1
|
Palit A, Franciosa P, Bhudia SK, Arvanitis TN, Turley GA, Williams MA. Passive diastolic modelling of human ventricles: Effects of base movement and geometrical heterogeneity. J Biomech 2016; 52:95-105. [PMID: 28065473 DOI: 10.1016/j.jbiomech.2016.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 12/14/2016] [Accepted: 12/19/2016] [Indexed: 11/19/2022]
Abstract
Left-ventricular (LV) remodelling, associated with diastolic heart failure, is driven by an increase in myocardial stress. Therefore, normalisation of LV wall stress is the cornerstone of many therapeutic treatments. However, information regarding such regional stress-strain for human LV is still limited. Thus, the objectives of our study were to determine local diastolic stress-strain field in healthy LVs, and consequently, to identify the regional variations amongst them due to geometric heterogeneity. Effects of LV base movement on diastolic model predictions, which were ignored in the literature, were further explored. Personalised finite-element modelling of five normal human bi-ventricles was carried out using subject-specific myocardium properties. Model prediction was validated individually through comparison with end-diastolic volume and a new shape-volume based measurement of LV cavity, extracted from magnetic resonance imaging. Results indicated that incorporation of LV base movement improved the model predictions (shape-volume relevancy of LV cavity), and therefore, it should be considered in future studies. The LV endocardium always experienced higher fibre stress compared to the epicardium for all five subjects. The LV wall near base experienced higher stress compared to equatorial and apical locations. The lateral LV wall underwent greater stress distribution (fibre and sheet stress) compared to other three regions. In addition, normal ranges of different stress-strain components in different regions of LV wall were reported for five healthy ventricles. This information could be used as targets for future computational studies to optimise diastolic heart failure treatments or design new therapeutic interventions/devices.
Collapse
Affiliation(s)
- Arnab Palit
- WMG, The University of Warwick, Coventry, UK; Institute of Digital Healthcare, WMG, The University of Warwick, Coventry, UK.
| | | | - Sunil K Bhudia
- University Hospitals Coventry and Warwickshire, Coventry, UK.
| | | | | | | |
Collapse
|
2
|
Faranesh AZ, Kellman P, Ratnayaka K, Lederman RJ. Integration of cardiac and respiratory motion into MRI roadmaps fused with x-ray. Med Phys 2013; 40:032302. [PMID: 23464334 DOI: 10.1118/1.4789919] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
PURPOSE Volumetric roadmaps overlaid on live x-ray fluoroscopy may be used to enhance image guidance during interventional procedures. These roadmaps are often static and do not reflect cardiac or respiratory motion. In this work, the authors present a method for integrating cardiac and respiratory motion into magnetic resonance imaging (MRI)-derived roadmaps to fuse with live x-ray fluoroscopy images, and this method was tested in large animals. METHODS Real-time MR images were used to capture cardiac and respiratory motion. Nonrigid registration was used to calculate motion fields to deform a reference end-expiration, end-diastolic image to different cardiac and respiratory phases. These motion fields were fit to separate affine motion models for the aorta and proximal right coronary artery. Under x-ray fluoroscopy, an image-based navigator and ECG signal were used as inputs to deform the roadmap for live overlay. The in vivo accuracy of motion correction was measured in four swine as the ventilator tidal volume was varied. RESULTS Motion correction reduced the root-mean-square error between the roadmaps and manually drawn centerlines, even under high tidal volume conditions. For the aorta, the error was reduced from 2.4 ± 1.5 mm to 2.2 ± 1.5 mm (p < 0.05). For the proximal right coronary artery, the error was reduced from 8.8 ± 16.2 mm to 4.3 ± 5.2 mm (p < 0.001). Using real-time MRI and an affine motion model it is feasible to incorporate physiological cardiac and respiratory motion into MRI-derived roadmaps to provide enhanced image guidance for interventional procedures. CONCLUSIONS A method has been presented for creating dynamic 3D roadmaps that incorporate cardiac and respiratory motion. These roadmaps can be overlaid on live X-ray fluoroscopy to enhance image guidance for cardiac interventions.
Collapse
Affiliation(s)
- Anthony Z Faranesh
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1538, USA.
| | | | | | | |
Collapse
|
3
|
Cordero-Grande L, Vegas-Sánchez-Ferrero G, Casaseca-de-la-Higuera P, Aja-Fernández S, Alberola-López C. A magnetic resonance software simulator for the evaluation of myocardial deformation estimation. Med Eng Phys 2013; 35:1331-40. [PMID: 23561923 DOI: 10.1016/j.medengphy.2013.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 01/08/2013] [Accepted: 03/02/2013] [Indexed: 11/30/2022]
Abstract
This paper proposes a methodology to design a physiologically realistic computer simulator of images of the left ventricle myocardium based on a patient-specific biomechanical model. The simulator takes a magnetic resonance image of a given patient at end diastole, uses a manual segmentation of that image to model the geometry of the myocardium and sets the parameters of the constitutive model used for biomechanical simulation according to a regional labeling of the contractility of the myocardium for that patient. The simulated deformations are used to warp the magnetic resonance dataset throughout the cardiac cycle to generate different image modalities. The simulator is validated by quantifying its ability to model actual deformations in a set of patients affected by an acute myocardial infarction. Specifically a high correlation has been encountered between the ejection fraction derived from the simulated end systolic deformation of the myocardium and the myocardium segmented from actual data. Additionally, most of the parameters that describe the simulated deformation compare well with reported values. Overall, the simulator is intended as a testbed for extensive comparisons of myocardial motion tracking methods due to its ability to relate the impaired myocardial function with the associated ventricular remodeling, a novel contribution in the literature of cardiac image simulators.
Collapse
Affiliation(s)
- Lucilio Cordero-Grande
- Laboratorio de Procesado de Imagen, ETSIT, University of Valladolid, Paseo de Belén 15, 40011 Valladolid, Spain.
| | | | | | | | | |
Collapse
|
4
|
Lee LC, Wenk JF, Klepach D, Zhang Z, Saloner D, Wallace AW, Ge L, Ratcliffe MB, Guccione JM. A novel method for quantifying in-vivo regional left ventricular myocardial contractility in the border zone of a myocardial infarction. J Biomech Eng 2012; 133:094506. [PMID: 22010752 DOI: 10.1115/1.4004995] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Homogeneous contractility is usually assigned to the remote region, border zone (BZ), and the infarct in existing infarcted left ventricle (LV) mathematical models. Within the LV, the contractile function is therefore discontinuous. Here, we hypothesize that the BZ may in fact define a smooth linear transition in contractility between the remote region and the infarct. To test this hypothesis, we developed a mathematical model of a sheep LV having an anteroapical infarct with linearly-varying BZ contractility. Using an existing optimization method (Sun et al., 2009, "A Computationally Efficient Formal Optimization of Regional Myocardial Contractility in a Sheep With Left Ventricular Aneurysm," J. Biomech. Eng., 131(11), pp. 111001), we use that model to extract active material parameter T(max) and BZ width d(n) that "best" predict in-vivo systolic strain fields measured from tagged magnetic resonance images (MRI). We confirm our hypothesis by showing that our model, compared to one that has homogeneous contractility assigned in each region, reduces the mean square errors between the predicted and the measured strain fields. Because the peak fiber stress differs significantly (~15%) between these two models, our result suggests that future mathematical LV models, particularly those used to analyze myocardial infarction treatment, should account for a smooth linear transition in contractility within the BZ.
Collapse
Affiliation(s)
- Lik Chuan Lee
- Departments of Surgery and Bioengineering, University of California, San Francisco, CA 94143, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Shapiro LM, Gold GE. MRI of weight bearing and movement. Osteoarthritis Cartilage 2012; 20:69-78. [PMID: 22138286 PMCID: PMC3260416 DOI: 10.1016/j.joca.2011.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 10/12/2011] [Accepted: 11/04/2011] [Indexed: 02/02/2023]
Abstract
Conventional, static magnetic resonance imaging (MRI) is able to provide a vast amount of information regarding the anatomy and pathology of the musculoskeletal system. However, patients, especially those whose pain is position dependent or elucidated by movement, may benefit from more advanced imaging techniques that allow for the acquisition of functional information. This manuscript reviews a variety of advancements in MRI techniques that are used to image the musculoskeletal system dynamically, while in motion or under load. The methodologies, advantages and drawbacks of stress MRI, cine-phase contrast MRI and real-time MRI are discussed as each has helped to advance the field by providing a scientific basis for understanding normal and pathological musculoskeletal anatomy and function. Advancements in dynamic MR imaging will certainly lead to improvements in the understanding, prevention, diagnosis and treatment of musculoskeletal disorders. It is difficult to anticipate that dynamic MRI will replace conventional MRI, however, dynamic MRI may provide additional valuable information to findings of conventional MRI.
