1
|
Prezado Y, Lamirault C, Larcher T, Gilbert C, Espenon J, Patriarca A, de Marzi L, Corvino A, Ortiz R, Juchaux M. On the significance of peak dose in normal tissue toxicity in spatially fractionated radiotherapy: The case of proton minibeam radiation therapy. Radiother Oncol 2025; 205:110769. [PMID: 39947329 DOI: 10.1016/j.radonc.2025.110769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/09/2025] [Accepted: 01/29/2025] [Indexed: 02/17/2025]
Abstract
PURPOSE Spatially fractionated radiotherapy is an unconventional radiotherapy approach able to widen the therapeutic window for difficult-to-treat cases today. To unlock its full potential, accurate knowledge of the relationship between the different dosimetry and geometry parameters and the biological response is still needed. When the same beam width is used, the valley dose has been assumed to be the main parameter influencing normal tissue sparing, with peak doses having little relevance. However, a recent retrospective evaluation of preclinical data suggests peak dose plays a major role in the normal tissue sparing of minibeam radiation therapy (MBRT). The goal of this study was to experimentally validate for the first time the significance of the peak dose for normal tissue sparing in proton MBRT. MATERIALS AND METHODS We irradiated the brains of naive rats with two different configurations of pMBRT, resulting in the same valley and average doses but different peak doses. Behavioural tests and histopathological evaluations were carried out. RESULTS At the same valley dose, a higher peak dose (high peak-to-valley dose ratio (PVDR), larger centre-to-centre (ctc) distance) is more detrimental than a lower peak dose (low PVDR, narrower catch). In the first case, the animals exhibited some hyperactivity in locomotor and exploration activity as well as memory alterations. In addition, the highest peak dose led to a significantly higher cumulative lesion score in the histopathology evaluations than the lowest peak dose. CONCLUSIONS While our study does not exclude the relevant role of the valley dose in tissue sparing, it does highlight the importance of peak doses, contradicting previous assumptions. Our results agree with the conclusion of a recent retrospective evaluation of preclinical studies in micro and minibeam radiation therapy.
Collapse
Affiliation(s)
- Yolanda Prezado
- New Approaches in Radiotherapy Lab, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña 15706, Spain; Oportunius Program, Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, A Coruña, Spain; Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France.
| | - Charlotte Lamirault
- Translational Research Department, Institut Curie, Experimental Radiotherapy Platform, Université Paris Saclay, 91400 Orsay, France
| | | | - Cristele Gilbert
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
| | - Julie Espenon
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
| | - A Patriarca
- Institut Curie, Radiation Oncology Department, Campus universitaire, 91898 Orsay, France
| | - L de Marzi
- Institut Curie, Radiation Oncology Department, Campus universitaire, 91898 Orsay, France; Institut Curie, Université PSL, Université Paris-Saclay, Inserm U1288, Laboratoire de Recherche Translationnelle en Oncologie (LITO), 91898 Orsay, France
| | - Angela Corvino
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
| | - Ramon Ortiz
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
| | - Marjorie Juchaux
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
| |
Collapse
|
2
|
Subramanian N, Čolić A, Santiago Franco M, Stolz J, Ahmed M, Bicher S, Winter J, Lindner R, Raulefs S, Combs SE, Bartzsch S, Schmid TE. Superior Anti-Tumor Response After Microbeam and Minibeam Radiation Therapy in a Lung Cancer Mouse Model. Cancers (Basel) 2025; 17:114. [PMID: 39796741 PMCID: PMC11719800 DOI: 10.3390/cancers17010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/22/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
OBJECTIVES The present study aimed to compare the tumor growth delay between conventional radiotherapy (CRT) and the spatially fractionated modalities of microbeam radiation therapy (MRT) and minibeam radiation therapy (MBRT). In addition, we also determined the influence of beam width and the peak-to-valley dose ratio (PVDR) on tumor regrowth. METHODS A549, a human non-small-cell lung cancer cell line, was implanted subcutaneously into the hind leg of female CD1-Foxn1nu mice. The animals were irradiated with sham, CRT, MRT, or MBRT. The spatially fractionated fields were created using two specially designed multislit collimators with a beam width of 50 μm and a center-to-center distance (CTC) of 400 μm for MRT and a beam width of 500 μm and 2000 μm CTC for MBRT. Additionally, the concept of the equivalent uniform dose (EUD) was chosen in our study. A dose of 20 Gy was applied to all groups with a PVDR of 20 for MBRT and MRT. Tumor growth was recorded until the tumors reached at least a volume that was at least three-fold of their initial value, and the growth delay was calculated. RESULTS We saw a significant reduction in tumor regrowth following all radiation modalities. A growth delay of 11.1 ± 8 days was observed for CRT compared to the sham, whereas MBRT showed a delay of 20.2 ± 7.3 days. The most pronounced delay was observed in mice irradiated with MRT PVDR 20, with 34.9 ± 26.3 days of delay. CONCLUSIONS The current study highlights the fact that MRT and MBRT modalities show a significant tumor growth delay in comparison to CRT at equivalent uniform doses.
Collapse
Affiliation(s)
- Narayani Subramanian
- Department of Radiation Oncology, TUM School of Medicine and Health and Klinikum rechts der Isar, University Hospital of the Technical University of Munich, Ismaninger Straße 22, 81675 Munich, Germany; (N.S.); (A.Č.); (M.S.F.); (J.S.); (M.A.); (S.B.); (J.W.); (S.R.); (S.E.C.)
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum, 85764 München, Germany;
| | - Aleksandra Čolić
- Department of Radiation Oncology, TUM School of Medicine and Health and Klinikum rechts der Isar, University Hospital of the Technical University of Munich, Ismaninger Straße 22, 81675 Munich, Germany; (N.S.); (A.Č.); (M.S.F.); (J.S.); (M.A.); (S.B.); (J.W.); (S.R.); (S.E.C.)
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum, 85764 München, Germany;
| | - Marina Santiago Franco
- Department of Radiation Oncology, TUM School of Medicine and Health and Klinikum rechts der Isar, University Hospital of the Technical University of Munich, Ismaninger Straße 22, 81675 Munich, Germany; (N.S.); (A.Č.); (M.S.F.); (J.S.); (M.A.); (S.B.); (J.W.); (S.R.); (S.E.C.)
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum, 85764 München, Germany;
| | - Jessica Stolz
- Department of Radiation Oncology, TUM School of Medicine and Health and Klinikum rechts der Isar, University Hospital of the Technical University of Munich, Ismaninger Straße 22, 81675 Munich, Germany; (N.S.); (A.Č.); (M.S.F.); (J.S.); (M.A.); (S.B.); (J.W.); (S.R.); (S.E.C.)
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum, 85764 München, Germany;
| | - Mabroor Ahmed
- Department of Radiation Oncology, TUM School of Medicine and Health and Klinikum rechts der Isar, University Hospital of the Technical University of Munich, Ismaninger Straße 22, 81675 Munich, Germany; (N.S.); (A.Č.); (M.S.F.); (J.S.); (M.A.); (S.B.); (J.W.); (S.R.); (S.E.C.)
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum, 85764 München, Germany;
| | - Sandra Bicher
- Department of Radiation Oncology, TUM School of Medicine and Health and Klinikum rechts der Isar, University Hospital of the Technical University of Munich, Ismaninger Straße 22, 81675 Munich, Germany; (N.S.); (A.Č.); (M.S.F.); (J.S.); (M.A.); (S.B.); (J.W.); (S.R.); (S.E.C.)
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum, 85764 München, Germany;
| | - Johanna Winter
- Department of Radiation Oncology, TUM School of Medicine and Health and Klinikum rechts der Isar, University Hospital of the Technical University of Munich, Ismaninger Straße 22, 81675 Munich, Germany; (N.S.); (A.Č.); (M.S.F.); (J.S.); (M.A.); (S.B.); (J.W.); (S.R.); (S.E.C.)
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum, 85764 München, Germany;
| | - Rainer Lindner
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum, 85764 München, Germany;
| | - Susanne Raulefs
- Department of Radiation Oncology, TUM School of Medicine and Health and Klinikum rechts der Isar, University Hospital of the Technical University of Munich, Ismaninger Straße 22, 81675 Munich, Germany; (N.S.); (A.Č.); (M.S.F.); (J.S.); (M.A.); (S.B.); (J.W.); (S.R.); (S.E.C.)
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum, 85764 München, Germany;
| | - Stephanie E. Combs
- Department of Radiation Oncology, TUM School of Medicine and Health and Klinikum rechts der Isar, University Hospital of the Technical University of Munich, Ismaninger Straße 22, 81675 Munich, Germany; (N.S.); (A.Č.); (M.S.F.); (J.S.); (M.A.); (S.B.); (J.W.); (S.R.); (S.E.C.)
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum, 85764 München, Germany;
| | - Stefan Bartzsch
- Department of Radiation Oncology, TUM School of Medicine and Health and Klinikum rechts der Isar, University Hospital of the Technical University of Munich, Ismaninger Straße 22, 81675 Munich, Germany; (N.S.); (A.Č.); (M.S.F.); (J.S.); (M.A.); (S.B.); (J.W.); (S.R.); (S.E.C.)
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum, 85764 München, Germany;
| | - Thomas E. Schmid
- Department of Radiation Oncology, TUM School of Medicine and Health and Klinikum rechts der Isar, University Hospital of the Technical University of Munich, Ismaninger Straße 22, 81675 Munich, Germany; (N.S.); (A.Č.); (M.S.F.); (J.S.); (M.A.); (S.B.); (J.W.); (S.R.); (S.E.C.)
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum, 85764 München, Germany;
| |
Collapse
|
3
|
Eling L, Verry C, Balosso J, Flandin I, Kefs S, Bouchet A, Adam JF, Laissue JA, Serduc R. Neurologic Changes Induced by Whole-Brain Synchrotron Microbeam Irradiation: 10-Month Behavioral and Veterinary Follow-Up. Int J Radiat Oncol Biol Phys 2024; 120:178-188. [PMID: 38462014 DOI: 10.1016/j.ijrobp.2024.02.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/19/2024] [Accepted: 02/25/2024] [Indexed: 03/12/2024]
Abstract
PURPOSE Novel radiation therapy approaches have increased the therapeutic efficacy for malignant brain tumors over the past decades, but the balance between therapeutic gain and radiotoxicity remains a medical hardship. Synchrotron microbeam radiation therapy, an innovative technique, deposes extremely high (peak) doses in micron-wide, parallel microbeam paths, whereas the diffusing interbeam (valley) doses lie in the range of conventional radiation therapy doses. In this study, we evaluated normal tissue toxicity of whole-brain microbeam irradiation (MBI) versus that of a conventional hospital broad beam (hBB). METHODS AND MATERIALS Normal Fischer rats (n = 6-7/group) were irradiated with one of the two modalities, exposing the entire brain to MBI valley/peak doses of 0/0, 5/200, 10/400, 13/520, 17/680, or 25/1000 Gy or to hBB doses of 7, 10, 13, 17, or 25 Gy. Two additional groups of rats received an MBI valley dose of 10 Gy coupled with an hBB dose of 7 or 15 Gy (groups MBI17* and MBI25*). Behavioral parameters were evaluated for 10 months after irradiation combined with veterinary observations. RESULTS MBI peak doses of ≥680 Gy caused acute toxicity and death. Animals exposed to hBB or MBI dose-dependently gained less weight than controls; rats in the hBB25 and MBI25* groups died within 6 months after irradiation. Increasing doses of MBI caused hyperactivity but no other detectable behavioral alterations in our tests. Importantly, no health concerns were seen up to an MBI valley dose of 17 Gy. CONCLUSIONS While acute toxicity of microbeam exposures depends on very high peak doses, late toxicity mainly relates to delivery of high MBI valley doses. MBI seems to have a low impact on normal rat behavior, but further tests are warranted to fully explore this hypothesis. However, high peak and valley doses are well tolerated from a veterinary point of view. This normal tissue tolerance to whole-brain, high-dose MBI reveals a promising avenue for microbeam radiation therapy, that is, therapeutic applications of microbeams that are poised for translation to a clinical environment.
Collapse
Affiliation(s)
- Laura Eling
- Université Grenoble Alpes, Institut National de la Santé et de la Recherche Médicale UA7 Synchrotron Radiation for Biomedicine, Saint-Martin d'Hères, France.
| | - Camille Verry
- Centre Hospitalier Universitaire Grenoble Alpes, Maquis du Grésivaudan, La Tronche, France
| | - Jacques Balosso
- Centre Hospitalier Universitaire Grenoble Alpes, Maquis du Grésivaudan, La Tronche, France
| | - Isabelle Flandin
- Centre Hospitalier Universitaire Grenoble Alpes, Maquis du Grésivaudan, La Tronche, France
| | - Samy Kefs
- Centre Hospitalier Universitaire Grenoble Alpes, Maquis du Grésivaudan, La Tronche, France
| | - Audrey Bouchet
- INSERM U1296, Radiation: Defense, Health, Environment, Lyon, France
| | - Jean François Adam
- Université Grenoble Alpes, Institut National de la Santé et de la Recherche Médicale UA7 Synchrotron Radiation for Biomedicine, Saint-Martin d'Hères, France; Centre Hospitalier Universitaire Grenoble Alpes, Maquis du Grésivaudan, La Tronche, France
| | | | - Raphael Serduc
- Université Grenoble Alpes, Institut National de la Santé et de la Recherche Médicale UA7 Synchrotron Radiation for Biomedicine, Saint-Martin d'Hères, France; Centre Hospitalier Universitaire Grenoble Alpes, Maquis du Grésivaudan, La Tronche, France
| |
Collapse
|
4
|
Kundapur V, Torlakovic E, Auer RN. The Story Behind the First Mini-BEAM Photon Radiation Treatment: What is the Mini-Beam and Why is it Such an Advance? Semin Radiat Oncol 2024; 34:337-343. [PMID: 38880542 DOI: 10.1016/j.semradonc.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Radiation treatment has been the cornerstone in cancer management. However, long term treatment-related morbidity always accompanies tumor control which has significant impact on quality of life of the patient who has survived the cancer. Spatially fractionated radiation has the potential to achieve both cure and to avoid dreaded long term sequelae. The first ever randomized study of mini-beam radiation treatment (MBRT) of canine brain tumor has clearly shown the ability to achieve this goal. Dogs have gyrencephalic brains functionally akin to human brain. We here report long term follow-up and final outcome of the dogs, revealing both tumor control and side effects on normal brain. The results augur potential for conducting human studies with MBRT.
