa transition. IMPORTANCE All multicellular organisms are associated with microorganisms that play fundamental roles in the health and fitness of the host. Notably, the native microbiome of the Cnidarian Aurelia aurita is crucial for the asexual reproduction by strobilation. Sterile polyps display malformed strobilae and a halt of ephyrae release, which is restored by recolonizing sterile polyps with a native microbiota. Despite that, little is known about the microbial impact on the strobilation process's timing and molecular consequences. The present study shows that A. aurita's life cycle depends on the presence of the native microbiome at the polyp stage prior to the onset of strobilation to ensure the polyp-to-medusa transition. Moreover, sterile individuals correlate with reduced transcription levels of developmental and strobilation genes, evidencing the microbiome's impact on strobilation on the molecular level. Transcription of strobilation genes was exclusively detected in native polyps and those recolonized before initiating strobilation, suggesting microbiota-dependent gene regulation.
Collapse
Affiliation(s)
- Nadin Jensen
- Institute of General Microbiology, Christian-Albrechts University Kiel, Kiel, Germany
| | - Nancy Weiland-Bräuer
- Institute of General Microbiology, Christian-Albrechts University Kiel, Kiel, Germany
| | - Shindhuja Joel
- Institute of General Microbiology, Christian-Albrechts University Kiel, Kiel, Germany
| | - Cynthia Maria Chibani
- Institute of General Microbiology, Christian-Albrechts University Kiel, Kiel, Germany
| | - Ruth Anne Schmitz
- Institute of General Microbiology, Christian-Albrechts University Kiel, Kiel, Germany
| |
Collapse
|
6
|
Padayhag BM, Nada MAL, Baquiran JIP, Sison-Mangus MP, San Diego-McGlone ML, Cabaitan PC, Conaco C. Microbial community structure and settlement induction capacity of marine biofilms developed under varied reef conditions. MARINE POLLUTION BULLETIN 2023; 193:115138. [PMID: 37321001 DOI: 10.1016/j.marpolbul.2023.115138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Coral larval settlement relies on biogenic cues such as those elicited by microbial biofilm communities, a crucial element of coral recruitment. Eutrophication can modify these biofilm-associated communities, but studies on how this affects coral larval settlement are limited. In this study, we developed biofilm communities on glass slides at four sites with increasing distance from a mariculture zone. Biofilms farthest from the mariculture area were more effective at inducing the settlement of Acropora tenuis larvae. These biofilms were characterized by a greater proportion of crustose coralline algae (CCA) and gammaproteobacterial taxa compared to biofilms from sites closer to the mariculture zone, which had a greater proportion of cyanobacteria and no CCA. These findings suggest that nutrient enrichment due to mariculture activities alters the composition of biofilm-associated microbiome at nearby reef sites and indirectly causes poor coral larval settlement.
Collapse
Affiliation(s)
- Blaire M Padayhag
- Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
| | - Michael Angelou L Nada
- Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
| | - Jake Ivan P Baquiran
- Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
| | | | | | - Patrick C Cabaitan
- Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
| | - Cecilia Conaco
- Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines.