Collapse
Affiliation(s)
- Lauren M. Shapiro
- Department of Radiology, Grant Building Room S068B, Stanford, CA 94305
| | - Garry E. Gold
- Department of Radiology, Grant Building Room S068B, Stanford, CA 94305
- Department of Bioengineering, Grant Building Room S068B, Stanford, CA 94305
- Orthopaedic Surgery, Stanford University, Stanford, California, USA
| |
Collapse
|
6
|
Wang H, Amini AA. Cardiac motion and deformation recovery from MRI: a review. IEEE TRANSACTIONS ON MEDICAL IMAGING 2012; 31:487-503. [PMID: 21997253 DOI: 10.1109/tmi.2011.2171706] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Magnetic resonance imaging (MRI) is a highly advanced and sophisticated imaging modality for cardiac motion tracking and analysis, capable of providing 3D analysis of global and regional cardiac function with great accuracy and reproducibility. In the past few years, numerous efforts have been devoted to cardiac motion recovery and deformation analysis from MR image sequences. Many approaches have been proposed for tracking cardiac motion and for computing deformation parameters and mechanical properties of the heart from a variety of cardiac MR imaging techniques. In this paper, an updated and critical review of cardiac motion tracking methods including major references and those proposed in the past ten years is provided. The MR imaging and analysis techniques surveyed are based on cine MRI, tagged MRI, phase contrast MRI, DENSE, and SENC. This paper can serve as a tutorial for new researchers entering the field.
Collapse
Affiliation(s)
- Hui Wang
- Department of Electrical and Computer Engineering,University of Louisville, Louisville, KY 40292 USA.
| | | |
Collapse
|
7
|
Liu X, Abd-Elmoniem KZ, Stone M, Murano EZ, Zhuo J, Gullapalli RP, Prince JL. Incompressible deformation estimation algorithm (IDEA) from tagged MR images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2012; 31:326-40. [PMID: 21937342 PMCID: PMC3683312 DOI: 10.1109/tmi.2011.2168825] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Measuring the 3D motion of muscular tissues, e.g., the heart or the tongue, using magnetic resonance (MR) tagging is typically carried out by interpolating the 2D motion information measured on orthogonal stacks of images. The incompressibility of muscle tissue is an important constraint on the reconstructed motion field and can significantly help to counter the sparsity and incompleteness of the available motion information. Previous methods utilizing this fact produced incompressible motions with limited accuracy. In this paper, we present an incompressible deformation estimation algorithm (IDEA) that reconstructs a dense representation of the 3D displacement field from tagged MR images and the estimated motion field is incompressible to high precision. At each imaged time frame, the tagged images are first processed to determine components of the displacement vector at each pixel relative to the reference time. IDEA then applies a smoothing, divergence-free, vector spline to interpolate velocity fields at intermediate discrete times such that the collection of velocity fields integrate over time to match the observed displacement components. Through this process, IDEA yields a dense estimate of a 3D displacement field that matches our observations and also corresponds to an incompressible motion. The method was validated with both numerical simulation and in vivo human experiments on the heart and the tongue.
Collapse
Affiliation(s)
- Xiaofeng Liu
- General Electric Global Research Center, Niskayuna, NY, 12309 ()
| | - Khaled Z. Abd-Elmoniem
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892
| | - Maureen Stone
- Departments of Neural and Pain Sciences, and Orthodontics, University of Maryland Dental School, Baltimore, MD, 21201
| | - Emi Z. Murano
- Departments of Otolaryngology, Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, 21205
| | - Jiachen Zhuo
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201
| | - Rao P. Gullapalli
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201
| | - Jerry L. Prince
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, 21218 ()
| |
Collapse
|
8
|
Wall ST, Guccione JM, Ratcliffe MB, Sundnes JS. Electromechanical feedback with reduced cellular connectivity alters electrical activity in an infarct injured left ventricle: a finite element model study. Am J Physiol Heart Circ Physiol 2011; 302:H206-14. [PMID: 22058157 DOI: 10.1152/ajpheart.00272.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Myocardial infarction (MI) significantly alters the structure and function of the heart. As abnormal strain may drive heart failure and the generation of arrhythmias, we used computational methods to simulate a left ventricle with an MI over the course of a heartbeat to investigate strains and their potential implications to electrophysiology. We created a fully coupled finite element model of myocardial electromechanics consisting of a cellular physiological model, a bidomain electrical diffusion solver, and a nonlinear mechanics solver. A geometric mesh built from magnetic resonance imaging (MRI) measurements of an ovine left ventricle suffering from a surgically induced anteroapical infarct was used in the model, cycled through the cardiac loop of inflation, isovolumic contraction, ejection, and isovolumic relaxation. Stretch-activated currents were added as a mechanism of mechanoelectric feedback. Elevated fiber and cross fiber strains were observed in the area immediately adjacent to the aneurysm throughout the cardiac cycle, with a more dramatic increase in cross fiber strain than fiber strain. Stretch-activated channels decreased action potential (AP) dispersion in the remote myocardium while increasing it in the border zone. Decreases in electrical connectivity dramatically increased the changes in AP dispersion. The role of cross fiber strain in MI-injured hearts should be investigated more closely, since results indicate that these are more highly elevated than fiber strain in the border of the infarct. Decreases in connectivity may play an important role in the development of altered electrophysiology in the high-stretch regions of the heart.
Collapse
Affiliation(s)
- Samuel T Wall
- Center for Biomedical Computing, Simula Research Laboratory, Oslo, Norway.
| | | | | | | |
Collapse
|
9
|
Wenk JF, Sun K, Zhang Z, Soleimani M, Ge L, Saloner D, Wallace AW, Ratcliffe MB, Guccione JM. Regional left ventricular myocardial contractility and stress in a finite element model of posterobasal myocardial infarction. J Biomech Eng 2011; 133:044501. [PMID: 21428685 DOI: 10.1115/1.4003438] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recently, a noninvasive method for determining regional myocardial contractility, using an animal-specific finite element (FE) model-based optimization, was developed to study a sheep with anteroapical infarction (Sun et al., 2009, "A Computationally Efficient Formal Optimization of Regional Myocardial Contractility in a Sheep With Left Ventricular Aneurysm," ASME J. Biomech. Eng., 131(11), p. 111001). Using the methodology developed in the previous study (Sun et al., 2009, "A Computationally Efficient Formal Optimization of Regional Myocardial Contractility in a Sheep With Left Ventricular Aneurysm," ASME J. Biomech. Eng., 131(11), p. 111001), which incorporates tagged magnetic resonance images, three-dimensional myocardial strains, left ventricular (LV) volumes, and LV cardiac catheterization pressures, the regional myocardial contractility and stress distribution of a sheep with posterobasal infarction were investigated. Active material parameters in the noninfarcted border zone (BZ) myocardium adjacent to the infarct (T(max_B)), in the myocardium remote from the infarct (T(max_R)), and in the infarct (T(max_I)) were estimated by minimizing the errors between FE model-predicted and experimentally measured systolic strains and LV volumes using the previously developed optimization scheme. The optimized T(max_B) was found to be significantly depressed relative to T(max_R), while T(max_I) was found to be zero. The myofiber stress in the BZ was found to be elevated, relative to the remote region. This could cause further damage to the contracting myocytes, leading to heart failure.
Collapse
Affiliation(s)
- Jonathan F Wenk
- Department of Surgery, University of California-San Francisco, CA 94121, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ibrahim ESH. Myocardial tagging by cardiovascular magnetic resonance: evolution of techniques--pulse sequences, analysis algorithms, and applications. J Cardiovasc Magn Reson 2011; 13:36. [PMID: 21798021 PMCID: PMC3166900 DOI: 10.1186/1532-429x-13-36] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 07/28/2011] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular magnetic resonance (CMR) tagging has been established as an essential technique for measuring regional myocardial function. It allows quantification of local intramyocardial motion measures, e.g. strain and strain rate. The invention of CMR tagging came in the late eighties, where the technique allowed for the first time for visualizing transmural myocardial movement without having to implant physical markers. This new idea opened the door for a series of developments and improvements that continue up to the present time. Different tagging techniques are currently available that are more extensive, improved, and sophisticated than they were twenty years ago. Each of these techniques has different versions for improved resolution, signal-to-noise ratio (SNR), scan time, anatomical coverage, three-dimensional capability, and image quality. The tagging techniques covered in this article can be broadly divided into two main categories: 1) Basic techniques, which include magnetization saturation, spatial modulation of magnetization (SPAMM), delay alternating with nutations for tailored excitation (DANTE), and complementary SPAMM (CSPAMM); and 2) Advanced techniques, which include harmonic phase (HARP), displacement encoding with stimulated echoes (DENSE), and strain encoding (SENC). Although most of these techniques were developed by separate groups and evolved from different backgrounds, they are in fact closely related to each other, and they can be interpreted from more than one perspective. Some of these techniques even followed parallel paths of developments, as illustrated in the article. As each technique has its own advantages, some efforts have been made to combine different techniques together for improved image quality or composite information acquisition. In this review, different developments in pulse sequences and related image processing techniques are described along with the necessities that led to their invention, which makes this article easy to read and the covered techniques easy to follow. Major studies that applied CMR tagging for studying myocardial mechanics are also summarized. Finally, the current article includes a plethora of ideas and techniques with over 300 references that motivate the reader to think about the future of CMR tagging.