Collapse
Affiliation(s)
- Vijayananda Kundapur
- Saskatoon Cancer Centre, Clinical Professor, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 4H4 Canada.
| | - Emina Torlakovic
- Department of Pathology, University of Saskatchewan, Royal University Hospital, Saskatoon, SK S7N 0W8 Canada
| | - Roland N Auer
- Department of Pathology, University of Saskatchewan, Royal University Hospital, Saskatoon, SK S7N 0W8 Canada
| |
Collapse
|
5
|
Prezado Y, Grams M, Jouglar E, Martínez-Rovira I, Ortiz R, Seco J, Chang S. Spatially fractionated radiation therapy: a critical review on current status of clinical and preclinical studies and knowledge gaps. Phys Med Biol 2024; 69:10TR02. [PMID: 38648789 DOI: 10.1088/1361-6560/ad4192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Spatially fractionated radiation therapy (SFRT) is a therapeutic approach with the potential to disrupt the classical paradigms of conventional radiation therapy. The high spatial dose modulation in SFRT activates distinct radiobiological mechanisms which lead to a remarkable increase in normal tissue tolerances. Several decades of clinical use and numerous preclinical experiments suggest that SFRT has the potential to increase the therapeutic index, especially in bulky and radioresistant tumors. To unleash the full potential of SFRT a deeper understanding of the underlying biology and its relationship with the complex dosimetry of SFRT is needed. This review provides a critical analysis of the field, discussing not only the main clinical and preclinical findings but also analyzing the main knowledge gaps in a holistic way.
Collapse
Affiliation(s)
- Yolanda Prezado
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, F-91400, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, F-91400, Orsay, France
- New Approaches in Radiotherapy Lab, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña, E-15706, Spain
- Oportunius Program, Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, A Coruña, Spain
| | - Michael Grams
- Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, United States of America
| | - Emmanuel Jouglar
- Institut Curie, PSL Research University, Department of Radiation Oncology, F-75005, Paris and Orsay Protontherapy Center, F-91400, Orsay, France
| | - Immaculada Martínez-Rovira
- Physics Department, Universitat Auto`noma de Barcelona, E-08193, Cerdanyola del Valle`s (Barcelona), Spain
| | - Ramon Ortiz
- University of California San Francisco, Department of Radiation Oncology, 1600 Divisadero Street, San Francisco, CA 94143, United States of America
| | - Joao Seco
- Division of Biomedical physics in Radiation Oncology, DKFZ-German Cancer Research Center, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Sha Chang
- Dept of Radiation Oncology and Department of Biomedical Engineering, University of North Carolina School of Medicine, United States of America
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolin State University, United States of America
| |
Collapse
|
6
|
Zhang T, García-Calderón D, Molina-Hernández M, Leitão J, Hesser J, Seco J. A theoretical study of H 2 O 2 as the surrogate of dose in minibeam radiotherapy, with a diffusion model considering radical removal process. Med Phys 2023; 50:5262-5272. [PMID: 37345373 DOI: 10.1002/mp.16570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/16/2023] [Accepted: 06/09/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Minibeam radiation therapy (MBRT) is an innovative dose delivery method with the potential to spare normal tissue while achieving similar tumor control as conventional radiotherapy. However, it is difficult to use a single dose parameter, such as mean dose, to compare different patterns of MBRT due to the spatially fractionated radiation. Also, the mechanism leading to the biological effects is still unknown. PURPOSE This study aims to demonstrate that the hydrogen peroxide (H2 O2 ) distribution could serve as a surrogate of dose distribution when comparing different patterns of MBRT. METHODS A free diffusion model (FDM) for H2 O2 developed with Fick's second law was compared with a previously published model based on Monte Carlo & convolution method. Since cells form separate compartments that can eliminate H2 O2 radicals diffusing inside the cell, a term describing the elimination was introduced into the equation. The FDM and the diffusion model considering removal (DMCR) were compared by simulating various dose rate irradiation schemes and uniform irradiation. Finally, the DMCR was compared with previous microbeam and minibeam animal experiments. RESULTS Compared with a previous Monte Carlo & Convolution method, this analytical method provides more accurate results. Furthermore, the new model shows H2 O2 concentration distribution instead of the time to achieve a certain H2 O2 uniformity. The comparison between FDM and DMCR showed that H2 O2 distribution from FDM varied with dose rate irradiation, while DMCR had consistent results. For uniform irradiation, FDM resulted in a Gaussian distribution, while the H2 O2 distribution from DMCR was close to the dose distribution. The animal studies' evaluation showed a correlation between the H2 O2 concentration in the valley region and treatment outcomes. CONCLUSION DMCR is a more realistic model for H2 O2 simulation than the FDM. In addition, the H2 O2 distribution can be a good surrogate of dose distribution when the minibeam effect could be observed.
Collapse
Affiliation(s)
- Tengda Zhang
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
- Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniel García-Calderón
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Miguel Molina-Hernández
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
- Laboratory of Instrumentation and Experimental Particle Physics (LIP), Lisbon, Portugal
- Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joana Leitão
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
- Laboratory of Instrumentation and Experimental Particle Physics (LIP), Lisbon, Portugal
- Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Jürgen Hesser
- Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Joao Seco
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
7
|
Mentzel F, Paino J, Barnes M, Cameron M, Corde S, Engels E, Kröninger K, Lerch M, Nackenhorst O, Rosenfeld A, Tehei M, Tsoi AC, Vogel S, Weingarten J, Hagenbuchner M, Guatelli S. Accurate and Fast Deep Learning Dose Prediction for a Preclinical Microbeam Radiation Therapy Study Using Low-Statistics Monte Carlo Simulations. Cancers (Basel) 2023; 15:cancers15072137. [PMID: 37046798 PMCID: PMC10093595 DOI: 10.3390/cancers15072137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023] Open
Abstract
Microbeam radiation therapy (MRT) utilizes coplanar synchrotron radiation beamlets and is a proposed treatment approach for several tumor diagnoses that currently have poor clinical treatment outcomes, such as gliosarcomas. Monte Carlo (MC) simulations are one of the most used methods at the Imaging and Medical Beamline, Australian Synchrotron to calculate the dose in MRT preclinical studies. The steep dose gradients associated with the 50μm-wide coplanar beamlets present a significant challenge for precise MC simulation of the dose deposition of an MRT irradiation treatment field in a short time frame. The long computation times inhibit the ability to perform dose optimization in treatment planning or apply online image-adaptive radiotherapy techniques to MRT. Much research has been conducted on fast dose estimation methods for clinically available treatments. However, such methods, including GPU Monte Carlo implementations and machine learning (ML) models, are unavailable for novel and emerging cancer radiotherapy options such as MRT. In this work, the successful application of a fast and accurate ML dose prediction model for a preclinical MRT rodent study is presented for the first time. The ML model predicts the peak doses in the path of the microbeams and the valley doses between them, delivered to the tumor target in rat patients. A CT imaging dataset is used to generate digital phantoms for each patient. Augmented variations of the digital phantoms are used to simulate with Geant4 the energy depositions of an MRT beam inside the phantoms with 15% (high-noise) and 2% (low-noise) statistical uncertainty. The high-noise MC simulation data are used to train the ML model to predict the energy depositions in the digital phantoms. The low-noise MC simulations data are used to test the predictive power of the ML model. The predictions of the ML model show an agreement within 3% with low-noise MC simulations for at least 77.6% of all predicted voxels (at least 95.9% of voxels containing tumor) in the case of the valley dose prediction and for at least 93.9% of all predicted voxels (100.0% of voxels containing tumor) in the case of the peak dose prediction. The successful use of high-noise MC simulations for the training, which are much faster to produce, accelerates the production of the training data of the ML model and encourages transfer of the ML model to different treatment modalities for other future applications in novel radiation cancer therapies.
Collapse
Affiliation(s)
- Florian Mentzel
- Department of Physics, TU Dortmund University, D-44227 Dortmund, Germany
| | - Jason Paino
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Micah Barnes
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2500, Australia
- Imaging and Medical Beamline, Australian Synchrotron, ANSTO, Clayton, VIC 3168, Australia
- Peter MacCallum Cancer Center, Physical Sciences, Melbourne, VIC 3000, Australia
| | - Matthew Cameron
- Imaging and Medical Beamline, Australian Synchrotron, ANSTO, Clayton, VIC 3168, Australia
| | - Stéphanie Corde
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2500, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2500, Australia
- Prince of Wales Hospital, Randwick, NSW 2031, Australia
| | - Elette Engels
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2500, Australia
- Imaging and Medical Beamline, Australian Synchrotron, ANSTO, Clayton, VIC 3168, Australia
- Peter MacCallum Cancer Center, Physical Sciences, Melbourne, VIC 3000, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Kevin Kröninger
- Department of Physics, TU Dortmund University, D-44227 Dortmund, Germany
| | - Michael Lerch
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2500, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Olaf Nackenhorst
- Department of Physics, TU Dortmund University, D-44227 Dortmund, Germany
| | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2500, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Moeava Tehei
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2500, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Ah Chung Tsoi
- School of Computing and Information Technology, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Sarah Vogel
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Jens Weingarten
- Department of Physics, TU Dortmund University, D-44227 Dortmund, Germany
| | - Markus Hagenbuchner
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2500, Australia
- School of Computing and Information Technology, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Susanna Guatelli
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2500, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2500, Australia
| |
Collapse
|
8
|
Baiocco G, Bartzsch S, Conte V, Friedrich T, Jakob B, Tartas A, Villagrasa C, Prise KM. A matter of space: how the spatial heterogeneity in energy deposition determines the biological outcome of radiation exposure. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:545-559. [PMID: 36220965 PMCID: PMC9630194 DOI: 10.1007/s00411-022-00989-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/03/2022] [Indexed: 05/10/2023]
Abstract
The outcome of the exposure of living organisms to ionizing radiation is determined by the distribution of the associated energy deposition at different spatial scales. Radiation proceeds through ionizations and excitations of hit molecules with an ~ nm spacing. Approaches such as nanodosimetry/microdosimetry and Monte Carlo track-structure simulations have been successfully adopted to investigate radiation quality effects: they allow to explore correlations between the spatial clustering of such energy depositions at the scales of DNA or chromosome domains and their biological consequences at the cellular level. Physical features alone, however, are not enough to assess the entity and complexity of radiation-induced DNA damage: this latter is the result of an interplay between radiation track structure and the spatial architecture of chromatin, and further depends on the chromatin dynamic response, affecting the activation and efficiency of the repair machinery. The heterogeneity of radiation energy depositions at the single-cell level affects the trade-off between cell inactivation and induction of viable mutations and hence influences radiation-induced carcinogenesis. In radiation therapy, where the goal is cancer cell inactivation, the delivery of a homogenous dose to the tumour has been the traditional approach in clinical practice. However, evidence is accumulating that introducing heterogeneity with spatially fractionated beams (mini- and microbeam therapy) can lead to significant advantages, particularly in sparing normal tissues. Such findings cannot be explained in merely physical terms, and their interpretation requires considering the scales at play in the underlying biological mechanisms, suggesting a systemic response to radiation.
Collapse
Affiliation(s)
- Giorgio Baiocco
- Radiation Biophysics and Radiobiology Group, Physics Department, University of Pavia, Pavia, Italy.
| | - Stefan Bartzsch
- Institute for Radiation Medicine, Helmholtz Centre Munich, Munich, Germany
- Department of Radiation Oncology, Technical University of Munich, Munich, Germany
| | - Valeria Conte
- Istituto Nazionale Di Fisica Nucleare INFN, Laboratori Nazionali Di Legnaro, Legnaro, Italy
| | - Thomas Friedrich
- Department of Biophysics, GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany
| | - Burkhard Jakob
- Department of Biophysics, GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany
| | - Adrianna Tartas
- Biomedical Physics Division, Institute of Experimental Physics, University of Warsaw, Warsaw, Poland
| | - Carmen Villagrasa
- IRSN, Institut de Radioprotection et de Sûreté Nucléaire, Fontenay aux Roses, France
| | - Kevin M Prise
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| |
Collapse
|
9
|
Kundapur V, Mayer M, Auer RN, Alexander A, Weibe S, Pushie MJ, Cranmer-Sargison G. Is Mini Beam Ready for Human Trials? Results of Randomized Study of Treating De-Novo Brain Tumors in Canines Using Linear Accelerator Generated Mini Beams. Radiat Res 2022; 198:162-171. [PMID: 35536992 DOI: 10.1667/rade-21-00093.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 04/22/2022] [Indexed: 11/03/2022]
Abstract
The main challenge in treating malignant brain neoplasms lies in eradicating the tumor while minimizing treatment-related damage. Conventional radiation treatments are associated with considerable side effects. Synchrotron generated micro-beam radiation (SMBRT) has shown to preserve brain architecture while killing tumor cells, however physical characteristics and limited facility access restrict its use. We have created a new clinical device which produces mini beams on a linear accelerator, to provide a new type of treatment called mini-beam radiation therapy (MBRT). The objective of this study is to compare the treatment outcomes of linear accelerator based MBRT versus standard radiation treatment (SRT), to evaluate the tumor response and the treatment-related changes in the normal brain with respect to each treatment type. Pet dogs with de-novo brain tumors were accrued for treatment. Dogs were randomized between standard fractionated stereotactic (9 Gy in 3 fractions) radiation treatment vs. a single fraction of MBRT (26 Gy mean dose). Dogs were monitored after treatment for clinical assessment and imaging. When the dogs were euthanized, a veterinary pathologist assessed the radiation changes and tumor response. We accrued 16 dogs, 8 dogs in each treatment arm. In the MBRT arm, 71% dogs achieved complete pathological remission. The radiation-related changes were all confined to the target region. Structural damage was not observed in the beam path outside of the target region. In contrast, none of the dogs in control group achieved remission and the treatment related damage was more extensive. Therapeutic superiority was observed with MBRT, including both tumor control and the normal structural preservation. The MBRT findings are suggestive of an immune related mechanism which is absent in standard treatment. These findings together with the widespread availability of clinical linear accelerators make MBRT a promising research topic to explore further treatment and clinical trial opportunities.