| |
Collapse
|
7
|
Morrow KM, Pankey MS, Lesser MP. Community structure of coral microbiomes is dependent on host morphology. MICROBIOME 2022; 10:113. [PMID: 35902906 PMCID: PMC9331152 DOI: 10.1186/s40168-022-01308-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The importance of symbiosis has long been recognized on coral reefs, where the photosynthetic dinoflagellates of corals (Symbiodiniaceae) are the primary symbiont. Numerous studies have now shown that a diverse assemblage of prokaryotes also make-up part of the microbiome of corals. A subset of these prokaryotes is capable of fixing nitrogen, known as diazotrophs, and is also present in the microbiome of scleractinian corals where they have been shown to supplement the holobiont nitrogen budget. Here, an analysis of the microbiomes of 16 coral species collected from Australia, Curaçao, and Hawai'i using three different marker genes (16S rRNA, nifH, and ITS2) is presented. These data were used to examine the effects of biogeography, coral traits, and ecological life history characteristics on the composition and diversity of the microbiome in corals and their diazotrophic communities. RESULTS The prokaryotic microbiome community composition (i.e., beta diversity) based on the 16S rRNA gene varied between sites and ecological life history characteristics, but coral morphology was the most significant factor affecting the microbiome of the corals studied. For 15 of the corals studied, only two species Pocillopora acuta and Seriotopora hystrix, both brooders, showed a weak relationship between the 16S rRNA gene community structure and the diazotrophic members of the microbiome using the nifH marker gene, suggesting that many corals support a microbiome with diazotrophic capabilities. The order Rhizobiales, a taxon that contains primarily diazotrophs, are common members of the coral microbiome and were eight times greater in relative abundances in Hawai'i compared to corals from either Curacao or Australia. However, for the diazotrophic component of the coral microbiome, only host species significantly influenced the composition and diversity of the community. CONCLUSIONS The roles and interactions between members of the coral holobiont are still not well understood, especially critical functions provided by the coral microbiome (e.g., nitrogen fixation), and the variation of these functions across species. The findings presented here show the significant effect of morphology, a coral "super trait," on the overall community structure of the microbiome in corals and that there is a strong association of the diazotrophic community within the microbiome of corals. However, the underlying coral traits linking the effects of host species on diazotrophic communities remain unknown. Video Abstract.
Collapse
Affiliation(s)
- Kathleen M Morrow
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, USA
- Present address: Thomas Jefferson High School for Science and Technology, 6560 Braddock Rd, Alexandria, VA, 22312, USA
| | - M Sabrina Pankey
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, USA
| | - Michael P Lesser
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, USA.
| |
Collapse
|
8
|
Zhang Y, Zhang Y, Yang Q, Ling J, Tang X, Zhang W, Dong J. Complete genome sequence of Metabacillus sp. cB07, a bacterium inducing settlement and metamorphosis of coral larvae. Mar Genomics 2021; 60:100877. [PMID: 34627550 DOI: 10.1016/j.margen.2021.100877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/28/2021] [Accepted: 05/01/2021] [Indexed: 10/21/2022]
Abstract
The settlement and metamorphosis of coral larvae are the bottleneck of coral recruitment. They are critical for the extension of coral population, which is the basis of the restoration of degraded coral reef ecosystem. In this study, we described the genomic characteristics of Metabacillus sp. cB07, which can efficiently induce larvae settlement and metamorphosis of coral Pocillopora damicornis. This function is first reported in the genus Metabacillus. Strain cB07 was isolated from the coral Porites pukoensis, and comprised one circular chromosome of 4,148,576 bp (44.14 mol% G + C content), containing 4148 protein coding sequences. To explore the potential mechanism of coral larvae settlement and metamorphosis induced by Metabacillus sp. cB07, we predicted that numerous genes related to the bacterial inductive ability. The genome of Metabacillus sp. cB07 will be helpful for further insights into the mechanism of bacterial induction of settlement and metamorphosis of coral larvae.
Collapse
Affiliation(s)
- Ying Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences & Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya 572000, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanying Zhang
- Ocean School, Yantai University, Yantai 264005, China
| | - Qingsong Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Juan Ling
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiaoyu Tang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqian Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junde Dong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences & Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya 572000, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China.
| |
Collapse
|
9
|
Cavalcanti GS, Alker AT, Delherbe N, Malter KE, Shikuma NJ. The Influence of Bacteria on Animal Metamorphosis. Annu Rev Microbiol 2021; 74:137-158. [PMID: 32905754 DOI: 10.1146/annurev-micro-011320-012753] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The swimming larvae of many marine animals identify a location on the seafloor to settle and undergo metamorphosis based on the presence of specific surface-bound bacteria. While bacteria-stimulated metamorphosis underpins processes such as the fouling of ship hulls, animal development in aquaculture, and the recruitment of new animals to coral reef ecosystems, little is known about the mechanisms governing this microbe-animal interaction. Here we review what is known and what we hope to learn about how bacteria and the factors they produce stimulate animal metamorphosis. With a few emerging model systems, including the tubeworm Hydroides elegans, corals, and the hydrozoan Hydractinia, we have begun to identify bacterial cues that stimulate animal metamorphosis and test hypotheses addressing their mechanisms of action. By understanding the mechanisms by which bacteria promote animal metamorphosis, we begin to illustrate how, and explore why, the developmental decision of metamorphosis relies on cues from environmental bacteria.