Collapse
|
11
|
Venkatesh BA, Schiros CG, Gupta H, Lloyd SG, Dell'Italia L, Denney TS. Three-dimensional plus time biventricular strain from tagged MR images by phase-unwrapped harmonic phase. J Magn Reson Imaging 2011; 34:799-810. [PMID: 21769965 DOI: 10.1002/jmri.22665] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 05/02/2011] [Indexed: 01/13/2023] Open
Abstract
PURPOSE To validate a method called bi-ventricular strain unwrapped phase (BiSUP) for reconstructing three-dimensional plus time (3D+t) biventricular strain maps from phase-unwrapped harmonic phase (HARP) images derived from tagged cardiac magnetic resonance imaging (MRI). MATERIALS AND METHODS A set of 30 human subjects were imaged with tagged MRI. In each study, HARP phase was computed and unwrapped in each short-axis and long-axis image. Inconsistencies in unwrapped phase were resolved using branch cuts manually placed with a graphical user interface. The 3D strain maps were computed independently in each imaged time frame through systole and mid diastole in each study. The BiSUP strain and displacements were compared with those estimated by a 3D feature-based (FB) technique and a 2D+t HARP technique. RESULTS The standard deviation of the difference between strains measured by the FB and the BiSUP methods was less than 4% of the average of the strains from the two methods. The correlation between peak minimum principal strain measured using the BiSUP and HARP techniques was over 83%. CONCLUSION The BiSUP technique can reconstruct full 3D+t strain maps from tagged MR images through the cardiac cycle in a reasonable amount of time and user interaction compared with other 3D analysis methods.
Collapse
Affiliation(s)
- Bharath Ambale Venkatesh
- Electrical and Computer Engineering Department, Auburn University, Auburn, Alabama 36849-5201, USA
| | | | | | | | | | | |
Collapse
|
12
|
Imperiale A, Chabiniok R, Moireau P, Chapelle D. Constitutive Parameter Estimation Methodology Using Tagged-MRI Data. FUNCTIONAL IMAGING AND MODELING OF THE HEART 2011. [DOI: 10.1007/978-3-642-21028-0_52] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
13
|
Venkatesh BA, Gupta H, Lloyd SG, Dell 'Italia L, Denney TS. 3D left ventricular strain from unwrapped harmonic phase measurements. J Magn Reson Imaging 2010; 31:854-62. [PMID: 20373429 DOI: 10.1002/jmri.22099] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To validate a method for measuring 3D left ventricular (LV) strain from phase-unwrapped harmonic phase (HARP) images derived from tagged cardiac magnetic resonance imaging (MRI). MATERIALS AND METHODS A set of 40 human subjects were imaged with tagged MRI. In each study the HARP phase was computed and unwrapped in each short-axis and long-axis image. Inconsistencies in unwrapped phase were resolved using branch cuts manually placed with a graphical user interface. 3D strain maps were computed for all imaged timeframes in each study. The strain from unwrapped phase (SUP) and displacements were compared to those estimated by a feature-based (FB) technique and a HARP technique. RESULTS 3D strain was computed in each timeframe through systole and mid-diastole in approximately 30 minutes per study. The standard deviation of the difference between strains measured by the FB and the SUP methods was less than 5% of the average of the strains from the two methods. The correlation between peak circumferential strain measured using the SUP and HARP techniques was over 83%. CONCLUSION The SUP technique can reconstruct full 3D strain maps from tagged MR images through the cardiac cycle in a reasonable amount of time and user interaction compared to other 3D analysis methods.
Collapse
Affiliation(s)
- Bharath Ambale Venkatesh
- Electrical and Computer Engineering Department, Auburn University, Auburn, Alabama 36849-5201, USA
| | | | | | | | | |
Collapse
|
14
|
Sun K, Stander N, Jhun CS, Zhang Z, Suzuki T, Wang GY, Saeed M, Wallace AW, Tseng EE, Baker AJ, Saloner D, Einstein DR, Ratcliffe MB, Guccione JM. A computationally efficient formal optimization of regional myocardial contractility in a sheep with left ventricular aneurysm. J Biomech Eng 2010; 131:111001. [PMID: 20016753 DOI: 10.1115/1.3148464] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A non-invasive method for estimating regional myocardial contractility in vivo would be of great value in the design and evaluation of new surgical and medical strategies to treat and/or prevent infarction-induced heart failure. As a first step towards developing such a method, an explicit finite element (FE) model-based formal optimization of regional myocardial contractility in a sheep with left ventricular (LV) aneurysm was performed using tagged magnetic resonance (MR) images and cardiac catheterization pressures. From the tagged MR images, 3-dimensional (3D) myocardial strains, LV volumes and geometry for the animal-specific 3D FE model of the LV were calculated, while the LV pressures provided physiological loading conditions. Active material parameters (T(max_B) and T(max_R)) in the non-infarcted myocardium adjacent to the aneurysm (borderzone) and in myocardium remote from the aneurysm were estimated by minimizing the errors between FE model-predicted and measured systolic strains and LV volumes using the successive response surface method for optimization. The significant depression in optimized T(max_B) relative to T(max_R) was confirmed by direct ex vivo force measurements from skinned fiber preparations. The optimized values of T(max_B) and T(max_R) were not overly sensitive to the passive material parameters specified. The computation time of less than 5 hours associated with our proposed method for estimating regional myocardial contractility in vivo makes it a potentially very useful clinical tool.
Collapse
Affiliation(s)
- Kay Sun
- Department of Surgery, University of California, San Francisco, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Dor procedure for dyskinetic anteroapical myocardial infarction fails to improve contractility in the border zone. J Thorac Cardiovasc Surg 2010; 140:233-9, 239.e1-4. [PMID: 20299030 DOI: 10.1016/j.jtcvs.2009.11.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2009] [Revised: 11/13/2009] [Accepted: 11/23/2009] [Indexed: 11/22/2022]
Abstract
BACKGROUND Endoventricular patch plasty (Dor) is used to reduce left ventricular volume after myocardial infarction and subsequent left ventricular remodeling. METHODS AND RESULTS End-diastolic and end-systolic pressure-volume and Starling relationships were measured, and magnetic resonance images with noninvasive tags were used to calculate 3-dimensional myocardial strain in 6 sheep 2 weeks before and 2 and 6 weeks after the Dor procedure. These experimental results were previously reported. The imaging data from 1 sheep were incomplete. Animal specific finite element models were created from the remaining 5 animals using magnetic resonance images and left ventricular pressure obtained at early diastolic filling. Finite element models were optimized with 3-dimensional strain and used to determine systolic material properties, T(max,skinned-fiber), and diastolic and systolic stress in remote myocardium and border zone. Six weeks after the Dor procedure, end-diastolic and end-systolic stress in the border zone were substantially reduced. However, although there was a slight increase in T(max,skinned-fiber) in the border zone near the myocardial infarction at 6 weeks, the change was not significant. CONCLUSIONS The Dor procedure decreases end-diastolic and end-systolic stress but fails to improve contractility in the infarct border zone. Future work should focus on measures that will enhance border zone function alone or in combination with surgical remodeling.
Collapse
|
16
|
Segars WP, Lalush DS, Frey EC, Manocha D, King MA, Tsui BMW. Improved Dynamic Cardiac Phantom Based on 4D NURBS and Tagged MRI. IEEE TRANSACTIONS ON NUCLEAR SCIENCE 2009; 56:2728-2738. [PMID: 20711514 PMCID: PMC2918910 DOI: 10.1109/tns.2009.2016196] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We previously developed a realistic phantom for the cardiac motion for use in medical imaging research. The phantom was based upon a gated magnetic resonance imaging (MRI) cardiac study and using 4D non-uniform rational b-splines (NURBS). Using the gated MRI study as the basis for the cardiac model had its limitations. From the MRI images, the change in the size and geometry of the heart structures could be obtained, but without markers to track the movement of points on or within the myocardium, no explicit time correspondence could be established for the structures. Also, only the inner and outer surfaces of the myocardium could be modeled. We enhance this phantom of the beating heart using 4D tagged MRI data. We utilize NURBS surfaces to analyze the full 3D motion of the heart from the tagged data. From this analysis, time-dependent 3D NURBS surfaces were created for the right (RV) and left ventricles (LV). Models for the atria were developed separately since the tagged data only covered the ventricles. A 4D NURBS surface was fit to the 3D surfaces of the heart creating time-continuous 4D NURBS models. Multiple 4D surfaces were created for the left ventricle (LV) spanning its entire volume. The multiple surfaces for the LV were spline-interpolated about an additional dimension, thickness, creating a 4D NURBS solid model for the LV with the ability to represent the motion of any point within the volume of the LV myocardium at any time during the cardiac cycle. Our analysis of the tagged data was found to produce accurate models for the RV and LV at each time frame. In a comparison with segmented structures from the tagged dataset, LV and RV surface predictions were found to vary by a maximum of 1.5 mm's and 3.4 mm's respectively. The errors can be attributed to the tag spacing in the data (7.97 mm's). The new cardiac model was incorporated into the 4D NURBS-based Cardiac-Torso (NCAT) phantom widely used in imaging research. With its enhanced abilities, the model will provide a useful tool in the study of cardiac imaging and the effects of cardiac motion in medical images.