Collapse
Affiliation(s)
- V Kundapur
- Radiation Oncology, Saskatchewan Cancer Agency, Saskatoon Cancer Centre, Saskatoon, SK Canada S7N4H4
| | - M Mayer
- Veterinary Radiation Oncology, Department of Small Animal clinical Sciences, University of Saskatchewan, Saskatoon, SK Canada S7N 0W8
| | - R N Auer
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK Canada S7N 0W8
| | - A Alexander
- Radiation Physics, Saskatchewan Cancer Agency, Saskatoon Cancer Centre, Saskatoon, SK Canada S7N4H4
| | - S Weibe
- Department of Clinical Imaging, University of Saskatchewan, Saskatoon, SK Canada S7N 0W8
| | - M J Pushie
- Department of Surgery, University of Saskatchewan, Saskatoon, SK Canada S7N 0W8
| | - G Cranmer-Sargison
- Radiation Physics, Saskatchewan Cancer Agency, Saskatoon Cancer Centre, Saskatoon, SK Canada S7N4H4
| |
Collapse
|
10
|
Bouchet A, Le Clec'h C, Rogalev L, Le Duc G, Pelletier L. Meloxicam can Potentiate the Therapeutic Effects of Synchrotron Microbeam Radiation Therapy on High-Grade Glioma Bearing Rats. Radiat Res 2022; 197:655-661. [PMID: 35245385 DOI: 10.1667/rade-21-00107.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/24/2022] [Indexed: 11/03/2022]
Abstract
The microbeam radiation therapy (MRT), a spatially micro-fractionated synchrotron radiotherapy, leads to better control of incurable high-grade glioma than that obtained upon homogeneous radiotherapy. We evaluated the effect of meloxicam, a non-steroidal anti-inflammatory drug (NSAID), to increase the MRT response. Survival of rats bearing intracranial 9L gliosarcoma treated with meloxicam and/or MRT (400 Gy, 50 μm-wide microbeams, 200 μm spacing) was monitored. Tumor growth was assessed on histological tissue sections and COX-2 transcriptomic expression was studied 1 to 25 days after radiotherapy. Meloxicam significantly extended the median survival of microbeam-irradiated rats (from +10.5 to +20 days). Dual treatment led to last survivors until D90 (D39 for the MRT group) and to tumor 9.5 times smaller than MRT alone. No significant modification of COX-2 expression was induced by MRT in normal and tumor tissues. The meloxicam reinforced the anti-tumor effect of MRT for glioma treatment. Although the mechanisms of interaction between meloxicam and MRT remain to be elucidated, the addition of this NSAID, easily implemented as a supplement to water for example, is a very favorable therapeutic regimen since it doubled the survival benefit compared to MRT alone.
Collapse
Affiliation(s)
- Audrey Bouchet
- INSERM U1296 "Radiation: Defense, Health Environment", Centre Léon-Bérard, 28 Rue Laennec, 69008 Lyon, France.,Biomedical Beamline, European Synchrotron Radiation Facility, BP220, F38043 Grenoble cedex
| | - Céline Le Clec'h
- Biomedical Beamline, European Synchrotron Radiation Facility, BP220, F38043 Grenoble cedex
| | - Léonid Rogalev
- Biomedical Beamline, European Synchrotron Radiation Facility, BP220, F38043 Grenoble cedex
| | - Géraldine Le Duc
- Biomedical Beamline, European Synchrotron Radiation Facility, BP220, F38043 Grenoble cedex
| | - Laurent Pelletier
- Grenoble University Hospital, BP217, F-38043 Grenoble cedex.,INSERM U836, Team Nanomedicine and brain, 6 Rue Fortuné Ferrini, F38706 La Tronche
| |
Collapse
|
11
|
Johnson TR, Bassil AM, Williams NT, Brundage S, Kent CL, Palmer G, Mowery YM, Oldham M. An investigation of kV mini-GRID spatially fractionated radiation therapy: dosimetry and preclinical trial. Phys Med Biol 2022; 67:10.1088/1361-6560/ac508c. [PMID: 35100573 PMCID: PMC9167045 DOI: 10.1088/1361-6560/ac508c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/31/2022] [Indexed: 11/11/2022]
Abstract
Objective. To develop and characterize novel methods of extreme spatially fractionated kV radiation therapy (including mini-GRID therapy) and to evaluate efficacy in the context of a pre-clinical mouse study.Approach. Spatially fractionated GRIDs were precision-milled from 3 mm thick lead sheets compatible with mounting on a 225 kVp small animal irradiator (X-Rad). Three pencil-beam GRIDs created arrays of 1 mm diameter beams, and three 'bar' GRIDs created 1 × 20 mm rectangular fields. GRIDs projected 20 × 20 mm2fields at isocenter, and beamlets were spaced at 1, 1.25, and 1.5 mm, respectively. Peak-to-valley ratios and dose distributions were evaluated with Gafchromic film. Syngeneic transplant tumors were induced by intramuscular injection of a soft tissue sarcoma cell line into the gastrocnemius muscle of C57BL/6 mice. Tumor-bearing mice were randomized to four groups: unirradiated control, conventional irradiation of entire tumor, GRID therapy, and hemi-irradiation (half-beam block, 50% tumor volume treated). All irradiated mice received a single fraction of 15 Gy.Results. High peak-to-valley ratios were achieved (bar GRIDs: 11.9 ± 0.9, 13.6 ± 0.4, 13.8 ± 0.5; pencil-beam GRIDs: 18.7 ± 0.6, 26.3 ± 1.5, 31.0 ± 3.3). Pencil-beam GRIDs could theoretically spare more intra-tumor immune cells than bar GRIDs, but they treat less tumor tissue (3%-4% versus 19%-23% area receiving 90% prescription, respectively). Bar GRID and hemi-irradiation treatments significantly delayed tumor growth (P < 0.05), but not as much as a conventional treatment (P < 0.001). No significant difference was found in tumor growth delay between GRID and hemi-irradiation.Significance. High peak-to-valley ratios were achieved with kV grids: two-to-five times higher than values reported in literature for MV grids. GRID irradiation and hemi-irradiation delayed tumor growth, but neither was as effective as conventional whole tumor uniform dose treatment. Single fraction GRID therapy could not initiate an anti-cancer immune response strong enough to match conventional RT outcomes, but follow-up studies will evaluate the combination of mini-GRID with immune checkpoint blockade.
Collapse
Affiliation(s)
- Timothy R Johnson
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Alex M Bassil
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Nerissa T Williams
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Simon Brundage
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Collin L Kent
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Greg Palmer
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Yvonne M Mowery
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
- Department of Head and Neck Surgery & Communication Sciences, Duke University Medical Center, Durham, NC, United States of America
| | - Mark Oldham
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| |
Collapse
|
12
|
Schültke E. Flying rats and microbeam paths crossing: the beauty of international interdisciplinary science. Int J Radiat Biol 2022; 98:466-473. [PMID: 34995153 DOI: 10.1080/09553002.2021.2024293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE Microbeam radiotherapy (MRT) is a still experimental radiotherapy approach. Two combined parameters contribute to an excellent normal tissue protection and an improved control of malignant tumors in small animal models, compared to conventional radiotherapy: dose deposition at a high dose rate and spatial fractionation at the micrometre level. The international microbeam research community expects to see clinical MRT trials within the next ten years.Physics-associated research is still widely regarded as a male domain. Thus, the question was asked whether this is reflected in the scientific contributions to the field of microbeam radiotherapy. METHOD A literature search was conducted using Pubmed, Semantic Scholar and other sources to look specifically for female contributors to the field of microbeam radiotherapy development. CONCLUSION The original idea for MRT was patented in 1994 by an all-male research team. In approximately 50% of all publications related to microbeam radiotherapy, however, either the first or the senior author is a woman. The contribution of those women who have been driving the development of both technical and biomedical aspects of MRT in the last two decades is highlighted.
Collapse
Affiliation(s)
- Elisabeth Schültke
- Department of Radooncology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
13
|
Smyth LML, Crosbie JC, Sloggett C, Rogers PAW, Donoghue JF. Spatially Fractionated X-Ray Microbeams Elicit a More Sustained Immune and Inflammatory Response in the Brainstem than Homogenous Irradiation. Radiat Res 2021; 196:355-365. [PMID: 34270776 DOI: 10.1667/rade-20-00082.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/22/2021] [Indexed: 11/03/2022]
Abstract
Synchrotron microbeam radiation therapy (MRT) is a preclinical irradiation technique which could be used to treat intracranial malignancies. The goal of this work was to discern differences in gene expression and the predicted regulation of molecular pathways in the brainstem after MRT versus synchrotron broad-beam radiation therapy (SBBR). Healthy C57BL/6 mice received whole-head irradiation with median acute toxic doses of MRT (241 Gy peak dose) or SBBR (13 Gy). Brains were harvested 4 and 48 h postirradiation and RNA was extracted from the brainstem. RNA-sequencing was performed to identify differentially expressed genes (false discovery rate < 0.01) relative to nonirradiated controls and significantly regulated molecular pathways and biological functions were identified (Benjamini-Hochberg corrected P < 0.05). Differentially expressed genes and regulated pathways largely reflected a pro-inflammatory response 4 h after both MRT and SBBR which was sustained at 48 h postirradiation for MRT. Pathways relating to radiation-induced viral mimicry, including HMGB1, NF-κB and interferon signaling cascades, were predicted to be uniquely activated by MRT. Local microglia, as well as circulating leukocytes, including T cells, were predicted to be activated by MRT. Our findings affirm that the transcriptomic signature of MRT is distinct from broad-beam radiotherapy, with a sustained inflammatory and immune response up to 48 h postirradiation.
Collapse
Affiliation(s)
- Lloyd M L Smyth
- Department of Obstetrics & Gynaecology, University of Melbourne, Royal Women's Hospital, Parkville, Australia
| | | | - Clare Sloggett
- Melbourne Bioinformatics, University of Melbourne, Parkville, Australia
| | - Peter A W Rogers
- Department of Obstetrics & Gynaecology, University of Melbourne, Royal Women's Hospital, Parkville, Australia
| | - Jacqueline F Donoghue
- Department of Obstetrics & Gynaecology, University of Melbourne, Royal Women's Hospital, Parkville, Australia
| |
Collapse
|
14
|
Posar JA, Large M, Alnaghy S, Paino JR, Butler DJ, Griffith MJ, Hood S, Lerch MLF, Rosenfeld A, Sellin PJ, Guatelli S, Petasecca M. Towards high spatial resolution tissue-equivalent dosimetry for microbeam radiation therapy using organic semiconductors. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1444-1454. [PMID: 34475292 DOI: 10.1107/s1600577521006044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Spatially fractionated ultra-high-dose-rate beams used during microbeam radiation therapy (MRT) have been shown to increase the differential response between normal and tumour tissue. Quality assurance of MRT requires a dosimeter that possesses tissue equivalence, high radiation tolerance and spatial resolution. This is currently an unsolved challenge. This work explored the use of a 500 nm thick organic semiconductor for MRT dosimetry on the Imaging and Medical Beamline at the Australian Synchrotron. Three beam filters were used to irradiate the device with peak energies of 48, 76 and 88 keV with respective dose rates of 3668, 500 and 209 Gy s-1. The response of the device stabilized to 30% efficiency after an irradiation dose of 30 kGy, with a 0.5% variation at doses of 35 kGy and higher. The calibration factor after pre-irradiation was determined to be 1.02 ± 0.005 µGy per count across all three X-ray energy spectra, demonstrating the unique advantage of using tissue-equivalent materials for dosimetry. The percentage depth dose curve was within ±5% of the PTW microDiamond detector. The broad beam was fractionated into 50 microbeams (50 µm FHWM and 400 µm centre-to-centre distance). For each beam filter, the FWHMs of all 50 microbeams were measured to be 51 ± 1.4, 53 ± 1.4 and 69 ± 1.9 µm, for the highest to lowest dose rate, respectively. The variation in response suggested the photodetector possessed dose-rate dependence. However, its ability to reconstruct the microbeam profile was affected by the presence of additional dose peaks adjacent to the one generated by the X-ray microbeam. Geant4 simulations proved that the additional peaks were due to optical photons generated in the barrier film coupled to the sensitive volume. The simulations also confirmed that the amplitude of the additional peak in comparison with the microbeam decreased for spectra with lower peak energies, as observed in the experimental data. The material packaging can be optimized during fabrication by solution processing onto a flexible substrate with a non-fluorescent barrier film. With these improvements, organic photodetectors show promising prospects as a cost-effective high spatial resolution tissue-equivalent flexible dosimeter for synchrotron radiation fields.