Collapse
Affiliation(s)
- Giselle S Cavalcanti
- Viral Information Institute and Department of Biology, San Diego State University, San Diego, California 92182, USA; , , , ,
| | - Amanda T Alker
- Viral Information Institute and Department of Biology, San Diego State University, San Diego, California 92182, USA; , , , ,
| | - Nathalie Delherbe
- Viral Information Institute and Department of Biology, San Diego State University, San Diego, California 92182, USA; , , , ,
| | - Kyle E Malter
- Viral Information Institute and Department of Biology, San Diego State University, San Diego, California 92182, USA; , , , ,
| | - Nicholas J Shikuma
- Viral Information Institute and Department of Biology, San Diego State University, San Diego, California 92182, USA; , , , ,
| |
Collapse
|
10
|
Kullapanich C, Jandang S, Palasuk M, Viyakarn V, Chavanich S, Somboonna N. First dynamics of bacterial community during development of Acropora humilis larvae in aquaculture. Sci Rep 2021; 11:11762. [PMID: 34083731 PMCID: PMC8175334 DOI: 10.1038/s41598-021-91379-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/19/2021] [Indexed: 11/20/2022] Open
Abstract
A symbiosis of bacterial community (sometimes called microbiota) play essential roles in developmental life cycle and health of coral, starting since a larva. For examples, coral bacterial holobionts function nitrogen fixation, carbon supply, sulfur cycling and antibiotic production. Yet, a study of the dynamic of bacteria associated coral larvae development is complicated owning to a vast diversity and culturable difficulty of bacteria; hence this type of study remains unexplored for Acropora humilis larvae in Thai sea. This study represented the first to utilize 16S rRNA gene sequencing to describe the timely bacterial compositions during successfully cultured and reared A. humilis larval transformation in aquaculture (gametes were collected from Sattahip Bay, Chonburi province, Thailand), from gamete spawning (0 h) and fertilization stage (1 h), to embryonic cleavage (8 h), round cell development (28, 39 and 41 h), and planula formation (48 h). The sequencing results as estimated by Good’s coverage at genus level covered 99.65 ± 0.24% of total bacteria. While core phyla of bacteria were observed (Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes), changes in bacterial population structures and differential predominant core bacterial orders were denoted for each larval developmental stage, from fertilization to embryonic cleavage and subsequently from the embryonic cleavage to round cell development (P = 0.007). For instances, Pseudoalteromonas and Oceanospirillales were found prevalent at 8 h, and Rhizobiales were at 48 h. The bacterial population structures from the round cell stage, particularly at 41 h, showed gradual drift towards those of the planula formation stage, suggesting microbial selection. Overall, this study provides preliminary insights into the dynamics of bacterial community and their potentially functional association (estimated from the bacterial compositions) during the developmental embryonic A. humilis in a cultivation system in Southeast Asia region.