Collapse
Affiliation(s)
- W Paul Segars
- Department of Radiology, Duke University, Durham, NC 27705 USA
| | | | | | | | | | | |
Collapse
|
17
|
Lee WN, Qian Z, Tosti CL, Brown TR, Metaxas DN, Konofagou EE. Preliminary validation of angle-independent myocardial elastography using MR tagging in a clinical setting. ULTRASOUND IN MEDICINE & BIOLOGY 2008; 34:1980-97. [PMID: 18952364 PMCID: PMC4124643 DOI: 10.1016/j.ultrasmedbio.2008.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 05/23/2008] [Indexed: 05/20/2023]
Abstract
Myocardial elastography (ME), a radio-frequency (RF) based speckle tracking technique, was employed in order to image the entire two-dimensional (2D) transmural deformation field in full echocardiographic views and was validated against tagged magnetic resonance imaging (tMRI) in normal as well as reperfused (i.e., treated myocardial infarction [MI]) human left ventricles. RF ultrasound and tMRI frames were acquired at the papillary muscle level in 2D short-axis (SA) views at the frame rates of 136 (fps; real-time) and 33 fps (electrocardiogram [ECG]-gated), respectively. In ME, in-plane, 2D (lateral and axial) incremental displacements were iteratively estimated using one-dimensional (1D) cross-correlation and recorrelation techniques in a 2D search with a 1D matching kernel. In tMRI, cardiac motion was estimated by a template-matching algorithm on a 2D grid-shaped mesh. In both ME and tMRI, cumulative 2D displacements were obtained and then used to estimate 2D Lagrangian finite systolic strains, from which polar (i.e., radial and circumferential) strains, namely angle-independent measures, were further obtained through coordinate transformation. Principal strains, which are angle-independent and less centroid-dependent than polar strains, were also computed and imaged based on the 2D finite strains using methodology previously established. Both qualitatively and quantitatively, angle-independent ME is shown to be capable of (1) estimating myocardial deformation in good agreement with tMRI estimates in a clinical setting and of (2) differentiating abnormal from normal myocardium in a full left-ventricular view. The principal strains were concluded to be a potential diagnostic measure for detection of cardiac disease with reduced centroid dependence.
Collapse
Affiliation(s)
- Wei-Ning Lee
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Zhen Qian
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Christina L. Tosti
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Truman R. Brown
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Radiology, Columbia University, New York, NY, USA
| | - Dimitris N. Metaxas
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Elisa E. Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Radiology, Columbia University, New York, NY, USA
| |
Collapse
|
18
|
Rutz AK, Ryf S, Plein S, Boesiger P, Kozerke S. Accelerated whole-heart 3D CSPAMM for myocardial motion quantification. Magn Reson Med 2008; 59:755-63. [PMID: 18383307 DOI: 10.1002/mrm.21363] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Myocardial tissue tagging using complementary spatial modulation of magnetization (CSPAMM) allows detailed assessment of myocardial motion. To capture the complex 3D cardiac motion pattern, multiple 2D tagged slices are usually acquired in different orientations. These approaches are prone to slice misregistration and associated with long acquisition times. In this work, a fast method for acquiring 3D CSPAMM data is proposed that allows measuring deformation of the whole heart in three breath-holds of 18 heartbeats duration each. Three acquisitions are sequentially performed with line tag preparation in each orthogonal direction. Measurement acceleration is achieved by applying localized tagging preparation and a hybrid multishot, segmented echo-planar imaging sequence. Five healthy volunteers and five patients with myocardial infarction were measured. Midwall contours were tracked throughout the cardiac cycle with an enhanced variant of the harmonic phase (HARP) technique. Circumferential shortening at end-systole ranged from 14.1% (base) to 20.1% (apex) in healthy subjects. Hypokinetic regions in patients corresponded well with regions exhibiting hyperenhancement after contrast injection. Time to maximum circumferential shortening varied more significantly over the left ventricle in patients than in volunteers (P<0.01). The proposed measurement scheme was well tolerated by patients and holds considerable potential to investigate cardiac mechanics in various diseases.
Collapse
Affiliation(s)
- Andrea K Rutz
- Institute for Biomedical Engineering, University and ETH Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
19
|
Luo J, Fujikura K, Konofagou EE. Detection of murine infarcts using myocardial elastography at both high temporal and spatial resolution. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2008; 2006:1552-5. [PMID: 17946903 DOI: 10.1109/iembs.2006.259868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Myocardial elastography is a novel method for noninvasively assessing regional myocardial function, with the advantages of high spatial/temporal resolution, high signal-to-noise ratio and angle-independence. In this paper, in vivo experiments were performed in anesthetized normal and infarcted mice using a high-resolution ultrasound system. Radio-frequency signals were acquired at a high frame rate (up to 8000 Hz) and used to estimate the incremental axial displacements and strains of myocardium. The incremental results were further used to calculate the cumulative displacements and strains. Two-dimensional displacement and strain images (elastograms), M-mode displacement and strain images as well as displacement and strain profiles as a function of time clearly indicated the contraction and relaxation, thickening and thinning of myocardium and demonstrated the lower motion and deformation of infarcted myocardium. The cumulative displacement and strain were less noisy than incremental images, and the cumulative strain images show the highest contrast between non-infarcted and infarcted myocardia. Finally, preliminary statistical results from nine non-infarcted mice and seven infarcted mice indicated that cumulative strain can be used to differentiate infarcted myocardium from non-infarcted myocardium. In conclusion, myocardial elastography can provide strain information at both high temporal and spatial resolution, and is capable of accurately characterizing normal myocardial function as well as detecting and localizing early myocardial infarction in vivo.
Collapse
Affiliation(s)
- Jianwen Luo
- Department of Biomedical Engineering, Columbia University, New York, NY 10025, USA.
| | | | | |
Collapse
|
20
|
Ledesma-Carbayo MJ, Derbyshire JA, Sampath S, Santos A, Desco M, McVeigh ER. Unsupervised estimation of myocardial displacement from tagged MR sequences using nonrigid registration. Magn Reson Med 2007; 59:181-9. [PMID: 18058938 DOI: 10.1002/mrm.21444] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Maria J Ledesma-Carbayo
- Laboratory of Cardiac Energetics, National Heart, Lung and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892-1061, USA
| | | | | | | | | | | |
Collapse
|
21
|
Lee WN, Ingrassia CM, Fung-Kee-Fung SD, Costa KD, Holmes JW, Konofagou EE. Theoretical quality assessment of myocardial elastography with in vivo validation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2007; 54:2233-2245. [PMID: 18051158 DOI: 10.1109/tuffc.2007.528] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Myocardial elastography (ME), a radio frequency (RF)-based speckle tracking technique with one-dimensional (1-D) cross correlation and novel recorrelation methods in a 2-D search was proposed to estimate and fully image 2-D transmural deformation field and to detect abnormal cardiac function. A theoretical framework was first developed in order to evaluate the performance of 2-D myocardial elastography based on a previously developed 3-D finite-element model of the canine left ventricle. A normal (control) and an ischemic (left-circumflex, LCx) model, which more completely represented myocardial deformation than a kinematic model, were considered. A 2-D convolutional image formation model was first used to generate RF signals for quality assessment of ME in the normal and ischemic cases. A 3-D image formation model was further developed to investigate the effect of the out-of-plane motion on the 2-D, in-plane motion estimation. Both orthogonal, in-plane displacement components (i.e., lateral and axial) between consecutive RF frames were iteratively estimated. All the estimated incremental 2-D displacements from end-diastole (ED) to end-systole (ES) were then accumulated to acquire the cumulative 2-D displacements, which were further used to calculate the cumulative 2-D systolic finite strains. Furthermore, the cumulative systolic radial and circumferential strains, which were angle- and frame-rate independent, were obtained from the 2-D finite-strain components and imaged in full view to detect the ischemic region. We also explored the theoretical understanding of the limitations of our technique for the accurate depiction of disease and validated it in vivo against tagged magnetic resonance imaging (tMRI) in the case of a normal human myocardium in a 2-D short-axis (SA) echocardiographic view. The theoretical framework succeeded in demonstrating that the 2-D myocardial elastography technique was a reliable tool for the complete estimation and depiction of the in-plane myocardial deformation field as well as for accurate identification of pathological mechanical function using established finite-element, left-ventricular canine models. In a preliminary study, the 2-D myocardial elastography was shown capable of imaging myocardial deformation comparable to equivalent tMRI estimates in a clinical setting.
Collapse
Affiliation(s)
- Wei-Ning Lee
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
22
|
Luo J, Fujikura K, Homma S, Konofagou EE. Myocardial elastography at both high temporal and spatial resolution for the detection of infarcts. ULTRASOUND IN MEDICINE & BIOLOGY 2007; 33:1206-23. [PMID: 17570577 DOI: 10.1016/j.ultrasmedbio.2007.01.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 01/23/2007] [Accepted: 01/31/2007] [Indexed: 05/02/2023]
Abstract
Myocardial elastography is a novel method for noninvasively assessing regional myocardial function, with the advantages of high spatial and temporal resolution and high signal-to-noise ratio (SNR). In this paper, in-vivo experiments were performed in anesthetized normal and infarcted mice (one day after left anterior descending coronary artery [LAD] ligation) using a high-resolution (30 MHz) ultrasound system (Vevo 770, VisualSonics Inc., Toronto, ON, Canada). Radiofrequency (RF) signals of the left ventricle (LV) in longitudinal (long-axis) view and the associated electrocardiogram (ECG) were simultaneously acquired. Using a retrospective ECG gating technique, 2-D full field-of-view RF frames were acquired at an extremely high frame rate (8 kHz) that resulted in high-quality incremental displacement and strain estimation of the myocardium. The incremental results were further accumulated to obtain the cumulative displacements and strains. Two-dimensional and M-mode displacement images and strain images (elastograms), as well as displacement and strain profiles as a function of time, were compared between normal and infarcted mice. Incremental results clearly depicted cardiac events including LV contraction, LV relaxation and isovolumetric phases in both normal and infarcted mice, and also evidently indicated reduced motion and deformation in the infarcted myocardium. The elastograms indicated that the infarcted regions underwent thinning during systole rather than thickening, as in the normal case. The cumulative elastograms were found to have higher elastographic SNR (SNR(e)) than the incremental elastograms (e.g., 10.6 vs. 4.7 in a normal myocardium, and 6.0 vs. 2.4 in an infarcted myocardium). Finally, preliminary statistical results from nine normal (m = 9) and seven infarcted (n = 7) mice indicated the capability of the cumulative strain in differentiating infracted from normal myocardia. In conclusion, myocardial elastography could provide regional strain information at simultaneously high temporal (>/=0.125 ms) and spatial ( approximately 55 microm) resolution as well as high precision ( approximately 0.05 microm displacement). This technique was thus capable of accurately characterizing normal myocardial function throughout an entire cardiac cycle, at the same high resolution, and detecting and localizing myocardial infarction in vivo.