Collapse
Affiliation(s)
- Jessie A Posar
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Matthew Large
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Saree Alnaghy
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Jason R Paino
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Duncan J Butler
- Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), Yallambie, Victoria 3085, Australia
| | - Matthew J Griffith
- School of Aeronautical, Mechanical and Mechatronic Engineering, University of Sydney, Camperdown, NSW 2050, Australia
| | - Sean Hood
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Michael L F Lerch
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Paul J Sellin
- Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - Susanna Guatelli
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Marco Petasecca
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
15
|
Trappetti V, Fernandez-Palomo C, Smyth L, Klein M, Haberthür D, Butler D, Barnes M, Shintani N, de Veer M, Laissue JA, Vozenin MC, Djonov V. Synchrotron Microbeam Radiation Therapy for the Treatment of Lung Carcinoma: A Preclinical Study. Int J Radiat Oncol Biol Phys 2021; 111:1276-1288. [PMID: 34364976 DOI: 10.1016/j.ijrobp.2021.07.1717] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/07/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022]
Abstract
PURPOSE In the past 3 decades, synchrotron microbeam radiation therapy (S-MRT) has been shown to achieve both good tumor control and normal tissue sparing in a range of preclinical animal models. However, the use of S-MRT for the treatment of lung tumors has not yet been investigated. This study is the first to evaluate the therapeutic efficacy of S-MRT for the treatment of lung carcinoma, using a new syngeneic and orthotopic mouse model. METHODS AND MATERIALS Lewis Lung carcinoma-bearing mice were irradiated with 2 cross-fired arrays of S-MRT or synchrotron broad-beam (S-BB) radiation therapy. S-MRT consisted of 17 microbeams with a width of 50 µm and center-to-center spacing of 400 µm. Each microbeam delivered a peak entrance dose of 400 Gy whereas S-BB delivered a homogeneous entrance dose of 5.16 Gy (corresponding to the S-MRT valley dose). RESULTS Both treatments prolonged the survival of mice relative to the untreated controls. However, mice in the S-MRT group developed severe pulmonary edema around the irradiated carcinomas and did not have improved survival relative to the S-BB group. Subsequent postmortem examination of tumor size revealed that the mice in the S-MRT group had notably smaller tumor volume compared with the S-BB group, despite the presence of edema. Mice that were sham-implanted did not display any decline in health after S-MRT, experiencing only mild and transient edema between 4 days and 3 months postirradiation which disappeared after 4 months. Finally, a parallel study investigating the lungs of healthy mice showed the complete absence of radiation-induced pulmonary fibrosis 6 months after S-MRT. CONCLUSIONS S-MRT is a promising tool for the treatment of lung carcinoma, reducing tumor size compared with mice treated with S-BB and sparing healthy lungs from pulmonary fibrosis. Future experiments should focus on optimizing S-MRT parameters to minimize pulmonary edema and maximize the therapeutic ratio.
Collapse
Affiliation(s)
| | | | - Lloyd Smyth
- Department of Obstetrics and Gynaecology, University of Melbourne, Royal Women's Hospital, Melbourne, Australia
| | - Mitzi Klein
- Imaging and Medical Beamline, Australian Nuclear Science and Technology Organisation, Australian Synchrotron, Clayton, Australia
| | | | - Duncan Butler
- Imaging and Medical Beamline, Australian Nuclear Science and Technology Organisation, Australian Synchrotron, Clayton, Australia
| | - Micah Barnes
- Imaging and Medical Beamline, Australian Nuclear Science and Technology Organisation, Australian Synchrotron, Clayton, Australia; Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | - Michael de Veer
- Monash Biomedical Imaging, Monash University, Clayton, Australia
| | | | - Marie C Vozenin
- Department of Radiation Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Switzerland
| | | |
Collapse
|
16
|
Laissue JA. Elke Bräuer-Krisch: dedication, creativity and generosity: May 17, 1961-September 10, 2018. Int J Radiat Biol 2021; 98:280-287. [PMID: 34129423 DOI: 10.1080/09553002.2021.1941385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE This extraordinary woman worked her professional way from a radiation protection engineer to become the successful principal investigator of a prestigious international European project for a new radiation therapy (ERC Synergy grant, HORIZON 2020). The evaluation of the submitted proposal was very positive. The panel proposed that it be funded. Elke tragically passed away a few days before this conclusion of the panel. The present account describes her gradual career development; it includes many episodes that Elke personally chronicled in her curriculum of 2017. METHODS An internet literature search was performed using Google Scholar and other sources to assist in the writing of this narrative review and account. CONCLUSIONS In parallel to the development of the new Biomedical Beamline ID17 at the European Synchrotron Radiation Facility in Grenoble in the late nineties, Elke focused her interest and her personal and professional priorities on MRT, particularly on its clinical goals. She outlined her main objectives in several documents: (1) develop a new paradigm of cancer care by broadening the foundation for MRT. (2) Filling the gaps in basic biological knowledge about the mechanisms of MRT effects on normal and neoplastic tissues. (3) Broaden the preclinical level of evidence for the low normal organ toxicity of MRT versus standard X-ray irradiations; preclinical experiments involved the application of MRT to animal tumor patients, to animals of larger size than laboratory rodents, using larger radiation field sizes, and irradiating in a real-time scenario comparable to the one planned for human patients. (4) To foster the specific purpose of radiosurgical MRT of tumor patients at the ESRF that required development of new, specific state of the art modalities and tools for treatment planning, dosimetry, dose calculation, patient positioning and, of particular importance, redundant levels of patient safety. Just as she was about to take responsibility as principal investigator for a prestigious international European project on a new radiation therapy, death called Elke in.
Collapse
Affiliation(s)
- Jean A Laissue
- Institute of Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
17
|
Pellicioli P, Donzelli M, Davis JA, Estève F, Hugtenburg R, Guatelli S, Petasecca M, Lerch MLF, Bräuer-Krisch E, Krisch M. Study of the X-ray radiation interaction with a multislit collimator for the creation of microbeams in radiation therapy. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:392-403. [PMID: 33650550 DOI: 10.1107/s1600577520016811] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Microbeam radiation therapy (MRT) is a developing radiotherapy, based on the use of beams only a few tens of micrometres wide, generated by synchrotron X-ray sources. The spatial fractionation of the homogeneous beam into an array of microbeams is possible using a multislit collimator (MSC), i.e. a machined metal block with regular apertures. Dosimetry in MRT is challenging and previous works still show differences between calculated and experimental dose profiles of 10-30%, which are not acceptable for a clinical implementation of treatment. The interaction of the X-rays with the MSC may contribute to the observed discrepancies; the present study therefore investigates the dose contribution due to radiation interaction with the MSC inner walls and radiation leakage of the MSC. Dose distributions inside a water-equivalent phantom were evaluated for different field sizes and three typical spectra used for MRT studies at the European Synchrotron Biomedical beamline ID17. Film dosimetry was utilized to determine the contribution of radiation interaction with the MSC inner walls; Monte Carlo simulations were implemented to calculate the radiation leakage contribution. Both factors turned out to be relevant for the dose deposition, especially for small fields. Photons interacting with the MSC walls may bring up to 16% more dose in the valley regions, between the microbeams. Depending on the chosen spectrum, the radiation leakage close to the phantom surface can contribute up to 50% of the valley dose for a 5 mm × 5 mm field. The current study underlines that a detailed characterization of the MSC must be performed systematically and accurate MRT dosimetry protocols must include the contribution of radiation leakage and radiation interaction with the MSC in order to avoid significant errors in the dose evaluation at the micrometric scale.
Collapse
Affiliation(s)
- P Pellicioli
- ID17 Biomedical Beamline, ESRF - The European Synchrotron, 71 avenue des Martyrs, Grenoble, France
| | - M Donzelli
- ID17 Biomedical Beamline, ESRF - The European Synchrotron, 71 avenue des Martyrs, Grenoble, France
| | - J A Davis
- School of Physics, University of Wollongong, Wollongong, Australia
| | - F Estève
- STROBE - Synchrotron Radiation for Biomedicine, Grenoble, France
| | - R Hugtenburg
- Swansea University Medical School, Singleton Park, Swansea, United Kingdom
| | - S Guatelli
- School of Physics, University of Wollongong, Wollongong, Australia
| | - M Petasecca
- School of Physics, University of Wollongong, Wollongong, Australia
| | - M L F Lerch
- School of Physics, University of Wollongong, Wollongong, Australia
| | - E Bräuer-Krisch
- ID17 Biomedical Beamline, ESRF - The European Synchrotron, 71 avenue des Martyrs, Grenoble, France
| | - M Krisch
- ID17 Biomedical Beamline, ESRF - The European Synchrotron, 71 avenue des Martyrs, Grenoble, France
| |
Collapse
|
18
|
Schültke E, Fiedler S, Menk RH, Jaekel F, Dreossi D, Casarin K, Tromba G, Bartzsch S, Kriesen S, Hildebrandt G, Arfelli F. Perspectives for microbeam irradiation at the SYRMEP beamline. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:410-418. [PMID: 33650552 PMCID: PMC7941286 DOI: 10.1107/s1600577521000400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/12/2021] [Indexed: 05/10/2023]
Abstract
It has been shown previously both in vitro and in vivo that microbeam irradiation (MBI) can control malignant tumour cells more effectively than the clinically established concepts of broad beam irradiation. With the aim to extend the international capacity for microbeam research, the first MBI experiment at the biomedical beamline SYRMEP of the Italian synchrotron facility ELETTRA has been conducted. Using a multislit collimator produced by the company TECOMET, arrays of quasi-parallel microbeams were successfully generated with a beam width of 50 µm and a centre-to-centre distance of 400 µm. Murine melanoma cell cultures were irradiated with a target dose of approximately 65 Gy at a mean photon energy of ∼30 keV with a dose rate of 70 Gy s-1 and a peak-to-valley dose of ∼123. This work demonstrated a melanoma cell reduction of approximately 80% after MBI. It is suggested that, while a high energy is essential to achieve high dose rates in order to deposit high treatment doses in a short time in a deep-seated target, for in vitro studies and for the treatment of superficial tumours a spectrum in the lower energy range might be equally suitable or even advantageous.
Collapse
Affiliation(s)
- Elisabeth Schültke
- Department of Radiooncology, Rostock University Medical Center, Südring 75, 18059 Rostock, Germany
| | - Stefan Fiedler
- European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
| | - Ralf Hendrik Menk
- Elettra-Sincrotrone Trieste, Strada Statale 14, Trieste 34149, Italy
- University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Trieste Section, Istituto Nazionale Fisica Nucleare (INFN), Trieste, Italy
| | - Felix Jaekel
- Department of Radiooncology, Rostock University Medical Center, Südring 75, 18059 Rostock, Germany
| | - Diego Dreossi
- Elettra-Sincrotrone Trieste, Strada Statale 14, Trieste 34149, Italy
| | - Katia Casarin
- Elettra-Sincrotrone Trieste, Strada Statale 14, Trieste 34149, Italy
| | - Giuliana Tromba
- Elettra-Sincrotrone Trieste, Strada Statale 14, Trieste 34149, Italy
| | - Stefan Bartzsch
- Department of Radiooncology, Technical University Munich, Munich, Germany
- Institute for Innovative Radiotherapy, Helmholtz-Zentrum Munich (HMGU), Munich, Germany
| | - Stephan Kriesen
- Department of Radiooncology, Rostock University Medical Center, Südring 75, 18059 Rostock, Germany
| | - Guido Hildebrandt
- Department of Radiooncology, Rostock University Medical Center, Südring 75, 18059 Rostock, Germany
| | - Fulvia Arfelli
- Trieste Section, Istituto Nazionale Fisica Nucleare (INFN), Trieste, Italy
- Department of Physics, University of Trieste, Trieste, Italy
| |
Collapse
|
19
|
Unexpected Benefits of Multiport Synchrotron Microbeam Radiation Therapy for Brain Tumors. Cancers (Basel) 2021; 13:cancers13050936. [PMID: 33668110 PMCID: PMC7956531 DOI: 10.3390/cancers13050936] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary We unveiled the potential of an innovative irradiation technique that ablates brain cancer while sparing normal tissues. Spatially fractionating the incident beam into arrays of micrometer-wide beamlets of X-rays (MRT for Microbeam Radiation Therapy) has led to significantly increased survival and tumor control in preclinical studies. Multiport MRT versus conventional irradiations, for the same background continuous dose, resulted in unexpectedly high equivalent biological effects in rats that have not been achieved with any other radiotherapeutic method. These hallmarks of multiport MRT, i.e., minimal impact on normal tissues and exceptional tumor control, may promote this method towards clinical applications, possibly increasing survival and improving long-term outcomes in neuro-oncology patients. Abstract Delivery of high-radiation doses to brain tumors via multiple arrays of synchrotron X-ray microbeams permits huge therapeutic advantages. Brain tumor (9LGS)-bearing and normal rats were irradiated using a conventional, homogeneous Broad Beam (BB), or Microbeam Radiation Therapy (MRT), then studied by behavioral tests, MRI, and histopathology. A valley dose of 10 Gy deposited between microbeams, delivered by a single port, improved tumor control and median survival time of tumor-bearing rats better than a BB isodose. An increased number of ports and an accumulated valley dose maintained at 10 Gy delayed tumor growth and improved survival. Histopathologically, cell death, vascular damage, and inflammatory response increased in tumors. At identical valley isodose, each additional MRT port extended survival, resulting in an exponential correlation between port numbers and animal lifespan (r2 = 0.9928). A 10 Gy valley dose, in MRT mode, delivered through 5 ports, achieved the same survival as a 25 Gy BB irradiation because of tumor dose hot spots created by intersecting microbeams. Conversely, normal tissue damage remained minimal in all the single converging extratumoral arrays. Multiport MRT reached exceptional ~2.5-fold biological equivalent tumor doses. The unique normal tissue sparing and therapeutic index are eminent prerequisites for clinical translation.