Collapse
Affiliation(s)
- Chitrasak Kullapanich
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phyathai Road, Pathumwan, Bangkok, 10330, Thailand.,Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Suppakarn Jandang
- Reef Biology Research Group, Department of Marine Science, Faculty of Science, Chulalongkorn University, Phyathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Matanee Palasuk
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phyathai Road, Pathumwan, Bangkok, 10330, Thailand.,Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Voranop Viyakarn
- Reef Biology Research Group, Department of Marine Science, Faculty of Science, Chulalongkorn University, Phyathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Suchana Chavanich
- Reef Biology Research Group, Department of Marine Science, Faculty of Science, Chulalongkorn University, Phyathai Road, Pathumwan, Bangkok, 10330, Thailand. .,Center of Excellence for Marine Biotechnology, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| | - Naraporn Somboonna
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phyathai Road, Pathumwan, Bangkok, 10330, Thailand. .,Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
11
|
Keller AG, Apprill A, Lebaron P, Robbins J, Romano TA, Overton E, Rong Y, Yuan R, Pollara S, Whalen KE. Characterizing the culturable surface microbiomes of diverse marine animals. FEMS Microbiol Ecol 2021; 97:6157762. [PMID: 33681975 PMCID: PMC8012112 DOI: 10.1093/femsec/fiab040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 03/01/2021] [Indexed: 11/14/2022] Open
Abstract
Biofilm-forming bacteria have the potential to contribute to the health, physiology, behavior and ecology of the host and serve as its first line of defense against adverse conditions in the environment. While metabarcoding and metagenomic information furthers our understanding of microbiome composition, fewer studies use cultured samples to study the diverse interactions among the host and its microbiome, as cultured representatives are often lacking. This study examines the surface microbiomes cultured from three shallow-water coral species and two whale species. These unique marine animals place strong selective pressures on their microbial symbionts and contain members under similar environmental and anthropogenic stress. We developed an intense cultivation procedure, utilizing a suite of culture conditions targeting a rich assortment of biofilm-forming microorganisms. We identified 592 microbial isolates contained within 15 bacterial orders representing 50 bacterial genera, and two fungal species. Culturable bacteria from coral and whale samples paralleled taxonomic groups identified in culture-independent surveys, including 29% of all bacterial genera identified in the Megaptera novaeangliae skin microbiome through culture-independent methods. This microbial repository provides raw material and biological input for more nuanced studies which can explore how members of the microbiome both shape their micro-niche and impact host fitness.
Collapse
Affiliation(s)
- Abigail G Keller
- Department of Biology, Haverford College, 370 Lancaster Ave., Haverford, PA, 19041-1392, USA
| | - Amy Apprill
- Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA, 02543, USA
| | - Philippe Lebaron
- Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR 3579 Sorbonne Université (UPMC) Paris 6 et CNRS Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Jooke Robbins
- Center for Coastal Studies, 5 Holway Ave., Provincetown, MA, 02657, USA
| | - Tracy A Romano
- Mystic Aquarium, a division of Sea Research Foundation Inc., 55 Coogan Blvd., Mystic, CT, 06355, USA
| | - Ellysia Overton
- Department of Biology, Haverford College, 370 Lancaster Ave., Haverford, PA, 19041-1392, USA
| | - Yuying Rong
- Department of Biology, Haverford College, 370 Lancaster Ave., Haverford, PA, 19041-1392, USA
| | - Ruiyi Yuan
- Department of Biology, Haverford College, 370 Lancaster Ave., Haverford, PA, 19041-1392, USA
| | - Scott Pollara
- Department of Biology, Haverford College, 370 Lancaster Ave., Haverford, PA, 19041-1392, USA
| | - Kristen E Whalen
- Department of Biology, Haverford College, 370 Lancaster Ave., Haverford, PA, 19041-1392, USA
| |
Collapse
|
12
|
Reduced thermal tolerance in a coral carrying CRISPR-induced mutations in the gene for a heat-shock transcription factor. Proc Natl Acad Sci U S A 2020; 117:28899-28905. [PMID: 33168726 DOI: 10.1073/pnas.1920779117] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Reef-building corals are keystone species that are threatened by anthropogenic stresses including climate change. To investigate corals' responses to stress and other aspects of their biology, numerous genomic and transcriptomic studies have been performed, generating many hypotheses about the roles of particular genes and molecular pathways. However, it has not generally been possible to test these hypotheses rigorously because of the lack of genetic tools for corals or closely related cnidarians. CRISPR technology seems likely to alleviate this problem. Indeed, we show here that microinjection of single-guide RNA/Cas9 ribonucleoprotein complexes into fertilized eggs of the coral Acropora millepora can produce a sufficiently high frequency of mutations to detect a clear phenotype in the injected generation. Based in part on experiments in a sea-anemone model system, we targeted the gene encoding Heat Shock Transcription Factor 1 (HSF1) and obtained larvae in which >90% of the gene copies were mutant. The mutant larvae survived well at 27 °C but died rapidly at 34 °C, a temperature that did not produce detectable mortality over the duration of the experiment in wild-type (WT) larvae or larvae injected with Cas9 alone. We conclude that HSF1 function (presumably its induction of genes in response to heat stress) plays an important protective role in corals. More broadly, we conclude that CRISPR mutagenesis in corals should allow wide-ranging and rigorous tests of gene function in both larval and adult corals.