Collapse
Affiliation(s)
- Jianwen Luo
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | | | | | | |
Collapse
|
23
|
Pernot M, Fujikura K, Fung-Kee-Fung SD, Konofagou EE. ECG-gated, mechanical and electromechanical wave imaging of cardiovascular tissues in vivo. ULTRASOUND IN MEDICINE & BIOLOGY 2007; 33:1075-85. [PMID: 17507146 DOI: 10.1016/j.ultrasmedbio.2007.02.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 11/21/2006] [Accepted: 02/27/2007] [Indexed: 05/15/2023]
Abstract
In simplistic terms, the motion of the heart can be summarized as an active contraction and passive relaxation of the myocardium. However, the local motion of cardiovascular tissues over the course of an entire cardiac cycle results from various transient events such as the valves closing/opening, sudden changes in blood pressure and electrical conduction of the myocardium. The transient motion generated by most of these events occurs within a very short time (on the order of 1 ms) and cannot be imaged correctly with conventional imaging systems, due to their limited temporal resolution. In this paper, we propose a method for imaging this rapid transient motion of tissues in cardiovascular applications. Our method is based on imaging tissues with ultrasound at high frame rates (up to 8000 fps) by synchronizing the two-dimensional (2D) image acquisition on the electrocardiogram (ECG) signals. In vivo feasibility is demonstrated in anesthetized mice. The propagation of several transient mechanical waves was imaged in different regions of the myocardium and the wave phase velocities were found to be between 0.44 m/s and 5 m/s. These waves may be generated by either a purely mechanical effects or through electromechanical coupling in the myocardium depending on the phase of the cardiac cycle, in which they occur. The abdominal aorta was also imaged using the same technique and the propagation of a mechanical pulse wave was imaged. The pulse wave velocity was measured and the Young's modulus of the vessel wall was derived based on the Moens-Korteweg equation. This method could potentially be used for mapping the stiffness of the myocardium and the artery walls and may lead to the early diagnosis of cardiovascular diseases.
Collapse
Affiliation(s)
- Mathieu Pernot
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | | | | | | |
Collapse
|
24
|
Rasche V, Binner L, Cavagna F, Hombach V, Kunze M, Spiess J, Stuber M, Merkle N. Whole-heart coronary vein imaging: A comparison between non-contrast-agent- and contrast-agent-enhanced visualization of the coronary venous system. Magn Reson Med 2007; 57:1019-26. [PMID: 17534908 DOI: 10.1002/mrm.21228] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The feasibility of three-dimensional (3D) whole-heart imaging of the coronary venous (CV) system was investigated. The hypothesis that coronary magnetic resonance venography (CMRV) can be improved by using an intravascular contrast agent (CA) was tested. A simplified model of the contrast in T(2)-prepared steady-state free precession (SSFP) imaging was applied to calculate optimal T(2)-preparation durations for the various deoxygenation levels expected in venous blood. Non-contrast-agent (nCA)- and CA-enhanced images were compared for the delineation of the coronary sinus (CS) and its main tributaries. A quantitative analysis of the resulting contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) in both approaches was performed. Precontrast visualization of the CV system was limited by the poor CNR between large portions of the venous blood and the surrounding tissue. Postcontrast, a significant increase in CNR between the venous blood and the myocardium (Myo) resulted in a clear delineation of the target vessels. The CNR improvement was 347% (P < 0.05) for the CS, 260% (P < 0.01) for the mid cardiac vein (MCV), and 430% (P < 0.05) for the great cardiac vein (GCV). The improvement in SNR was on average 155%, but was not statistically significant for the CS and the MCV. The signal of the Myo could be significantly reduced to about 25% (P < 0.001).
Collapse
Affiliation(s)
- Volker Rasche
- Department of Internal Medicine II, University Hospital of Ulm, Ulm, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Blemker SS, Asakawa DS, Gold GE, Delp SL. Image-based musculoskeletal modeling: Applications, advances, and future opportunities. J Magn Reson Imaging 2007; 25:441-51. [PMID: 17260405 DOI: 10.1002/jmri.20805] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Computer models of the musculoskeletal system are broadly used to study the mechanisms of musculoskeletal disorders and to simulate surgical treatments. Musculoskeletal models have historically been created based on data derived in anatomical and biomechanical studies of cadaveric specimens. MRI offers an abundance of novel methods for acquisition of data from living subjects and is revolutionizing the field of musculoskeletal modeling. The need to create accurate, individualized models of the musculoskeletal system is driving advances in MRI techniques including static imaging, dynamic imaging, diffusion imaging, body imaging, pulse-sequence design, and coil design. These techniques apply to imaging musculoskeletal anatomy, muscle architecture, joint motions, muscle moment arms, and muscle tissue deformations. Further advancements in image-based musculoskeletal modeling will expand the accuracy and utility of models used to study musculoskeletal and neuromuscular impairments.
Collapse
Affiliation(s)
- Silvia S Blemker
- Department of Mechanical & Aerospace Engineering, University of Virginia, Charlottesville 22904-4746, USA.
| | | | | | | |
Collapse
|
26
|
McVeigh E. Measuring mechanical function in the failing heart. J Electrocardiol 2006; 39:S24-7. [PMID: 16963066 PMCID: PMC1963464 DOI: 10.1016/j.jelectrocard.2006.05.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 05/03/2006] [Indexed: 11/18/2022]
Abstract
A common pathology in heart failure is a detrimental change in the mechanics of both contraction and filling. In familial hypertrophic cardiomyopathy, a genetic disease characterized by left ventricular hypertrophy and myofiber disarray, left ventricular diastolic dysfunction is common and contributes to congestive heart failure. In dilated cardiomyopathy, a common correlate to reduced wall thickening and increased chamber volume is an asynchronous activation of the left ventricle due to left bundle branch block. Local measures of the timing and magnitude of myocardial shortening and relaxation can be obtained with magnetic resonance (MR) tissue tagging, MR cine phase contrast, or MR cine displacement encoding. In familial hypertrophic cardiomyopathy, these methods have been shown to quantify the restrictive filling of the ventricle. Characterizing the regions of the failing heart which are activated late has allowed investigators to measure the change in protein expression in those regions compared to normal myocardium. Also, these MR imaging methods have led to a better quantification of the asynchronous activation in dilated cardiomyopathy, which can be used to predict response to resynchronization therapy with pacing.
Collapse
Affiliation(s)
- Elliot McVeigh
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, DHHS, Bethesda, MD 20892-1061, USA.
| |
Collapse
|
27
|
Abstract
Tagged cardiac magnetic resonance (MR) imaging can non-invasively image deformation of the left ventricular (LV) wall. Three-dimensional (3D) analysis of tag data requires fitting a deformation model to tag lines in the image data. In this paper, we present a 3D myocardial displacement and strain reconstruction method based on a B-spline deformation model defined in prolate spheroidal coordinates, which more closely matches the shape of the LV wall than existing Cartesian or cylindrical coordinate models. The prolate spheroidal B-spline (PSB) deformation model also enforces smoothness across and can compute strain at the apex. The PSB reconstruction algorithm was evaluated on a previously published data set to allow head-to-head comparison of the PSB model with existing LV deformation reconstruction methods. We conclude that the PSB method can accurately reconstruct deformation and strain in the LV wall from tagged MR images and has several advantages relative to existing techniques.
Collapse
Affiliation(s)
- Jin Li
- Electrical and Computer Engineering Department, 200 Broun Hall, Auburn University, AL 36849-5201, USA.
| | | |
Collapse
|
28
|
Abstract
Magnetic resonance (MR) tagging is capable of accurate, noninvasive quantification of regional myocardial function. Routine clinical use, however, is hindered by cumbersome and time-consuming postprocessing procedures. We propose a fast, semiautomatic method for tracking three-dimensional (3-D) cardiac motion from a temporal sequence of short- and long-axis tagged MR images. The new method, called 3-D-HARmonic Phase (3D-HARP), extends the HARP approach, previously described for two-dimensional (2-D) tag analysis, to 3-D. A 3-D material mesh model is built to represent a collection of material points inside the left ventricle (LV) wall at a reference time. Harmonic phase, a material property that is time-invariant, is used to track the motion of the mesh through a cardiac cycle. Various motion-related functional properties of the myocardium, such as circumferential strain and left ventricular twist, are computed from the tracked mesh. The correlation analysis of 3D-HARP and FINDTAGS + Tag Strain(E) Analysis (TEA), which are well-established tag analysis techniques, shows that the regression coefficients of circumferential strain (E(CC)) and twist angle are r2 = 0.8605 and r2 = 0.8645, respectively. The total time required for tracking 3-D cardiac motion is approximately 10 min in a 9 timeframe tagged MRI dataset and has the potential to be much faster.