Collapse
|
20
|
Treibel F, Nguyen M, Ahmed M, Dombrowsky A, Wilkens JJ, Combs SE, Schmid TE, Bartzsch S. Establishment of Microbeam Radiation Therapy at a Small-Animal Irradiator. Int J Radiat Oncol Biol Phys 2021; 109:626-636. [PMID: 33038461 DOI: 10.1016/j.ijrobp.2020.09.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/03/2020] [Accepted: 09/21/2020] [Indexed: 11/27/2022]
Abstract
PURPOSE Microbeam radiation therapy is a preclinical concept in radiation oncology. It spares normal tissue more effectively than conventional radiation therapy at equal tumor control. The radiation field consists of peak regions with doses of several hundred gray, whereas doses between the peaks (valleys) are below the tissue tolerance level. Widths and distances of the beams are in the submillimeter range for microbeam radiation therapy. A similar alternative concept with beam widths and distances in the millimeter range is presented by minibeam radiation therapy. Although both methods were developed at large synchrotron facilities, compact alternative sources have been proposed recently. METHODS AND MATERIALS A small-animal irradiator was fitted with a special 3-layered collimator that is used for preclinical research and produces microbeams of flexible width of up to 100 μm. Film dosimetry provided measurements of the dose distributions and was compared with Monte Carlo dose predictions. Moreover, the micronucleus assay in Chinese hamster CHO-K1 cells was used as a biological dosimeter. The focal spot size and beam emission angle of the x-ray tube were modified to optimize peak dose rate, peak-to-valley dose ratio (PVDR), beam shape, and field homogeneity. An equivalent collimator with slit widths of up to 500 μm produced minibeams and allowed for comparison of microbeam and minibeam field characteristics. RESULTS The setup achieved peak entrance dose rates of 8 Gy/min and PVDRs >30 for microbeams. Agreement between Monte Carlo simulations and film dosimetry is generally better for larger beam widths; qualitative measurements validated Monte Carlo predicted results. A smaller focal spot enhances PVDRs and reduces beam penumbras but substantially reduces the dose rate. A reduction of the beam emission angle improves the PVDR, beam penumbras, and dose rate without impairing field homogeneity. Minibeams showed similar field characteristics compared with microbeams at the same ratio of beam width and distance but had better agreement with simulations. CONCLUSION The developed setup is already in use for in vitro experiments and soon for in vivo irradiations. Deviations between Monte Carlo simulations and film dosimetry are attributed to scattering at the collimator surface and manufacturing inaccuracies and are a matter of ongoing research.
Collapse
Affiliation(s)
- Franziska Treibel
- School of Medicine, Klinikum rechts der Isar, Department of Radiation Oncology, Technical University of Munich, Munich, Germany; Institute for Radiation Medicine, Helmholtz Centre Munich, Munich, Germany; Physics Department, Technical University of Munich, Garching, Germany
| | - Mai Nguyen
- School of Medicine, Klinikum rechts der Isar, Department of Radiation Oncology, Technical University of Munich, Munich, Germany; Institute for Radiation Medicine, Helmholtz Centre Munich, Munich, Germany
| | - Mabroor Ahmed
- School of Medicine, Klinikum rechts der Isar, Department of Radiation Oncology, Technical University of Munich, Munich, Germany; Institute for Radiation Medicine, Helmholtz Centre Munich, Munich, Germany; Physics Department, Technical University of Munich, Garching, Germany
| | - Annique Dombrowsky
- School of Medicine, Klinikum rechts der Isar, Department of Radiation Oncology, Technical University of Munich, Munich, Germany; Institute for Radiation Medicine, Helmholtz Centre Munich, Munich, Germany
| | - Jan J Wilkens
- School of Medicine, Klinikum rechts der Isar, Department of Radiation Oncology, Technical University of Munich, Munich, Germany; Physics Department, Technical University of Munich, Garching, Germany
| | - Stephanie E Combs
- School of Medicine, Klinikum rechts der Isar, Department of Radiation Oncology, Technical University of Munich, Munich, Germany; Institute for Radiation Medicine, Helmholtz Centre Munich, Munich, Germany
| | - Thomas E Schmid
- School of Medicine, Klinikum rechts der Isar, Department of Radiation Oncology, Technical University of Munich, Munich, Germany; Institute for Radiation Medicine, Helmholtz Centre Munich, Munich, Germany
| | - Stefan Bartzsch
- School of Medicine, Klinikum rechts der Isar, Department of Radiation Oncology, Technical University of Munich, Munich, Germany; Institute for Radiation Medicine, Helmholtz Centre Munich, Munich, Germany.
| |
Collapse
|
21
|
Clinical microbeam radiation therapy with a compact source: specifications of the line-focus X-ray tube. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2021; 14:74-81. [PMID: 33458318 PMCID: PMC7807643 DOI: 10.1016/j.phro.2020.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 02/02/2023]
Abstract
Line-focus X-ray tubes are suitable for clinical microbeam radiation therapy (MRT). A modular high-voltage supply safely enables high electron beam powers. An electron accelerator was designed to generate an eccentric focal spot. We simulated a peak-to-valley dose ratio above 20 for single-field MRT. Microbeam arc therapy spares healthy brain tissue compared to single-field MRT.
Background and purpose Microbeam radiotherapy (MRT) is a preclinical concept in radiation oncology with arrays of alternating micrometer-wide high-dose peaks and low-dose valleys. Experiments demonstrated a superior normal tissue sparing at similar tumor control rates with MRT compared to conventional radiotherapy. Possible clinical applications are currently limited to large third-generation synchrotrons. Here, we investigated the line-focus X-ray tube as an alternative microbeam source. Materials and methods We developed a concept for a high-voltage supply and an electron source. In Monte Carlo simulations, we assessed the influence of X-ray spectrum, focal spot size, electron incidence angle, and photon emission angle on the microbeam dose distribution. We further assessed the dose distribution of microbeam arc therapy and suggested to interpret this complex dose distribution by equivalent uniform dose. Results An adapted modular multi-level converter can supply high-voltage powers in the megawatt range for a few seconds. The electron source with a thermionic cathode and a quadrupole can generate an eccentric, high-power electron beam of several 100 keV energy. Highest dose rates and peak-to-valley dose ratios (PVDRs) were achieved for an electron beam impinging perpendicular onto the target surface and a focal spot smaller than the microbeam cross-section. The line-focus X-ray tube simulations demonstrated PVDRs above 20. Conclusion The line-focus X-ray tube is a suitable compact source for clinical MRT. We demonstrated its technical feasibility based on state-of-the-art high-voltage and electron-beam technology. Microbeam arc therapy is an effective concept to increase the target-to-entrance dose ratio of orthovoltage microbeams.
Collapse
|
22
|
Burger K, Urban T, Dombrowsky AC, Dierolf M, Günther B, Bartzsch S, Achterhold K, Combs SE, Schmid TE, Wilkens JJ, Pfeiffer F. Technical and dosimetric realization of in vivo x-ray microbeam irradiations at the Munich Compact Light Source. Med Phys 2020; 47:5183-5193. [PMID: 32757280 DOI: 10.1002/mp.14433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/15/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022] Open
Abstract
PURPOSE X-ray microbeam radiation therapy is a preclinical concept for tumor treatment promising tissue sparing and enhanced tumor control. With its spatially separated, periodic micrometer-sized pattern, this method requires a high dose rate and a collimated beam typically available at large synchrotron radiation facilities. To treat small animals with microbeams in a laboratory-sized environment, we developed a dedicated irradiation system at the Munich Compact Light Source (MuCLS). METHODS A specially made beam collimation optic allows to increase x-ray fluence rate at the position of the target. Monte Carlo simulations and measurements were conducted for accurate microbeam dosimetry. The dose during irradiation is determined by a calibrated flux monitoring system. Moreover, a positioning system including mouse monitoring was built. RESULTS We successfully commissioned the in vivo microbeam irradiation system for an exemplary xenograft tumor model in the mouse ear. By beam collimation, a dose rate of up to 5.3 Gy/min at 25 keV was achieved. Microbeam irradiations using a tungsten collimator with 50 μm slit size and 350 μm center-to-center spacing were performed at a mean dose rate of 0.6 Gy/min showing a high peak-to-valley dose ratio of about 200 in the mouse ear. The maximum circular field size of 3.5 mm in diameter can be enlarged using field patching. CONCLUSIONS This study shows that we can perform in vivo microbeam experiments at the MuCLS with a dedicated dosimetry and positioning system to advance this promising radiation therapy method at commercially available compact microbeam sources. Peak doses of up to 100 Gy per treatment seem feasible considering a recent upgrade for higher photon flux. The system can be adapted for tumor treatment in different animal models, for example, in the hind leg.
Collapse
Affiliation(s)
- Karin Burger
- Department of Radiation Oncology, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, Munich, 81675, Germany.,Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, Garching, 85748, Germany
| | - Theresa Urban
- Department of Radiation Oncology, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, Munich, 81675, Germany.,Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, Garching, 85748, Germany
| | - Annique C Dombrowsky
- Department of Radiation Oncology, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, Munich, 81675, Germany.,Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Neuherberg, 85764, Germany
| | - Martin Dierolf
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, Garching, 85748, Germany
| | - Benedikt Günther
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, Garching, 85748, Germany
| | - Stefan Bartzsch
- Department of Radiation Oncology, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, Munich, 81675, Germany.,Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Neuherberg, 85764, Germany
| | - Klaus Achterhold
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, Garching, 85748, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, Munich, 81675, Germany.,Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Neuherberg, 85764, Germany
| | - Thomas E Schmid
- Department of Radiation Oncology, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, Munich, 81675, Germany.,Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Neuherberg, 85764, Germany
| | - Jan J Wilkens
- Department of Radiation Oncology, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, Munich, 81675, Germany.,Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, Garching, 85748, Germany
| | - Franz Pfeiffer
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, Garching, 85748, Germany.,Department of Diagnostic and Interventional Radiology, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, München, 81675, Germany
| |
Collapse
|
23
|
Conventional dose rate spatially-fractionated radiation therapy (SFRT) treatment response and its association with dosimetric parameters-A preclinical study in a Fischer 344 rat model. PLoS One 2020; 15:e0229053. [PMID: 32569277 PMCID: PMC7307781 DOI: 10.1371/journal.pone.0229053] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/21/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose To identify key dosimetric parameters that have close associations with tumor treatment response and body weight change in SFRT treatments with a large range of spatial-fractionation scale at dose rates of several Gy/min. Methods Six study arms using uniform tumor radiation, half-tumor radiation, 2mm beam array radiation, 0.3mm minibeam radiation, and an untreated arm were used. All treatments were delivered on a 320kV x-ray irradiator. Forty-two female Fischer 344 rats with fibrosarcoma tumor allografts were used. Dosimetric parameters studied are peak dose and width, valley dose and width, peak-to-valley-dose-ratio (PVDR), volumetric average dose, percentage volume directly irradiated, and tumor- and normal-tissue EUD. Animal survival, tumor volume change, and body weight change (indicative of treatment toxicity) are tested for association with the dosimetric parameters using linear regression and Cox Proportional Hazards models. Results The dosimetric parameters most closely associated with tumor response are tumor EUD (R2 = 0.7923, F-stat = 15.26*; z-test = -4.07***), valley (minimum) dose (R2 = 0.7636, F-stat = 12.92*; z-test = -4.338***), and percentage tumor directly irradiated (R2 = 0.7153, F-stat = 10.05*; z-test = -3.837***) per the linear regression and Cox Proportional Hazards models, respectively. Tumor response is linearly proportional to valley (minimum) doses and tumor EUD. Average dose (R2 = 0.2745, F-stat = 1.514 (no sig.); z-test = -2.811**) and peak dose (R2 = 0.04472, F-stat = 0.6874 (not sig.); z-test = -0.786 (not sig.)) show the weakest associations to tumor response. Only the uniform radiation arm did not gain body weight post-radiation, indicative of treatment toxicity; however, body weight change in general shows weak association with all dosimetric parameters except for valley (minimum) dose (R2 = 0.3814, F-stat = 13.56**), valley width (R2 = 0.2853, F-stat = 8.783**), and peak width (R2 = 0.2759, F-stat = 8.382**). Conclusions For a single-fraction SFRT at conventional dose rates, valley, not peak, dose is closely associated with tumor treatment response and thus should be used for treatment prescription. Tumor EUD, valley (minimum) dose, and percentage tumor directly irradiated are the top three dosimetric parameters that exhibited close associations with tumor response.
Collapse
|
24
|
Toward personalized synchrotron microbeam radiation therapy. Sci Rep 2020; 10:8833. [PMID: 32483249 PMCID: PMC7264143 DOI: 10.1038/s41598-020-65729-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/08/2020] [Indexed: 12/12/2022] Open
Abstract
Synchrotron facilities produce ultra-high dose rate X-rays that can be used for selective cancer treatment when combined with micron-sized beams. Synchrotron microbeam radiation therapy (MRT) has been shown to inhibit cancer growth in small animals, whilst preserving healthy tissue function. However, the underlying mechanisms that produce successful MRT outcomes are not well understood, either in vitro or in vivo. This study provides new insights into the relationships between dosimetry, radiation transport simulations, in vitro cell response, and pre-clinical brain cancer survival using intracerebral gliosarcoma (9LGS) bearing rats. As part of this ground-breaking research, a new image-guided MRT technique was implemented for accurate tumor targeting combined with a pioneering assessment of tumor dose-coverage; an essential parameter for clinical radiotherapy. Based on the results of our study, we can now (for the first time) present clear and reproducible relationships between the in vitro cell response, tumor dose-volume coverage and survival post MRT irradiation of an aggressive and radioresistant brain cancer in a rodent model. Our innovative and interdisciplinary approach is illustrated by the results of the first long-term MRT pre-clinical trial in Australia. Implementing personalized synchrotron MRT for brain cancer treatment will advance this international research effort towards clinical trials.