Collapse
|
13
|
Baquiran JIP, Nada MAL, Campos CLD, Sayco SLG, Cabaitan PC, Rosenberg Y, Ayalon I, Levy O, Conaco C. The Prokaryotic Microbiome of Acropora digitifera is Stable under Short-Term Artificial Light Pollution. Microorganisms 2020; 8:E1566. [PMID: 33053643 PMCID: PMC7601249 DOI: 10.3390/microorganisms8101566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Corals harbor a great diversity of symbiotic microorganisms that play pivotal roles in host nutrition, reproduction, and development. Changes in the ocean environment, such as increasing exposure to artificial light at night (ALAN), may alter these relationships and result in a decline in coral health. In this study, we examined the microbiome associated with gravid specimens of the reef-building coral Acropora digitifera. We also assessed the temporal effects of ALAN on the coral-associated microbial community using high-throughput sequencing of the 16S rRNA gene V4 hypervariable region. The A. digitifera microbial community was dominated by phyla Proteobacteria, Firmicutes, and Bacteroidetes. Exposure to ALAN had no large-scale effect on the coral microbiome, although taxa affiliated with Rhodobacteraceae, Caulobacteraceae, Burkholderiaceae, Lachnospiraceae, and Ruminococcaceae were significantly enriched in corals subjected to ALAN. We further noted an increase in the relative abundance of the family Endozoicomonadaceae (Endozoicomonas) as the spawning period approached, regardless of light treatment. These findings highlight the stability of the A. digitifera microbial community under short-term artificial light pollution and provide initial insights into the response of the collective holobiont to ALAN.
Collapse
Affiliation(s)
- Jake Ivan P. Baquiran
- Marine Science Institute, University of the Philippines Diliman, Quezon City 1101, Philippines; (J.I.P.B.); (M.A.L.N.); (C.L.D.C.); (S.L.G.S.); (P.C.C.)
| | - Michael Angelou L. Nada
- Marine Science Institute, University of the Philippines Diliman, Quezon City 1101, Philippines; (J.I.P.B.); (M.A.L.N.); (C.L.D.C.); (S.L.G.S.); (P.C.C.)
| | - Celine Luisa D. Campos
- Marine Science Institute, University of the Philippines Diliman, Quezon City 1101, Philippines; (J.I.P.B.); (M.A.L.N.); (C.L.D.C.); (S.L.G.S.); (P.C.C.)
| | - Sherry Lyn G. Sayco
- Marine Science Institute, University of the Philippines Diliman, Quezon City 1101, Philippines; (J.I.P.B.); (M.A.L.N.); (C.L.D.C.); (S.L.G.S.); (P.C.C.)
| | - Patrick C. Cabaitan
- Marine Science Institute, University of the Philippines Diliman, Quezon City 1101, Philippines; (J.I.P.B.); (M.A.L.N.); (C.L.D.C.); (S.L.G.S.); (P.C.C.)
| | - Yaeli Rosenberg
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; (Y.R.); (I.A.); (O.L.)
| | - Inbal Ayalon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; (Y.R.); (I.A.); (O.L.)