Collapse
Affiliation(s)
- Li Pan
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, 601 N. Caroline St. JHOC 4240, Baltimore, MD 21287, USA.
| | | | | | | |
Collapse
|
29
|
Luo G, Heng PA. LV Shape and Motion: B-Spline-Based Deformable Model and Sequential Motion Decomposition. ACTA ACUST UNITED AC 2005; 9:430-46. [PMID: 16167698 DOI: 10.1109/titb.2005.847508] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this paper, we extend a previous work by J. Park and propose a uniform framework to reconstruct left ventricle (LV) geometry/motion from tagged MR images. In our work, the LV is modeled as a generalized prolate spheroid, and its motion is decomposed into four components-global translation, polar radial/z-axis compression, twisting, and bending. By formulating model parameters as tensor products of B-splines, we develop efficient algorithms to quickly reconstruct LV geometry/motion from extracted boundary contours and tracked planar tags. Experiments on both synthesized and in vivo data are also reported.
Collapse
Affiliation(s)
- Guo Luo
- Department of Mathematics, The Ohio State University, Columbus, OH 43210, USA.
| | | |
Collapse
|
30
|
Helm RH, Leclercq C, Faris OP, Ozturk C, McVeigh E, Lardo AC, Kass DA. Cardiac dyssynchrony analysis using circumferential versus longitudinal strain: implications for assessing cardiac resynchronization. Circulation 2005; 111:2760-7. [PMID: 15911694 PMCID: PMC2396330 DOI: 10.1161/circulationaha.104.508457] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND QRS duration is commonly used to select heart failure patients for cardiac resynchronization therapy (CRT). However, not all patients respond to CRT, and recent data suggest that direct assessments of mechanical dyssynchrony may better predict chronic response. Echo-Doppler methods are being used increasingly, but these principally rely on longitudinal motion (epsilonll). It is unknown whether this analysis yields qualitative and/or quantitative results similar to those based on motion in the predominant muscle-fiber orientation (circumferential; epsiloncc). METHODS AND RESULTS Both epsilonll and epsiloncc strains were calculated throughout the left ventricle from 3D MR-tagged images for the full cardiac cycle in dogs with cardiac failure and a left bundle conduction delay. Dyssynchrony was assessed from both temporal and regional strain variance analysis. CRT implemented by either biventricular (BiV) or left ventricular-only (LV) pacing enhanced systolic function similarly and correlated with improved dyssynchrony based on epsiloncc-based metrics. In contrast, longitudinal-based analyses revealed significant resynchronization with BiV but not LV for the overall cycle and correlated poorly with global functional benefit. Furthermore, unlike circumferential analysis, epsilonll-based indexes indicated resynchronization in diastole but much less in systole and had a lower dynamic range and higher intrasubject variance. CONCLUSIONS Dyssynchrony assessed by longitudinal motion is less sensitive to dyssynchrony, follows different time courses than those from circumferential motion, and may manifest CRT benefit during specific cardiac phases depending on pacing mode. These results highlight potential limitations to epsilonll-based analyses and support further efforts to develop noninvasive synchrony measures based on circumferential deformation.
Collapse
Affiliation(s)
- Robert H Helm
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, 720 Rutland Ave, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Deng X, Denney TS. Combined tag tracking and strain reconstruction from tagged cardiac MR images without user-defined myocardial contours. J Magn Reson Imaging 2005; 21:12-22. [PMID: 15611947 DOI: 10.1002/jmri.20234] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To develop an unsupervised method for measuring quantitative three-dimensional regional strain in the left ventricular wall from tagged cardiac MR images. MATERIALS AND METHODS A total of 10 normal human volunteers and eight patients with myocardial infarction were imaged using a parallel tagged imaging protocol. Each study was analyzed using the combined tag tracking and strain reconstruction (COTTER) algorithm. In contrast to existing techniques, which first track tag lines independently in each slice, then reconstruct myocardial deformation, the COTTER algorithm fits a three-dimensional cardiac deformation model directly to the image data. This approach ensures that tag line positions identified in the image data are consistent from slice to slice. A total of 10 imaging studies (six normals, four patients) were used to optimize parameters of the COTTER algorithm. RESULTS In the remaining eight imaging studies, the root-mean-square difference between tags tracked by COTTER and user-supervised analysis was 0.66 pixels at end-systole. The correlation coefficient between circumferential shortening strains at end-systole computed by COTTER and user-supervised analysis was 0.84 (P < 0.005) at the midwall. CONCLUSION The COTTER algorithm can compute accurate measurements of three-dimensional regional strain without user supervision.
Collapse
Affiliation(s)
- Xiang Deng
- Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama 36849-5201, USA
| | | |
Collapse
|
32
|
Shechter G, Shechter B, Resar JR, Beyar R. Prospective motion correction of X-ray images for coronary interventions. IEEE TRANSACTIONS ON MEDICAL IMAGING 2005; 24:441-450. [PMID: 15822802 DOI: 10.1109/tmi.2004.839679] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A method for prospective motion correction of X-ray imaging of the heart is presented. A 3D + t coronary model is reconstructed from a biplane coronary angiogram obtained during free breathing. The deformation field is parameterized by cardiac and respiratory phase, which enables the estimation of the state of the arteries at any phase of the cardiac-respiratory cycle. The motion of the three-dimensional (3-D) coronary model is projected onto the image planes and used to compute a dewarping function for motion correcting the images. The use of a 3-D coronary model facilitates motion correction of images acquired with the X-ray system at arbitrary orientations. The performance of the algorithm was measured by tracking the motion of selected left coronary landmarks using a template matching cross-correlation. In three patients, we motion corrected the same images used to construct their 3D + t coronary model. In this best case scenario, the algorithm reduced the motion of the landmarks by 84%-85%, from mean RMS displacements of 12.8-14.6 pixels to 2.1-2.2 pixels. Prospective motion correction was tested in five patients by building the coronary model from one dataset, and correcting a second dataset. The patient's cardiac and respiratory phase are monitored and used to calculate the appropriate correction parameters. The results showed a 48%-63% reduction in the motion of the landmarks, from a mean RMS displacement of 11.5-13.6 pixels to 4.4-7.1 pixels.
Collapse
Affiliation(s)
- Guy Shechter
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | | | | | | |
Collapse
|
33
|
Walker JC, Ratcliffe MB, Zhang P, Wallace AW, Fata B, Hsu EW, Saloner D, Guccione JM. MRI-based finite-element analysis of left ventricular aneurysm. Am J Physiol Heart Circ Physiol 2005; 289:H692-700. [PMID: 15778283 DOI: 10.1152/ajpheart.01226.2004] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tagged MRI and finite-element (FE) analysis are valuable tools in analyzing cardiac mechanics. To determine systolic material parameters in three-dimensional stress-strain relationships, we used tagged MRI to validate FE models of left ventricular (LV) aneurysm. Five sheep underwent anteroapical myocardial infarction (25% of LV mass) and 22 wk later underwent tagged MRI. Asymmetric FE models of the LV were formed to in vivo geometry from MRI and included aneurysm material properties measured with biaxial stretching, LV pressure measurements, and myofiber helix angles measured with diffusion tensor MRI. Systolic material parameters were determined that enabled FE models to reproduce midwall, systolic myocardial strains from tagged MRI (630 +/- 187 strain comparisons/animal). When contractile stress equal to 40% of the myofiber stress was added transverse to the muscle fiber, myocardial strain agreement improved by 27% between FE model predictions and experimental measurements (RMS error decreased from 0.074 +/- 0.016 to 0.054 +/- 0.011, P < 0.05). In infarct border zone (BZ), end-systolic midwall stress was elevated in both fiber (24.2 +/- 2.7 to 29.9 +/- 2.4 kPa, P < 0.01) and cross-fiber (5.5 +/- 0.7 to 11.7 +/- 1.3 kPa, P = 0.02) directions relative to noninfarct regions. Contrary to previous hypotheses but consistent with biaxial stretching experiments, active cross-fiber stress development is an integral part of LV systole; FE analysis with only uniaxial contracting stress is insufficient. Stress calculations from these validated models show 24% increase in fiber stress and 115% increase in cross-fiber stress at the BZ relative to remote regions, which may contribute to LV remodeling.
Collapse
Affiliation(s)
- Joseph C Walker
- Joint Graduate Group in Bioengineering, University of California at Berkeley/San Francisco, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
MR tagging is considered as a valuable technique to evaluate regional myocardial function quantitatively and noninvasively, however the cumbersome and time-consuming post-processing procedures for cardiac motion tracking still hinder its application to routine clinical examination. We present a fast and semiautomatic method for tracking 3D cardiac motion from short-axis (SA) and long-axis (LA) tagged MRI images. The technique, called 3D-HARP (HARmonic Phase), is based on the HARP method and extends this method to track 3D motion. A material mesh model is built to represent a collection of material points inside the left ventricle (LV) wall. The phase time-invariance property of material points is used to track the mesh points. For a series of 9 timeframe MRI images, the total time required for initializing settings, building the mesh, and tracking 3D cardiac motion is approximately 10 minutes. Further analysis of Langrangian strain and twist angle demonstrates that during systole, the lateral LV wall shows a greater strain values than the septum and the SA slices from the base to the apex show a gradual change in twist pattern.