Collapse
|
25
|
Chicilo F, Hanson AL, Geisler FH, Belev G, Edgar A, Ramaswami KO, Chapman D, Kasap SO. Dose profiles and x-ray energy optimization for microbeam radiation therapy by high-dose, high resolution dosimetry using Sm-doped fluoroaluminate glass plates and Monte Carlo transport simulation. Phys Med Biol 2020; 65:075010. [PMID: 32242527 DOI: 10.1088/1361-6560/ab7361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Microbeam radiation therapy (MRT) utilizes highly collimated synchrotron generated x-rays to create narrow planes of high dose radiation for the treatment of tumors. Individual microbeams have a typical width of 30-50 µm and are separated by a distance of 200-500 µm. The dose delivered at the center of the beam is lethal to cells in the microbeam path, on the order of hundreds of Grays (Gy). The tissue between each microbeam is spared and helps aid in the repair of adjacent damaged tissue. Radiation interactions within the peak of the microbeam, such as the photoelectric effect and incoherent (atomic Compton) scattering, cause some dose to be delivered to the valley areas adjacent to the microbeams. As the incident x-ray energy is modified, radiation interactions within a material change and affect the probability of interactions, as well as the directionality and energy of ionizing particles (electrons) that deposit energy in the valley regions surrounding the microbeam peaks. It is crucial that the valley dose between microbeams be minimal to maintain the effectiveness of MRT. Using a monochromatic x-ray source with x-ray energies ranging from 30 to 150 keV, a detailed investigation into the effect of incident x-ray energy on the dose profiles of microbeams was performed using samarium doped fluoroaluminate (FA) glass as the medium. All dosimetric measurements were carried out using a purpose-built fluorescence confocal microscope dosimetric technique that used Sm-doped FA glass plates as the irradiated medium. Dose profiles are measured over a very a wide range of x-ray energies at micrometer resolution and dose distribution in the microbeam are mapped. The measured microbeam profiles at different energies are compared with the MCNP6 radiation transport code, a general transport code which can calculate the energy deposition of electrons as they pass through a given material. The experimentally measured distributions can be used to validate the results for electron energy deposition in fluoroaluminate glass. Code validation is necessary for using transport codes in future treatment planning for MRT and other radiation therapies. It is shown that simulated and measured micro beam-profiles are in good agreement, and micrometer level changes can be observed using this high-resolution dosimetry technique. Full width at 10% of the maximum peak (FW@10%) was used to quantify the microbeam width. Experimental measurements on FA glasses and simulations on the dependence of the FW@10% at various energies are in good agreement. Simulations on energy deposited in water indicate that FW@10% reaches a local minimum around energies 140 keV. In addition, variable slit width experiments were carried out at an incident x-ray energy of 100 keV in order to determine the effect of the narrowing slit width on the delivered peak dose. The microbeam width affects the peak dose, which decreases with the width of the microbeam. Experiments suggest that a typical microbeam width for MRT is likely to be between 20-50 µm based on this work.
Collapse
Affiliation(s)
- F Chicilo
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Canada
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Dombrowsky AC, Burger K, Porth AK, Stein M, Dierolf M, Günther B, Achterhold K, Gleich B, Feuchtinger A, Bartzsch S, Beyreuther E, Combs SE, Pfeiffer F, Wilkens JJ, Schmid TE. A proof of principle experiment for microbeam radiation therapy at the Munich compact light source. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:111-120. [PMID: 31655869 DOI: 10.1007/s00411-019-00816-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Microbeam radiation therapy (MRT), a preclinical form of spatially fractionated radiotherapy, uses an array of microbeams of hard synchrotron X-ray radiation. Recently, compact synchrotron X-ray sources got more attention as they provide essential prerequisites for the translation of MRT into clinics while overcoming the limited access to synchrotron facilities. At the Munich compact light source (MuCLS), one of these novel compact X-ray facilities, a proof of principle experiment was conducted applying MRT to a xenograft tumor mouse model. First, subcutaneous tumors derived from the established squamous carcinoma cell line FaDu were irradiated at a conventional X-ray tube using broadbeam geometry to determine a suitable dose range for the tumor growth delay. For irradiations at the MuCLS, FaDu tumors were irradiated with broadbeam and microbeam irradiation at integral doses of either 3 Gy or 5 Gy and tumor growth delay was measured. Microbeams had a width of 50 µm and a center-to-center distance of 350 µm with peak doses of either 21 Gy or 35 Gy. A dose rate of up to 5 Gy/min was delivered to the tumor. Both doses and modalities delayed the tumor growth compared to a sham-irradiated tumor. The irradiated area and microbeam pattern were verified by staining of the DNA double-strand break marker γH2AX. This study demonstrates for the first time that MRT can be successfully performed in vivo at compact inverse Compton sources.
Collapse
Affiliation(s)
- Annique C Dombrowsky
- Institute of Radiation Medicine, Helmholtz Zentrum München GmbH, 85764, Neuherberg, Germany
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Karin Burger
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
- Chair of Biomedical Physics, Department of Physics, Technical University of Munich, 85748, Garching, Germany
- Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Ann-Kristin Porth
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Marlon Stein
- Institute of Radiation Medicine, Helmholtz Zentrum München GmbH, 85764, Neuherberg, Germany
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Martin Dierolf
- Chair of Biomedical Physics, Department of Physics, Technical University of Munich, 85748, Garching, Germany
- Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Benedikt Günther
- Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Klaus Achterhold
- Chair of Biomedical Physics, Department of Physics, Technical University of Munich, 85748, Garching, Germany
- Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Bernhard Gleich
- Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München GmbH, 85764, Neuherberg, Germany
| | - Stefan Bartzsch
- Institute of Radiation Medicine, Helmholtz Zentrum München GmbH, 85764, Neuherberg, Germany
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Elke Beyreuther
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- OncoRay, National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Stephanie E Combs
- Institute of Radiation Medicine, Helmholtz Zentrum München GmbH, 85764, Neuherberg, Germany
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
- German Consortium for Translational Cancer Research, Deutsches Konsortium für Translationale Krebsforschung (dktk), Technical University Munich, 81675, Munich, Germany
| | - Franz Pfeiffer
- Chair of Biomedical Physics, Department of Physics, Technical University of Munich, 85748, Garching, Germany
- Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
- Department of Diagnostic and Interventional Radiobiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Jan J Wilkens
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
- Chair of Biomedical Physics, Department of Physics, Technical University of Munich, 85748, Garching, Germany
| | - Thomas E Schmid
- Institute of Radiation Medicine, Helmholtz Zentrum München GmbH, 85764, Neuherberg, Germany.
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany.
| |
Collapse
|
27
|
Fernandez-Palomo C, Fazzari J, Trappetti V, Smyth L, Janka H, Laissue J, Djonov V. Animal Models in Microbeam Radiation Therapy: A Scoping Review. Cancers (Basel) 2020; 12:E527. [PMID: 32106397 PMCID: PMC7139755 DOI: 10.3390/cancers12030527] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Microbeam Radiation Therapy (MRT) is an innovative approach in radiation oncology where a collimator subdivides the homogeneous radiation field into an array of co-planar, high-dose beams which are tens of micrometres wide and separated by a few hundred micrometres. OBJECTIVE This scoping review was conducted to map the available evidence and provide a comprehensive overview of the similarities, differences, and outcomes of all experiments that have employed animal models in MRT. METHODS We considered articles that employed animal models for the purpose of studying the effects of MRT. We searched in seven databases for published and unpublished literature. Two independent reviewers screened citations for inclusion. Data extraction was done by three reviewers. RESULTS After screening 5688 citations and 159 full-text papers, 95 articles were included, of which 72 were experimental articles. Here we present the animal models and pre-clinical radiation parameters employed in the existing MRT literature according to their use in cancer treatment, non-neoplastic diseases, or normal tissue studies. CONCLUSIONS The study of MRT is concentrated in brain-related diseases performed mostly in rat models. An appropriate comparison between MRT and conventional radiotherapy (instead of synchrotron broad beam) is needed. Recommendations are provided for future studies involving MRT.
Collapse
Affiliation(s)
| | - Jennifer Fazzari
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (C.F.-P.); (J.F.); (V.T.); (J.L.)
| | - Verdiana Trappetti
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (C.F.-P.); (J.F.); (V.T.); (J.L.)
| | - Lloyd Smyth
- Department of Obstetrics & Gynaecology, University of Melbourne, 3057 Parkville, Australia;
| | - Heidrun Janka
- Medical Library, University Library Bern, University of Bern, 3012 Bern, Switzerland;
| | - Jean Laissue
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (C.F.-P.); (J.F.); (V.T.); (J.L.)
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (C.F.-P.); (J.F.); (V.T.); (J.L.)
| |
Collapse
|
28
|
Bartzsch S, Corde S, Crosbie JC, Day L, Donzelli M, Krisch M, Lerch M, Pellicioli P, Smyth LML, Tehei M. Technical advances in x-ray microbeam radiation therapy. Phys Med Biol 2020; 65:02TR01. [PMID: 31694009 DOI: 10.1088/1361-6560/ab5507] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the last 25 years microbeam radiation therapy (MRT) has emerged as a promising alternative to conventional radiation therapy at large, third generation synchrotrons. In MRT, a multi-slit collimator modulates a kilovoltage x-ray beam on a micrometer scale, creating peak dose areas with unconventionally high doses of several hundred Grays separated by low dose valley regions, where the dose remains well below the tissue tolerance level. Pre-clinical evidence demonstrates that such beam geometries lead to substantially reduced damage to normal tissue at equal tumour control rates and hence drastically increase the therapeutic window. Although the mechanisms behind MRT are still to be elucidated, previous studies indicate that immune response, tumour microenvironment, and the microvasculature may play a crucial role. Beyond tumour therapy, MRT has also been suggested as a microsurgical tool in neurological disorders and as a primer for drug delivery. The physical properties of MRT demand innovative medical physics and engineering solutions for safe treatment delivery. This article reviews technical developments in MRT and discusses existing solutions for dosimetric validation, reliable treatment planning and safety. Instrumentation at synchrotron facilities, including beam production, collimators and patient positioning systems, is also discussed. Specific solutions reviewed in this article include: dosimetry techniques that can cope with high spatial resolution, low photon energies and extremely high dose rates of up to 15 000 Gy s-1, dose calculation algorithms-apart from pure Monte Carlo Simulations-to overcome the challenge of small voxel sizes and a wide dynamic dose-range, and the use of dose-enhancing nanoparticles to combat the limited penetrability of a kilovoltage energy spectrum. Finally, concepts for alternative compact microbeam sources are presented, such as inverse Compton scattering set-ups and carbon nanotube x-ray tubes, that may facilitate the transfer of MRT into a hospital-based clinical environment. Intensive research in recent years has resulted in practical solutions to most of the technical challenges in MRT. Treatment planning, dosimetry and patient safety systems at synchrotrons have matured to a point that first veterinary and clinical studies in MRT are within reach. Should these studies confirm the promising results of pre-clinical studies, the authors are confident that MRT will become an effective new radiotherapy option for certain patients.
Collapse
Affiliation(s)
- Stefan Bartzsch
- Department of Radiation Oncology, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany. Helmholtz Centre Munich, Institute for Radiation Medicine, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Flynn S, Price T, Allport PP, Silvestre Patallo I, Thomas R, Subiel A, Bartzsch S, Treibel F, Ahmed M, Jacobs-Headspith J, Edwards T, Jones I, Cathie D, Guerrini N, Sedgwick I. Evaluation of a pixelated large format CMOS sensor for x-ray microbeam radiotherapy. Med Phys 2019; 47:1305-1316. [PMID: 31837272 PMCID: PMC7078942 DOI: 10.1002/mp.13971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 01/15/2023] Open
Abstract
PURPOSE Current techniques and procedures for dosimetry in microbeams typically rely on radiochromic film or small volume ionization chambers for validation and quality assurance in 2D and 1D, respectively. Whilst well characterized for clinical and preclinical radiotherapy, these methods are noninstantaneous and do not provide real time profile information. The objective of this work is to determine the suitability of the newly developed vM1212 detector, a pixelated CMOS (complementary metal-oxide-semiconductor) imaging sensor, for in situ and in vivo verification of x-ray microbeams. METHODS Experiments were carried out on the vM1212 detector using a 220 kVp small animal radiation research platform (SARRP) at the Helmholtz Centre Munich. A 3 x 3 cm2 square piece of EBT3 film was placed on top of a marked nonfibrous card overlaying the sensitive silicon of the sensor. One centimeter of water equivalent bolus material was placed on top of the film for build-up. The response of the detector was compared to an Epson Expression 10000XL flatbed scanner using FilmQA Pro with triple channel dosimetry. This was also compared to a separate exposure using 450 µm of silicon as a surrogate for the detector and a Zeiss Axio Imager 2 microscope using an optical microscopy method of dosimetry. Microbeam collimator slits with range of nominal widths of 25, 50, 75, and 100 µm were used to compare beam profiles and determine sensitivity of the detector and both film measurements to different microbeams. RESULTS The detector was able to measure peak and valley profiles in real-time, a significant reduction from the 24 hr self-development required by the EBT3 film. Observed full width at half maximum (FWHM) values were larger than the nominal slit widths, ranging from 130 to 190 µm due to divergence. Agreement between the methods was found for peak-to-valley dose ratio (PVDR), peak to peak separation and FWHM, but a difference in relative intensity of the microbeams was observed between the detectors. CONCLUSIONS The investigation demonstrated that pixelated CMOS sensors could be applied to microbeam radiotherapy for real-time dosimetry in the future, however the relatively large pixel pitch of the vM1212 detector limit the immediate application of the results.