- Israel The H. Steinitz Marine Biology Laboratory, The Interuniversity Institute for Marine Sciences of Eilat, P.O. Box 469, Eilat 88103, Israel
- Porter School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 39040, Israel
| | - Oren Levy
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; (Y.R.); (I.A.); (O.L.)
| | - Cecilia Conaco
- Marine Science Institute, University of the Philippines Diliman, Quezon City 1101, Philippines; (J.I.P.B.); (M.A.L.N.); (C.L.D.C.); (S.L.G.S.); (P.C.C.)
| |
Collapse
|
14
|
Settlement of larvae from four families of corals in response to a crustose coralline alga and its biochemical morphogens. Sci Rep 2020; 10:16397. [PMID: 33009428 PMCID: PMC7532448 DOI: 10.1038/s41598-020-73103-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/11/2020] [Indexed: 11/22/2022] Open
Abstract
Healthy benthic substrates that induce coral larvae to settle are necessary for coral recovery. Yet, the biochemical cues required to induce coral settlement have not been identified for many taxa. Here we tested the ability of the crustose coralline alga (CCA) Porolithon onkodes to induce attachment and metamorphosis, collectively termed settlement, of larvae from 15 ecologically important coral species from the families Acroporidae, Merulinidae, Poritidae, and Diploastreidae. Live CCA fragments, ethanol extracts, and hot aqueous extracts of P. onkodes induced settlement (> 10%) for 11, 7, and 6 coral species, respectively. Live CCA fragments were the most effective inducer, achieving over 50% settlement for nine species. The strongest settlement responses were observed in Acropora spp.; the only non-acroporid species that settled over 50% were Diploastrea heliopora, Goniastrea retiformis, and Dipsastraea pallida. Larval settlement was reduced in treatments with chemical extracts compared with live CCA, although high settlement (> 50%) was reported for six acroporid species in response to ethanol extracts of CCA. All experimental treatments failed (< 10%) to induce settlement in Montipora aequituberculata, Mycedium elephantotus, and Porites cylindrica. Individual species responded heterogeneously to all treatments, suggesting that none of the cues represent a universal settlement inducer. These results challenge the commonly-held notion that CCA ubiquitously induces coral settlement, and emphasize the critical need to assess additional cues to identify natural settlement inducers for a broad range of coral taxa.
Collapse
|
15
|
Cavalcanti GS, Wasserscheid J, Dewar K, Shikuma NJ. Complete Genome Sequences of Two Marine Biofilm Isolates, Leisingera sp. nov. Strains 201A and 204H, Novel Representatives of the Roseobacter Group. Microbiol Resour Announc 2020; 9:e00505-20. [PMID: 32646902 PMCID: PMC7348020 DOI: 10.1128/mra.00505-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/23/2020] [Indexed: 11/20/2022] Open
Abstract
Here, we report the complete-genome assemblies of biofilm isolates 201A and 204H. They possess six and seven plasmids, respectively, with a size ranging from 44 kb to 159 kb. Genomic comparisons place the two strains into one new species belonging to the genus Leisingera as novel representatives of the Roseobacter group.
Collapse
Affiliation(s)
- Giselle S Cavalcanti
- Department of Biology, San Diego State University, San Diego, California, USA
- Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Jessica Wasserscheid
- Energy, Mining and Environment, National Research Council Canada, Montreal, Quebec, Canada
| | - Ken Dewar
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- McGill University and Genome Quebec Innovation Centre, McGill University, Montreal, Quebec, Canada
| | - Nicholas J Shikuma
- Department of Biology, San Diego State University, San Diego, California, USA
- Viral Information Institute, San Diego State University, San Diego, California, USA
| |
Collapse
|
16
|
Dobretsov S, Rittschof D. Love at First Taste: Induction of Larval Settlement by Marine Microbes. Int J Mol Sci 2020; 21:ijms21030731. [PMID: 31979128 PMCID: PMC7036896 DOI: 10.3390/ijms21030731] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
Abstract
Marine biofilms are composed of many species of bacteria, unicellular algae, and protozoa. Biofilms can induce, inhibit, or have no effect on settlement of larvae and spores of algae. In this review, we focus on induction of larval settlement by marine bacteria and unicellular eukaryotes and review publications from 2010 to September 2019. This review provides insights from meta-analysis on what is known about the effect of marine biofilms on larval settlement. Of great interest is the impact of different components of marine biofilms, such as bacteria and diatoms, extracellular polymeric substances, quorum sensing signals, unique inductive compounds, exoenzymes, and structural protein degradation products on larval settlement and metamorphosis. Molecular aspects of larval settlement and impact of climate change are reviewed and, finally, potential areas of future investigations are provided.