Collapse
Affiliation(s)
- Li Pan
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | | | | |
Collapse
|
35
|
Shechter G, Ozturk C, Resar JR, McVeigh ER. Respiratory motion of the heart from free breathing coronary angiograms. IEEE TRANSACTIONS ON MEDICAL IMAGING 2004; 23:1046-56. [PMID: 15338737 PMCID: PMC2494710 DOI: 10.1109/tmi.2004.828676] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Respiratory motion compensation for cardiac imaging requires knowledge of the heart's motion and deformation during breathing. This paper presents a method for measuring the natural tidal respiratory motion of the heart from free breathing coronary angiograms. A three-dimensional (3-D) deformation field describing the cardiac and respiratory motion of the coronary arteries is recovered from a biplane acquisition. A cardiac respiratory parametric model is formulated and used to decompose the deformation field into cardiac and respiratory components. Angiograms from ten patients were analyzed. A 3-D translation motion model was sufficient for describing the motion of the heart in only two patients. For all patients, the heart translated caudally (mean, 4.9+/-1.9 mm; range, 2.4 to 8.0 mm) and underwent a cranio-dorsal rotation (mean, 1.5 degrees+/-0.9 degrees; range, 0.2 degrees to 3.5 degrees) during inspiration. In eight patients, the heart also translated anteriorly (mean, 1.3+/-1.8 mm; range, -0.4 to 5.1 mm) and rotated in a caudo-dextral direction (mean, 1.2 degrees+/-1.3 degrees; range, -1.9 degrees to 3.2 degrees).
Collapse
Affiliation(s)
- Guy Shechter
- Laboratory of Cardiac Energetics, NHLBI, National Institutes of Health, DHHS, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
36
|
Deng X, Denney TS. Three-dimensional myocardial strain reconstruction from tagged MRI using a cylindrical B-spline model. IEEE TRANSACTIONS ON MEDICAL IMAGING 2004; 23:861-867. [PMID: 15250638 DOI: 10.1109/tmi.2004.827961] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this paper, we present a new method for reconstructing three-dimensional (3-D) left ventricular myocardial strain from tagged magnetic resonance (MR) image data with a 3-D B-spline deformation model. The B-spline model is based on a cylindrical coordinate system that more closely fits the morphology of the myocardium than previously proposed Cartesian B-spline models and does not require explicit regularization. Our reconstruction method first fits a spatial coordinate B-spline displacement field to the tag line data. This displacement field maps each tag line point in the deformed myocardium back to its reference position (end-diastole). The spatial coordinate displacement field is then converted to material coordinates with another B-spline fit. Finally, strain is computed by analytically differentiating the material coordinate B-spline displacement field with respect to space. We tested our method with strains reconstructed from an analytically defined mathematical left ventricular deformation model and ten human imaging studies. Our results demonstrate that a quadratic cylindrical B-spline with a fixed number of control points can accurately fit a physiologically realistic range of deformations. The average 3-D reconstruction computation time is 20 seconds per time frame on a 450 MHz Sun Ultra80 workstation.
Collapse
Affiliation(s)
- Xiang Deng
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL 36830, USA
| | | |
Collapse
|
37
|
Kim D, Gilson WD, Kramer CM, Epstein FH. Myocardial tissue tracking with two-dimensional cine displacement-encoded MR imaging: development and initial evaluation. Radiology 2004; 230:862-71. [PMID: 14739307 DOI: 10.1148/radiol.2303021213] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A breath-hold two-dimensional cine magnetic resonance (MR) pulse sequence based on displacement encoding with stimulated echoes (DENSE) for quantitative myocardial motion tracking was developed and evaluated. In the sequence, complementary spatial modulation of magnetization was used for time-independent artifact suppression, and echo-planar imaging was used for rapid data sampling. Twelve healthy volunteers underwent cine DENSE MR imaging, and six of them also underwent conventional MR imaging myocardial tagging. The circumferential shortening component of strain (E(cc)) was measured on cine DENSE MR images and conventional tagged MR images. With complementary spatial modulation of magnetization, 10% or less of the total cine DENSE MR image energy was attributed to an artifact-generating echo during systolic imaging. Two-dimensional intramyocardial displacement and strain were measured at cine DENSE MR imaging with spatial resolution and temporal resolution of 2.7 x 2.7 mm and 60 msec, respectively. E(cc) measured at cine DENSE MR imaging correlated well with that measured at conventional MR imaging tagging (slope = 0.88, intercept = 0.00, R = 0.87).
Collapse
Affiliation(s)
- Daniel Kim
- Department of Radiology, University of Virginia Health System, Rm 1175, MR-4 Bldg, 409 Lane Rd, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
38
|
Miller CE, Wong CL, Sedmera D. Pressure overload alters stress-strain properties of the developing chick heart. Am J Physiol Heart Circ Physiol 2003; 285:H1849-56. [PMID: 12855423 DOI: 10.1152/ajpheart.00384.2002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As a first step in investigating a control mechanism regulating stress and/or strain in the embryonic heart, this study tests the hypothesis that passive mechanical properties of left ventricular (LV) embryonic myocardium change with chronically increased pressure during the chamber septation period. Conotruncal banding (CTB) created ventricular pressure overload in chicks from Hamburger-Hamilton (HH) stage 21 (HH21) to HH27, HH29, or HH31. LV sections were cyclically stretched while biaxial strains and force were measured. Wall architecture was assessed with scanning electron microscopy. In controls, porosity-adjusted stress-strain relations decreased significantly from HH27 to HH31. CTB at HH21 resulted in significantly stiffer stress-strain relations by HH27, with larger increases at HH29 and HH31, and nearly constant wall thickness. Strain patterns, hysteresis, and loading-curve convergence showed few differences after CTB. Trabecular extent decreased with age, but neither extent nor porosity changed significantly after CTB. The stiffened stress-strain relations and constant wall thickness suggest that mechanical load may play a regulatory role in this response.
Collapse
Affiliation(s)
- Christine E Miller
- Division of Pediatric Cardiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
39
|
OZTURK CENGIZHAN, DERBYSHIRE JANDREW, MCVEIGH ELLIOTR. Estimating Motion From MRI Data. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2003; 9:1627-1648. [PMID: 18958181 PMCID: PMC2574439 DOI: 10.1109/jproc.2003.817872] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
INVITED PAPER: Magnetic resonance imaging (MRI) is an ideal imaging modality to measure blood flow and tissue motion. It provides excellent contrast between soft tissues, and images can be acquired at positions and orientations freely defined by the user. From a temporal sequence of MR images, boundaries and edges of tissues can be tracked by image processing techniques. Additionally, MRI permits the source of the image signal to be manipulated. For example, temporary magnetic tags displaying a pattern of variable brightness may be placed in the object using MR saturation techniques, giving the user a known pattern to detect for motion tracking. The MRI signal is a modulated complex quantity, being derived from a rotating magnetic field in the form of an induced current. Well-defined patterns can also be introduced into the phase of the magnetization, and could be thought of as generalized tags. If the phase of each pixel is preserved during image reconstruction, relative phase shifts can be used to directly encode displacement, velocity and acceleration. New methods for modeling motion fields from MRI have now found application in cardiovascular and other soft tissue imaging. In this review, we shall describe the methods used for encoding, imaging, and modeling motion fields with MRI.
Collapse
Affiliation(s)
- CENGIZHAN OZTURK
- MEMBER, IEEE, The Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey, and also with the National Institutes of Health, National Heart, Lung, and Blood Institute (NHLBI), Bethesda, MD 20892-1538 USA (e-mail: )
| | - J. ANDREW DERBYSHIRE
- The National Institutes of Health, National Heart, Lung, and Blood Institute (NHLBI), Bethesda, MD 20892-1061 USA (e-mail: )
| | - ELLIOT R. MCVEIGH
- MEMBER, IEEE, The National Institutes of Health, National Heart, Lung, and Blood Institute, Bethesda, MD 20892-1061 USA and also with the Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore MD 21205 USA (e-mail: )
| |
Collapse
|
40
|
Faris OP, Evans FJ, Ennis DB, Helm PA, Taylor JL, Chesnick AS, Guttman MA, Ozturk C, McVeigh ER. Novel technique for cardiac electromechanical mapping with magnetic resonance imaging tagging and an epicardial electrode sock. Ann Biomed Eng 2003; 31:430-40. [PMID: 12723684 PMCID: PMC1283123 DOI: 10.1114/1.1560618] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Near-simultaneous measurements of electrical and mechanical activation over the entire ventricular surface are now possible using magnetic resonance imaging tagging and a multielectrode epicardial sock. This new electromechanical mapping technique is demonstrated in the ventricularly paced canine heart. A 128-electrode epicardial sock and pacing electrodes were placed on the hearts of four anesthetized dogs. In the magnetic resonance scanner, tagged cine images (8-15 ms/frame) and sock electrode recordings (1000 Hz) were acquired under right-ventricular pacing and temporally referenced to the pacing stimulus. Electrical recordings were obtained during intermittent breaks in image acquisition, so that both data sets represented the same physiologic state. Since the electrodes were not visible in the images, electrode recordings and cine images were spatially registered with Gd-DTPA markers attached to the sock. Circumferential strain was calculated at locations corresponding to electrodes. For each electrode location, electrical and mechanical activation times were calculated and relationships between the two activation patterns were demonstrated. This method holds promise for improving understanding of the relationships between the patterns of electrical activation and contraction in the heart.