Collapse
Affiliation(s)
- Samuel Flynn
- School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, UK.,Medical Physics Department, National Physical Laboratory, Teddington, TW11 0LW, UK
| | - Tony Price
- School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, UK.,Medical Physics Department, National Physical Laboratory, Teddington, TW11 0LW, UK
| | - Philip P Allport
- School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ileana Silvestre Patallo
- Medical Physics Department, National Physical Laboratory, Teddington, TW11 0LW, UK.,UCL Cancer Institute, University College London, London, WC1E 6AG, UK
| | - Russell Thomas
- Medical Physics Department, National Physical Laboratory, Teddington, TW11 0LW, UK
| | - Anna Subiel
- Medical Physics Department, National Physical Laboratory, Teddington, TW11 0LW, UK
| | - Stefan Bartzsch
- Helmholtz Centre Munich, Institute for Radiation Medicine, Munich, 85764, Germany.,School of Medicine, Klinikum rechts der Isar, Department of Radiation Oncology, Technical University of Munich, Munich, 80333, Germany
| | - Franziska Treibel
- School of Medicine, Klinikum rechts der Isar, Department of Radiation Oncology, Technical University of Munich, Munich, 80333, Germany
| | - Mabroor Ahmed
- School of Medicine, Klinikum rechts der Isar, Department of Radiation Oncology, Technical University of Munich, Munich, 80333, Germany
| | | | | | | | | | | | - Iain Sedgwick
- Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK
| |
Collapse
|
30
|
First experimental measurement of the effect of cardio‐synchronous brain motion on the dose distribution during microbeam radiation therapy. Med Phys 2019; 47:213-222. [DOI: 10.1002/mp.13899] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/16/2019] [Accepted: 10/21/2019] [Indexed: 01/03/2023] Open
|
31
|
Potez M, Fernandez-Palomo C, Bouchet A, Trappetti V, Donzelli M, Krisch M, Laissue J, Volarevic V, Djonov V. Synchrotron Microbeam Radiation Therapy as a New Approach for the Treatment of Radioresistant Melanoma: Potential Underlying Mechanisms. Int J Radiat Oncol Biol Phys 2019; 105:1126-1136. [PMID: 31461675 DOI: 10.1016/j.ijrobp.2019.08.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/04/2019] [Accepted: 08/18/2019] [Indexed: 01/30/2023]
Abstract
PURPOSE Synchrotron microbeam radiation therapy (MRT) is a method that spatially distributes the x-ray beam into several microbeams of very high dose (peak dose), regularly separated by low-dose intervals (valley dose). MRT selectively spares normal tissues, relative to conventional (uniform broad beam [BB]) radiation therapy. METHODS AND MATERIALS To evaluate the effect of MRT on radioresistant melanoma, B16-F10 murine melanomas were implanted into mice ears. Tumors were either treated with MRT (407.6 Gy peak; 6.2 Gy valley dose) or uniform BB irradiation (6.2 Gy). RESULTS MRT induced significantly longer tumor regrowth delay than did BB irradiation. A significant 24% reduction in blood vessel perfusion was observed 5 days after MRT, and the cell proliferation index was significantly lower in melanomas treated by MRT compared with BB. MRT provoked a greater induction of senescence in melanoma cells. Bio-Plex analyses revealed enhanced concentration of monocyte-attracting chemokines in the MRT group: MCP-1 at D5, MIP-1α, MIP-1β, IL12p40, and RANTES at D9. This was associated with leukocytic infiltration at D9 after MRT, attributed mainly to CD8 T cells, natural killer cells, and macrophages. CONCLUSIONS In light of its potential to disrupt blood vessels that promote infiltration of the tumor by immune cells and its induction of senescence, MRT could be a new therapeutic approach for radioresistant melanoma.
Collapse
Affiliation(s)
- Marine Potez
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | | | - Audrey Bouchet
- Institute of Anatomy, University of Bern, Bern, Switzerland; Synchrotron Radiation for Biomedicine, INSERM UA7, 71 rue des Martyrs, 38000 Grenoble, France
| | | | - Mattia Donzelli
- Biomedical Beamline ID17, European Synchrotron Radiation Facility, Grenoble, France; Joint Department of Physics, The Institute of Cancer Research and the Royal Marsden Hospital, London, United Kingdom
| | - Michael Krisch
- Biomedical Beamline ID17, European Synchrotron Radiation Facility, Grenoble, France
| | - Jean Laissue
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Vladislav Volarevic
- Department of Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Bern, Switzerland.
| |
Collapse
|
32
|
Identifying optimal clinical scenarios for synchrotron microbeam radiation therapy: A treatment planning study. Phys Med 2019; 60:111-119. [DOI: 10.1016/j.ejmp.2019.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/20/2019] [Accepted: 03/19/2019] [Indexed: 12/25/2022] Open
|
33
|
Meyer J, Eley J, Schmid TE, Combs SE, Dendale R, Prezado Y. Spatially fractionated proton minibeams. Br J Radiol 2019; 92:20180466. [PMID: 30359081 PMCID: PMC6541186 DOI: 10.1259/bjr.20180466] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 12/26/2022] Open
Abstract
Extraordinary normal tissue response to highly spatially fractionated X-ray beams has been explored for over 25 years. More recently, alternative radiation sources have been developed and utilized with the aim to evoke comparable effects. These include protons, which lend themselves well for this endeavour due to their physical depth dose characteristics as well as corresponding variable biological effectiveness. This paper addresses the motivation for using protons to generate spatially fractionated beams and reviews the technological implementations and experimental results to date. This includes simulation and feasibility studies, collimation and beam characteristics, dosimetry and biological considerations as well as the results of in vivo and in vitro studies. Experimental results are emerging indicating an extraordinary normal tissue sparing effect analogous to what has been observed for synchrotron generated X-ray microbeams. The potential for translational research and feasibility of spatially modulated proton beams in clinical settings is discussed.
Collapse
Affiliation(s)
- Juergen Meyer
- Department of Radiation Oncology, University of Washington, Seattle, WA, USA
| | - John Eley
- Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | | | | | - Remi Dendale
- Institut Curie, Centre de Protonthérapie d’Orsay, Orsay, France
| | - Yolanda Prezado
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique, Universités Paris 11 and Paris 7, Campus d'Orsay, Orsay, France
| |
Collapse
|
34
|
Prezado Y, Jouvion G, Patriarca A, Nauraye C, Guardiola C, Juchaux M, Lamirault C, Labiod D, Jourdain L, Sebrie C, Dendale R, Gonzalez W, Pouzoulet F. Proton minibeam radiation therapy widens the therapeutic index for high-grade gliomas. Sci Rep 2018; 8:16479. [PMID: 30405188 PMCID: PMC6220274 DOI: 10.1038/s41598-018-34796-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/26/2018] [Indexed: 12/15/2022] Open
Abstract
Proton minibeam radiation therapy (pMBRT) is a novel strategy which has already shown a remarkable reduction in neurotoxicity as to compared with standard proton therapy. Here we report on the first evaluation of tumor control effectiveness in glioma bearing rats with highly spatially modulated proton beams. Whole brains (excluding the olfactory bulb) of Fischer 344 rats were irradiated. Four groups of animals were considered: a control group (RG2 tumor bearing rats), a second group of RG2 tumor-bearing rats and a third group of normal rats that received pMBRT (70 Gy peak dose in one fraction) with very heterogeneous dose distributions, and a control group of normal rats. The tumor-bearing and normal animals were followed-up for 6 months and one year, respectively. pMBRT leads to a significant tumor control and tumor eradication in 22% of the cases. No substantial brain damage which confirms the widening of the therapeutic window for high-grade gliomas offered by pMBRT. Additionally, the fact that large areas of the brain can be irradiated with pMBRT without significant side effects, would allow facing the infiltrative nature of gliomas.
Collapse
Affiliation(s)
- Yolanda Prezado
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Universités Paris 11 and Paris 7, Campus d'Orsay, 91405, Orsay, France.
| | - Gregory Jouvion
- Institut Pasteur, Neuropathologie Expérimentale, Institut Pasteur, 28 Rue du Docteur Roux, 75015, Paris, France
| | - Annalisa Patriarca
- Institut Curie, PSL Research University, Radiation Oncology Department, Centre de Protonthérapie d'Orsay, 101, F-91898, Orsay, France
| | - Catherine Nauraye
- Institut Curie, PSL Research University, Radiation Oncology Department, Centre de Protonthérapie d'Orsay, 101, F-91898, Orsay, France
| | - Consuelo Guardiola
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Universités Paris 11 and Paris 7, Campus d'Orsay, 91405, Orsay, France
| | - Marjorie Juchaux
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Universités Paris 11 and Paris 7, Campus d'Orsay, 91405, Orsay, France
| | - Charlotte Lamirault
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Universités Paris 11 and Paris 7, Campus d'Orsay, 91405, Orsay, France
| | - Dalila Labiod
- Institut Curie, PSL Research University, Translational Research Department, Experimental Radiotherapy Platform, Orsay, France
- Paris Sud University, Paris -Saclay University, 91405, Orsay, France
| | - Laurene Jourdain
- IR4M, UMR8081, Université Paris Sud, CNRS, Université Paris-Saclay, 91405, Orsay, France
| | - Catherine Sebrie
- IR4M, UMR8081, Université Paris Sud, CNRS, Université Paris-Saclay, 91405, Orsay, France
| | - Remi Dendale
- Institut Curie, PSL Research University, Radiation Oncology Department, Centre de Protonthérapie d'Orsay, 101, F-91898, Orsay, France
| | - Wilfredo Gonzalez
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Universités Paris 11 and Paris 7, Campus d'Orsay, 91405, Orsay, France
| | - Frederic Pouzoulet
- Institut Curie, PSL Research University, Translational Research Department, Experimental Radiotherapy Platform, Orsay, France
- Paris Sud University, Paris -Saclay University, 91405, Orsay, France
| |
Collapse
|
35
|
Guardiola C, Prezado Y, Roulin C, Bergs JW. Effect of X-ray minibeam radiation therapy on clonogenic survival of glioma cells. Clin Transl Radiat Oncol 2018; 13:7-13. [PMID: 30211325 PMCID: PMC6134191 DOI: 10.1016/j.ctro.2018.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 01/02/2023] Open
Abstract
The goal is to compare, in vitro, the efficiency of minibeam radiotherapy (MBRT) and standard RT in inducing clonogenic cell death in glioma cell lines. With this aim, we report on the first in vitro study performed in an X-ray Small Animal Radiation Research Platform (SARRP) modified for minibeam irradiations. F98 rat and U87 human glioma cells were irradiated with either an array of minibeams (MB) or with conventional homogeneous beams (broad beam, BB). A specially designed multislit collimator was used to generate the minibeams with a with of a center-to-center distance of 1465 (±10) μm, and a PVDR value of 12.4 (±2.3) measured at 1 cm depth in a water phantom. Cells were either replated for clonogenic assay directly (immediate plating, IP) or 24 h after irradiation (delayed plating, DP) to assess the effect of potentially lethal damage repair (PLDR) on cell survival. Our hypothesis is that with MBRT, a similar level of clonogenic cell death can be reached compared to standard RT, when using equal mean radiation doses. To prove this, we performed dose escalations to determine the minimum integrated dose needed to reach a similar level of clonogenic cell death for both treatments. We show that this minimum dose can vary per cell line: in F98 cells a dose of 19 Gy was needed to obtain similar levels of clonogenic survival, whereas in U87 cells there was still a slightly increased survival with MB compared to BB 19 Gy treatment. The results suggest also an impairment of DNA damage repair in F98 cells as there is no difference in clonogenic cell survival between immediately and delayed plated cells for each dose and irradiation mode. For U87 cells, a small IP-DP effect was observed in the case of BB irradiation up to a dose of 17 Gy. However, at 19 Gy BB, as well as for the complete dose range of MB irradiation, U87 cells did not show a difference in clonogenic survival between IP and DP. We therefore speculate that MBRT might influence PLDR. The current results show that X-ray MBRT is a promising method for treatment of gliomas: future preclinical and clinical studies should aim at reaching a minimum radiation (valley) dose for effective eradication of gliomas with increased sparing of normal tissues compared to standard RT.
Collapse
Affiliation(s)
- Consuelo Guardiola
- IMNC-UMR 8165, CNRS Paris-Saclay University, 15 rue Georges Clemenceau, 91406 Orsay cedex, France
| | - Yolanda Prezado
- IMNC-UMR 8165, CNRS Paris-Saclay University, 15 rue Georges Clemenceau, 91406 Orsay cedex, France
| | - Christophe Roulin
- Institut Curie, PSL Research University, Translational Research Department, Experimental Radiotherapy Platform, Orsay, France
| | - Judith W.J. Bergs
- IMNC-UMR 8165, CNRS Paris-Saclay University, 15 rue Georges Clemenceau, 91406 Orsay cedex, France
| |
Collapse
|
36
|
De Marzi L, Patriarca A, Nauraye C, Hierso E, Dendale R, Guardiola C, Prezado Y. Implementation of planar proton minibeam radiation therapy using a pencil beam scanning system: A proof of concept study. Med Phys 2018; 45:5305-5316. [PMID: 30311639 DOI: 10.1002/mp.13209] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/26/2018] [Accepted: 09/02/2018] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Proton minibeam radiation therapy (pMBRT) is an innovative approach that combines the advantages of minibeam radiation therapy with the more precise ballistics of protons to further reduce the side effects of radiation. One of the main challenges of this approach is the generation of very narrow proton pencil beams with an adequate dose-rate to treat patients within a reasonable treatment time (several minutes) in existing clinical facilities. The aim of this study was to demonstrate the feasibility of implementing pMBRT by combining the pencil beam scanning (PBS) technique with the use of multislit collimators. This proof of concept study of pMBRT with a clinical system is intended to guide upcoming biological experiments. METHODS Monte Carlo simulations (TOPAS v3.1.p2) were used to design a suitable multislit collimator to implement planar pMBRT for conventional pencil beam scanning settings. Dose distributions (depth-dose curves, lateral profiles, Peak-to-Valley Dose Ratio (PVDR) and dose-rates) for different proton beam energies were assessed by means of Monte Carlo simulations and experimental measurements in a water tank using commercial ionization chambers and a new p-type silicon diode, the IBA RAZOR. An analytical intensity-modulated dose calculation algorithm designed to optimize the weight of individual Bragg peaks composing the field was also developed and validated. RESULTS Proton minibeams were then obtained using a brass multislit collimator with five slits measuring 2 cm × 400 μm in width with a center-to-center distance of 4 mm. The measured and calculated dose distributions (depth-dose curves and lateral profiles) showed a good agreement. Spread-out Bragg peaks (SOBP) and homogeneous dose distributions around the target were obtained by means of intensity modulation of Bragg peaks, while maintaining spatial fractionation at shallow depths. Mean dose-rates of 0.12 and 0.09 Gy/s were obtained for one iso-energy layer and a SOBP conditions in the presence of multislit collimator. CONCLUSIONS This study demonstrates the feasibility of implementing pMBRT on a PBS system. It also confirms the reliability of RAZOR detector for pMBRT dosimetry. This newly developed experimental methodology will support the design of future preclinical research with pMBRT.