Collapse
Affiliation(s)
- Sergey Dobretsov
- Centre of Excellence in Marine Biotechnology, Sultan Qaboos University, Al Khoud 123 P.O. Box 50, Muscat 123, Oman
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoud 123 P.O. Box 34, Muscat 123, Oman
- Correspondence:
| | - Daniel Rittschof
- Marine Science and Conservation, Marine Laboratory, Nicholas School, Duke University, 135 Duke Marine Lab Road, Beaufort, NC 28516, USA;
| |
Collapse
|
17
|
Tebbett SB, Bellwood DR. Algal turf sediments on coral reefs: what's known and what's next. MARINE POLLUTION BULLETIN 2019; 149:110542. [PMID: 31542595 DOI: 10.1016/j.marpolbul.2019.110542] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Algal turfs are likely to rise in prominence on coral reefs in the Anthropocene. In these ecosystems the sediments bound within algal turfs will shape ecosystem functions and the services humanity can obtain from reefs. However, while interest is growing in the role of algal turf sediments, studies remain limited. In this review we provide an overview of our knowledge to-date concerning algal turf sediments on coral reefs. Specifically, we highlight what algal turf sediments are, their role in key ecosystem processes, the potential importance of algal turf sediments on Anthropocene reefs, and key knowledge gaps for future research. The evidence suggests that the management of algal turf sediments will be critically important if we are to sustain key functions and services on highly-altered, Anthropocene coral reef configurations.
Collapse
Affiliation(s)
- Sterling B Tebbett
- ARC Centre of Excellence for Coral Reef Studies, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia.
| | - David R Bellwood
- ARC Centre of Excellence for Coral Reef Studies, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
18
|
Puglisi MP, Sneed JM, Ritson-Williams R, Young R. Marine chemical ecology in benthic environments. Nat Prod Rep 2019; 36:410-429. [PMID: 30264841 DOI: 10.1039/c8np00061a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Covering: Most of 2013 up to the end of 2015 This review highlights the 2013-2015 marine chemical ecology literature for benthic bacteria and cyanobacteria, macroalgae, sponges, cnidarians, molluscs, other benthic invertebrates, and fish.
Collapse
Affiliation(s)
- Melany P Puglisi
- Chicago State University, Department of Pharmaceutical Sciences, Chicago, IL, USA.
| | | | | | | |
Collapse
|
19
|
La Marca EC, Catania V, Quatrini P, Milazzo M, Chemello R. Settlement performance of the Mediterranean reef-builders Dendropoma cristatum (Biondi 1859) in response to natural bacterial films. MARINE ENVIRONMENTAL RESEARCH 2018; 137:149-157. [PMID: 29571588 DOI: 10.1016/j.marenvres.2018.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
The gastropod Dendropoma cristatum is a biogenic engineer of the central Mediterranean, forming reefs along the lower rocky intertidal fringe with a remarkable ecological role. To understand whether reef-associated biofilm cultivable bacterial and biofilm ageing may trigger the settlement of the juvenile snails, a combination of laboratory techniques and field experiments was used. Reef-associated biofilm cultivable bacteria were isolated, and a settlement-choice experiment was performed in situ on artificial biofilms composed of i) a mixture of six biofilm-forming selected isolates, ii) all the cultivable bacteria, and iii) 13-, 23-, 32-day old biofilms formed under natural conditions. Overall, settlement rate significantly differed among biofilm treatments (p < 0.0001). A significant positive correlation between biofilm ageing and juvenile D. cristatum settlement was assessed (r = 0.69 (p < 0.001), whereas the biofilm bacterial composition (relatively to the cultivable fraction) did not show any effect on the vermetid's settlement rate.