Collapse
Affiliation(s)
- Owen P Faris
- Laboratory of Cardiac Energetics, National Institutes of Health, NHLBI, 10 Center Drive, Room B1D416, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Denney TS, Gerber BL, Yan L. Unsupervised reconstruction of a three-dimensional left ventricular strain from parallel tagged cardiac images. Magn Reson Med 2003; 49:743-54. [PMID: 12652546 DOI: 10.1002/mrm.10434] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A new algorithm, called the Unsupervised Tag ExTraction and Heart strain(E) Reconstruction (UNTETHER) algorithm, is presented for quantifying three-dimensional (3D) myocardial strain in tagged cardiac MR images. Five human volunteers and five postinfarct patients were imaged. 3D strains measured by UNTETHER and a user-supervised technique were compared. Each study was analyzed in 49 +/- 8 min with UNTETHER, compared to approximately 4 hr with the user-supervised technique. For pooled human data, the correlation coefficient between the two methods for circumferential shortening (E(cc)) was r = 0.91 at the mid-wall (P < 0.0005). UNTETHER is capable of measuring wall motion abnormalities resulting from coronary artery disease, and has the potential to overcome the main limitations (time and user-supervision requirements) to routine clinical use of tagged cardiac MRI.
Collapse
Affiliation(s)
- Thomas S Denney
- Department of Electrical and Computer Engineering, Auburn University, 200 Broun Hall, Auburn, AL 36849-5201.
| | | | | |
Collapse
|
42
|
Masood S, Gao J, Yang GZ. Virtual tagging: numerical considerations and phantom validation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2002; 21:1123-1131. [PMID: 12564880 DOI: 10.1109/tmi.2002.804429] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This paper presents a virtual tagging framework for measuring, as well as visualising, myocardial deformation using magnetic resonance (MR) velocity imaging. Tagging grids are allocated artificially according to the deformation gradient with varying shapes and densities. The control points are then deformed such that the difference between the induced deformation velocity and that of actually measured MR data is minimum. A full three-dimensional implementation of the technique combined with the mass conservation constraint is provided. Numerical considerations of applying the proposed framework and different optimization strategies have been investigated with both simulated and phantom experiments. The accuracy of the technique in terms of following material deformation is compared with that of conventional tagging technique.
Collapse
Affiliation(s)
- Sharmeen Masood
- Royal Society/Wolfson Foundation Medical Image Computing Laboratory, Imperial College of Science, Technology and Medicine, University of London, SW7 2BZ London, UK
| | | | | |
Collapse
|
43
|
Paelinck BP, Lamb HJ, Bax JJ, Van der Wall EE, de Roos A. Assessment of diastolic function by cardiovascular magnetic resonance. Am Heart J 2002; 144:198-205. [PMID: 12177633 DOI: 10.1067/mhj.2002.123316] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND The assessment of diastolic heart function has been hampered by multiple difficulties. Cardiovascular magnetic resonance (CMR) is a new, noninvasive technique to study cardiac function. METHODS The literature on CMR for the analysis of diastolic function and its clinical applications is extensively reviewed. RESULTS Analysis of ventricular filling velocity and volume flow, volumetric assessment of ventricular chamber volume, analysis of 3-dimensional myocardial strains, and assessment of myocardial energy content are numerous validated applications of CMR. With the advent of real-time imaging and automated analysis of myocardial strains, CMR tagging is a promising method to assess regional diastolic function. Today, many CMR techniques are leaving the experimental or developmental stage rapidly and becoming clinically available for the evaluation of diastolic function in heart disease. CONCLUSIONS CMR is emerging as a highly accurate and reproducible noninvasive 3-dimensional technique for the assessment of diastolic function.
Collapse
|
44
|
Konofagou EE, D'hooge J, Ophir J. Myocardial elastography--a feasibility study in vivo. ULTRASOUND IN MEDICINE & BIOLOGY 2002; 28:475-482. [PMID: 12049961 DOI: 10.1016/s0301-5629(02)00488-x] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Early detection of cardiovascular diseases has been a very active research area in the medical imaging field. Assessment of the local and global mechanical functions is one of the major goals of accurate diagnosis. In this study, we investigated the feasibility of elastography for estimation and imaging of the local cardiac muscle displacement and strain in a human heart in vivo. In its noninvasive applications, elastography has been typically used to determine local tissue strain through the use of externally applied compression. For our study, we utilized the cardiac muscle motion during a cardiac cycle as the mechanical stimulus, and acquired successive radiofrequency (RF) data frames of the septal and posterior walls over a few cardiac cycles in parasternal and apical views, respectively. High-quality ciné-loop elastograms were obtained due to high frame rates and the resulting low decorrelation noise. Furthermore, the strain contrast was higher in the parasternal case, when only the posterior wall was imaged, and strain estimation was more robust in the apical view. High repeatability of the results was observed through elastographic measurements over several cardiac cycles. Finally, an M-mode version of elastography was used to follow part of the interventricular septum or the posterior wall over the course of two cardiac cycles. Not only do these preliminary results show that elastography is feasible in cardiac applications in vivo, but also that it can provide new information regarding cardiac motion and mechanical function. Future prospects include assessment of the role of elastography in detection of ischemia and infarction.
Collapse
Affiliation(s)
- Elisa E Konofagou
- Focused Ultrasound Laboratory, Department of Radiology-MRI research, Brigham and Women's Hospital, Harvard Medical School, LMRC #013, 221 Longwood Avenue, Boston, MA 02115, USA.
| | | | | |
Collapse
|
45
|
McVeigh E, Faris O, Ennis D, Helm P, Evans F. Electromechanical mapping with MRI tagging and epicardial sock electrodes. J Electrocardiol 2002; 35 Suppl:61-4. [PMID: 12539100 PMCID: PMC1283124 DOI: 10.1054/jelc.2002.37156] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Methods currently exist for the precise measurement of local three-dimensional myocardial motion noninvasivly with magnetic resonace imaging tagging. From these motion estimates, strain images representing the local deformation of the myocardium can be formed to show local myocardial contraction. These images clearly show the sequence of mechanical events during the activation and relaxation of the heart, making them ideal to visualize abnormalities caused by asynchronous electrical activation or ischemia. Coupled with the near simultaneous mapping of electrical depolarization with a sock electrode array, we can investigate the relationship between electical activity and mechanical function on a local level in the in vivo heart. Registered fiber angle maps can be also be obtained in the same heart with diffusion magnetic resonance imaging to assist in the construction of the electromechanical model of the whole heart.
Collapse
Affiliation(s)
- Elliot McVeigh
- Laboratory of Cardiac Energetics, National Heart Lung and Blood Institute, National Institutes of Health, DHHS, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
46
|
Frangi AF, Niessen WJ, Viergever MA. Three-dimensional modeling for functional analysis of cardiac images: a review. IEEE TRANSACTIONS ON MEDICAL IMAGING 2001; 20:2-25. [PMID: 11293688 DOI: 10.1109/42.906421] [Citation(s) in RCA: 226] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Three-dimensional (3-D) imaging of the heart is a rapidly developing area of research in medical imaging. Advances in hardware and methods for fast spatio-temporal cardiac imaging are extending the frontiers of clinical diagnosis and research on cardiovascular diseases. In the last few years, many approaches have been proposed to analyze images and extract parameters of cardiac shape and function from a variety of cardiac imaging modalities. In particular, techniques based on spatio-temporal geometric models have received considerable attention. This paper surveys the literature of two decades of research on cardiac modeling. The contribution of the paper is three-fold: 1) to serve as a tutorial of the field for both clinicians and technologists, 2) to provide an extensive account of modeling techniques in a comprehensive and systematic manner, and 3) to critically review these approaches in terms of their performance and degree of clinical evaluation with respect to the final goal of cardiac functional analysis. From this review it is concluded that whereas 3-D model-based approaches have the capability to improve the diagnostic value of cardiac images, issues as robustness, 3-D interaction, computational complexity and clinical validation still require significant attention.
Collapse
Affiliation(s)
- A F Frangi
- Image Sciences Institute, University Medical Center, Heidelberglaan, Utrecht, The Netherlands.
| | | | | |
Collapse
|
47
|
Ozturk C, McVeigh ER. Four-dimensional B-spline based motion analysis of tagged MR images: introduction and in vivo validation. Phys Med Biol 2000; 45:1683-702. [PMID: 10870718 PMCID: PMC2041909 DOI: 10.1088/0031-9155/45/6/319] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In MRI tagging, magnetic tags-spatially encoded magnetic saturation planes-are created within tissues acting as temporary markers. Their deformation pattern provides useful qualitative and quantitative information about the functional properties of underlying tissue and allows non-invasive analysis of mechanical function. The measured displacement at a given tag point contains only unidirectional information; in order to track the full 3D motion, these data have to be combined with information from other orthogonal tag sets over all time frames. Here, we provide a method to describe the motion of the heart using a four-dimensional tensor product of B-splines. In vivo validation of this tracking algorithm is performed using different tagging sets on the same heart. Using the validation results, the appropriate control point density was determined for normal cardiac motion tracking. Since our motion fields are parametric and based on an image plane based Cartesian coordinate system, trajectories or other derived values (velocity, acceleration, strains ...) can be calculated for any desired point within the volume spanned by the control points. This method does not rely on specific chamber geometry, so the motion of any tagged structure can be tracked. Examples of displacement and strain analysis for both ventricles are also presented.
Collapse
Affiliation(s)
- C Ozturk
- Medical Imaging Laboratory, Johns Hopkins University, Baltimore, MD 21205, USA.
| | | |
Collapse
|