Collapse
Affiliation(s)
- Emanuela Claudia La Marca
- Department of Earth and Marine Sciences, University of Palermo, Via Archirafi 22, 90123, Palermo, Italy; Consorzio Interuniversitario per le Scienze del Mare (CoNISMa), Piazzale Flaminio 9, 00196, Roma, Italy.
| | - Valentina Catania
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Ed.16, 90128, Palermo, Italy.
| | - Paola Quatrini
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Ed.16, 90128, Palermo, Italy.
| | - Marco Milazzo
- Department of Earth and Marine Sciences, University of Palermo, Via Archirafi 22, 90123, Palermo, Italy; Consorzio Interuniversitario per le Scienze del Mare (CoNISMa), Piazzale Flaminio 9, 00196, Roma, Italy.
| | - Renato Chemello
- Department of Earth and Marine Sciences, University of Palermo, Via Archirafi 22, 90123, Palermo, Italy; Consorzio Interuniversitario per le Scienze del Mare (CoNISMa), Piazzale Flaminio 9, 00196, Roma, Italy.
| |
Collapse
|
20
|
How Does the Coral Microbiome Cause, Respond to, or Modulate the Bleaching Process? ECOLOGICAL STUDIES 2018. [DOI: 10.1007/978-3-319-75393-5_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Roik A, Röthig T, Roder C, Ziegler M, Kremb SG, Voolstra CR. Year-Long Monitoring of Physico-Chemical and Biological Variables Provide a Comparative Baseline of Coral Reef Functioning in the Central Red Sea. PLoS One 2016; 11:e0163939. [PMID: 27828965 PMCID: PMC5102394 DOI: 10.1371/journal.pone.0163939] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 09/16/2016] [Indexed: 11/26/2022] Open
Abstract
Coral reefs in the central Red Sea are sparsely studied and in situ data on physico-chemical and key biotic variables that provide an important comparative baseline are missing. To address this gap, we simultaneously monitored three reefs along a cross-shelf gradient for an entire year over four seasons, collecting data on currents, temperature, salinity, dissolved oxygen (DO), chlorophyll-a, turbidity, inorganic nutrients, sedimentation, bacterial communities of reef water, and bacterial and algal composition of epilithic biofilms. Summer temperature (29–33°C) and salinity (39 PSU) exceeded average global maxima for coral reefs, whereas DO concentration was low (2–4 mg L-1). While temperature and salinity differences were most pronounced between seasons, DO, chlorophyll-a, turbidity, and sedimentation varied most between reefs. Similarly, biotic communities were highly dynamic between reefs and seasons. Differences in bacterial biofilms were driven by four abundant families: Rhodobacteraceae, Flavobacteriaceae, Flammeovirgaceae, and Pseudanabaenaceae. In algal biofilms, green crusts, brown crusts, and crustose coralline algae were most abundant and accounted for most of the variability of the communities. Higher bacterial diversity of biofilms coincided with increased algal cover during spring and summer. By employing multivariate matching, we identified temperature, salinity, DO, and chlorophyll-a as the main contributing physico-chemical drivers of biotic community structures. These parameters are forecast to change most with the progression of ocean warming and increased nutrient input, which suggests an effect on the recruitment of Red Sea benthic communities as a result of climate change and anthropogenic influence. In conclusion, our study provides insight into coral reef functioning in the Red Sea and a comparative baseline to support coral reef studies in the region.
Collapse
Affiliation(s)
- Anna Roik
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955–6900, Saudi Arabia
| | - Till Röthig
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955–6900, Saudi Arabia
| | - Cornelia Roder
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955–6900, Saudi Arabia
| | - Maren Ziegler
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955–6900, Saudi Arabia
| | - Stephan G. Kremb
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955–6900, Saudi Arabia
| | - Christian R. Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955–6900, Saudi Arabia
- * E-mail:
| |
Collapse
|