Collapse
Affiliation(s)
- Ludovic De Marzi
- Institut Curie, PSL Research University, Centre de protonthérapie d'Orsay, Campus universitaire, bâtiment 101, Orsay, 91898, France
| | - Annalisa Patriarca
- Institut Curie, PSL Research University, Centre de protonthérapie d'Orsay, Campus universitaire, bâtiment 101, Orsay, 91898, France
| | - Catherine Nauraye
- Institut Curie, PSL Research University, Centre de protonthérapie d'Orsay, Campus universitaire, bâtiment 101, Orsay, 91898, France
| | - Eric Hierso
- Institut Curie, PSL Research University, Centre de protonthérapie d'Orsay, Campus universitaire, bâtiment 101, Orsay, 91898, France
| | - Rémi Dendale
- Institut Curie, PSL Research University, Centre de protonthérapie d'Orsay, Campus universitaire, bâtiment 101, Orsay, 91898, France
| | - Consuelo Guardiola
- IMNC-UMR 8165, CNRS, Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, Orsay Cedex, 91405, France
| | - Yolanda Prezado
- IMNC-UMR 8165, CNRS, Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, Orsay Cedex, 91405, France
| |
Collapse
|
37
|
Esplen NM, Chergui L, Johnstone CD, Bazalova-Carter M. Monte Carlo optimization of a microbeam collimator design for use on the small animal radiation research platform (SARRP). ACTA ACUST UNITED AC 2018; 63:175004. [DOI: 10.1088/1361-6560/aad7e2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
38
|
Manchado de Sola F, Vilches M, Prezado Y, Lallena AM. Impact of cardiosynchronous brain pulsations on Monte Carlo calculated doses for synchrotron micro‐ and minibeam radiation therapy. Med Phys 2018; 45:3379-3390. [DOI: 10.1002/mp.12973] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 04/02/2018] [Accepted: 05/05/2018] [Indexed: 11/07/2022] Open
Affiliation(s)
- Francisco Manchado de Sola
- Servicio de Radiofísica y Protección Radiológica Hospital Juan Ramón Jiménez Ronda Exterior Norte, s/n E‐21005Huelva Spain
| | - Manuel Vilches
- Servicio de Radiofísica y Protección Radiológica Centro Médico de Asturias/IMOMA Avda. Richard Grandío, s/n E‐33193Oviedo Spain
| | - Yolanda Prezado
- Laboratoire Imagerie et Modélisation en Neurobiologie et Cancérologie CNRS 5 rue Georges Clemenceau F‐91406Orsay Cedex France
| | - Antonio M. Lallena
- Departamento de Física Atómica, Molecular y Nuclear Universidad de Granada E‐18071Granada Spain
| |
Collapse
|
39
|
Smith R, Wang J, Seymour C, Fernandez-Palomo C, Fazzari J, Schültke E, Bräuer-Krisch E, Laissue J, Schroll C, Mothersill C. Homogenous and Microbeam X-Ray Radiation Induces Proteomic Changes in the Brains of Irradiated Rats and in the Brains of Nonirradiated Cage Mate Rats. Dose Response 2018; 16:1559325817750068. [PMID: 29383012 PMCID: PMC5784471 DOI: 10.1177/1559325817750068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/07/2017] [Accepted: 07/11/2017] [Indexed: 01/08/2023] Open
Abstract
To evaluate microbeam radiation therapy (MRT), for brain tumor treatment, the bystander effect in nonirradiated companion animals was investigated. Adult rats were irradiated with 35 or 350 Gy at the European Synchrotron Research Facility using homogenous irradiation (HR) or MRT to the right brain hemisphere. The irradiated rats were housed with nonirradiated rats. After 48 hours, all rats were euthanized and the frontal lobe proteome was analyzed using 2-dimensional electrophoresis and mass spectrometry. Proteome changes were determined by analysis of variance (P < .05). Homogenous irradiation increased serum albumin, heat shock protein 71 (HSP-71), triosephosphate isomerase (TPI), fructose bisphosphate aldolase (FBA), and prohibitin and decreased dihydrolipoyl dehydrogenase (DLD) and pyruvate kinase. Microbeam radiation therapy increased HSP-71, FBA, and prohibitin, and decreased aconitase, dihydropyrimidinase, TPI, tubulin DLD, and pyruvate kinase. Cage mates with HR irradiated rats showed increased HSP-71 and FBA and decreased pyruvate kinase, DLD, and aconitase. Cage mates with MRT irradiated rats showed increased HSP-71, prohibitin, and FBA and decreased aconitase and DLD. Homogenous irradiation proteome changes indicated tumorigenesis, while MRT proteome changes indicated an oxidative stress response. The bystander effect of proteome changes appeared antitumorigenic and inducing radioresistance. This investigation also supports the need for research into prohibitin interaction with HSP-70/71 chaperones and cancer therapy.
Collapse
Affiliation(s)
- Richard Smith
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Jiaxi Wang
- Mass Spectrometry Facility, Department of Chemistry, Queen's University, Kingston, Ontario, Canada
| | - Colin Seymour
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Cristian Fernandez-Palomo
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Jennifer Fazzari
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Elisabeth Schültke
- Department of Radio-oncology, Rostock University Medical Centre, Rostock, Germany
| | | | - Jean Laissue
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Christian Schroll
- Stereotactic Neurosurgery and Laboratory for Molecular Neurosurgery, Freiburg University Medical Centre, Freiburg, Germany
| | - Carmel Mothersill
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
40
|
Ghita M, Fernandez-Palomo C, Fukunaga H, Fredericia PM, Schettino G, Bräuer-Krisch E, Butterworth KT, McMahon SJ, Prise KM. Microbeam evolution: from single cell irradiation to pre-clinical studies. Int J Radiat Biol 2018; 94:708-718. [PMID: 29309203 DOI: 10.1080/09553002.2018.1425807] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE This review follows the development of microbeam technology from the early days of single cell irradiations, to investigations of specific cellular mechanisms and to the development of new treatment modalities in vivo. A number of microbeam applications are discussed with a focus on pre-clinical modalities and translation towards clinical application. CONCLUSIONS The development of radiation microbeams has been a valuable tool for the exploration of fundamental radiobiological response mechanisms. The strength of micro-irradiation techniques lies in their ability to deliver precise doses of radiation to selected individual cells in vitro or even to target subcellular organelles. These abilities have led to the development of a range of microbeam facilities around the world allowing the delivery of precisely defined beams of charged particles, X-rays, or electrons. In addition, microbeams have acted as mechanistic probes to dissect the underlying molecular events of the DNA damage response following highly localized dose deposition. Further advances in very precise beam delivery have also enabled the transition towards new and exciting therapeutic modalities developed at synchrotrons to deliver radiotherapy using plane parallel microbeams, in Microbeam Radiotherapy (MRT).
Collapse
Affiliation(s)
- Mihaela Ghita
- a Centre for Cancer Research and Cell Biology , Queen's University Belfast , Belfast , UK
| | | | - Hisanori Fukunaga
- a Centre for Cancer Research and Cell Biology , Queen's University Belfast , Belfast , UK
| | - Pil M Fredericia
- c Centre for Nuclear Technologies , Technical University of Denmark , Roskilde , Denmark
| | | | | | - Karl T Butterworth
- a Centre for Cancer Research and Cell Biology , Queen's University Belfast , Belfast , UK
| | - Stephen J McMahon
- a Centre for Cancer Research and Cell Biology , Queen's University Belfast , Belfast , UK
| | - Kevin M Prise
- a Centre for Cancer Research and Cell Biology , Queen's University Belfast , Belfast , UK
| |
Collapse
|
41
|
Livingstone J, Stevenson AW, Häusermann D, Adam JF. Experimental optimisation of the X-ray energy in microbeam radiation therapy. Phys Med 2017; 45:156-161. [PMID: 29472081 DOI: 10.1016/j.ejmp.2017.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/18/2017] [Accepted: 12/23/2017] [Indexed: 11/30/2022] Open
Abstract
Microbeam radiation therapy has demonstrated superior normal tissue sparing properties compared to broadbeam radiation fields. The ratio of the microbeam peak dose to the valley dose (PVDR), which is dependent on the X-ray energy/spectrum and geometry, should be maximised for an optimal therapeutic ratio. Simulation studies in the literature report the optimal energy for MRT based on the PVDR. However, most of these studies have considered different microbeam geometries to that at the Imaging and Medical Beamline (50 μm beam width with a spacing of 400 μm). We present the first fully experimental investigation of the energy dependence of PVDR and microbeam penumbra. Using monochromatic X-ray energies in the range 40-120 keV the PVDR was shown to increase with increasing energy up to 100 keV before plateauing. PVDRs measured for pink beams were consistently higher than those for monochromatic energies similar or equivalent to the average energy of the spectrum. The highest PVDR was found for a pink beam average energy of 124 keV. Conversely, the microbeam penumbra decreased with increasing energy before plateauing for energies above 90 keV. The effect of bone on the PVDR was investigated at energies 60, 95 and 120 keV. At depths greater than 20 mm beyond the bone/water interface there was almost no effect on the PVDR. In conclusion, the optimal energy range for MRT at IMBL is 90-120 keV, however when considering the IMBL flux at different energies, a spectrum with 95 keV weighted average energy was found to be the best compromise.
Collapse
Affiliation(s)
- Jayde Livingstone
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation, 800 Blackburn Road, Clayton, Victoria, Australia.
| | - Andrew W Stevenson
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation, 800 Blackburn Road, Clayton, Victoria, Australia
| | - Daniel Häusermann
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation, 800 Blackburn Road, Clayton, Victoria, Australia
| | - Jean-François Adam
- Equipe d'accueil Rayonnement Synchrotron et Recherche Médicale, Université Grenoble-Alpes, Grenoble, France; Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| |
Collapse
|
42
|
Bazyar S, Inscoe CR, O’Brian ET, Zhou O, Lee YZ. Minibeam radiotherapy with small animal irradiators; in vitro and in vivo feasibility studies. ACTA ACUST UNITED AC 2017; 62:8924-8942. [DOI: 10.1088/1361-6560/aa926b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
43
|
Lee MH, Lee KM, Kim EH. Neighbor effect: penumbra-dose exposed neighbor cells contribute to the enhanced survival of high-dose targeted cells. Int J Radiat Biol 2017; 93:1227-1238. [PMID: 28738724 DOI: 10.1080/09553002.2017.1359430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE In the last decade, new types of 'bystander effect' have been suggested by multiple research groups and have been challenged by others. In this study, we explored a new type of bystander effect, which has been defined in previous studies as the enhancement of the survival of high-dose targeted cells due to the penumbra-dose exposed neighbor cells. Intensity-modulated radiation therapy, which is the most widely used treatment modality, generates local regions of gradient doses between targeted and shielded cells throughout the treatment volume; therefore, we were urged to ascertain whether the new type of effect is real and to suggest a revised treatment planning. MATERIALS AND METHODS Cellular responses under non-uniform beam fields were observed in rat gliosarcoma cells, rat diencephalon cells, and mouse endothelial cells. The cells were irradiated with 200 kVp X-rays in two types: (1) all the cells in the flask were exposed to the X-ray beam (whole-beam exposure) and (2) half of the cells in the flask were exposed to the beam while the other half, or neighbor cells, were shielded from the beam (half-beam exposure). Target cells were exposed to 1, 2, 4, 6, 8, and 10 Gy, and the penumbra dose was approximately 10%-20% of the target dose. RESULTS Target cells survived high-dose (> 6 Gy) radiation exposures better under half-beam exposure with the low penumbra-dose exposed neighbor cells around than under whole-beam exposure. The survival of the targeted cells from half-beam exposure was reduced when the radiation self-conditioned medium was replaced with a fresh one immediately after irradiation. Survival was further reduced when the targeted cells were harvested immediately after irradiation and incubated in new dishes with fresh culture media until the colony was counted. CONCLUSION We have collected data of good statistics by several post-irradiation treatments of targeted cells to ascertain that the new type of bystander effect is real. The low penumbra-dose exposed neighbor cells benefited the survival of the high-dose targeted cells.
Collapse
Affiliation(s)
- Min-Ho Lee
- a Department of Nuclear Engineering, Radiation Bioengineering Laboratory , Seoul National University , Seoul , Republic of Korea
| | - Ki-Man Lee
- a Department of Nuclear Engineering, Radiation Bioengineering Laboratory , Seoul National University , Seoul , Republic of Korea
| | - Eun-Hee Kim
- a Department of Nuclear Engineering, Radiation Bioengineering Laboratory , Seoul National University , Seoul , Republic of Korea
| |
Collapse
|
44
|
Merrem A, Bartzsch S, Laissue J, Oelfke U. Computational modelling of the cerebral cortical microvasculature: effect of x-ray microbeams versus broad beam irradiation. Phys Med Biol 2017; 62:3902-3922. [PMID: 28333689 PMCID: PMC6050522 DOI: 10.1088/1361-6560/aa68d5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/15/2017] [Accepted: 03/23/2017] [Indexed: 12/31/2022]
Abstract
Microbeam Radiation Therapy is an innovative pre-clinical strategy which uses arrays of parallel, tens of micrometres wide kilo-voltage photon beams to treat tumours. These x-ray beams are typically generated on a synchrotron source. It was shown that these beam geometries allow exceptional normal tissue sparing from radiation damage while still being effective in tumour ablation. A final biological explanation for this enhanced therapeutic ratio has still not been found, some experimental data support an important role of the vasculature. In this work, the effect of microbeams on a normal microvascular network of the cerebral cortex was assessed in computer simulations and compared to the effect of homogeneous, seamless exposures at equal energy absorption. The anatomy of a cerebral microvascular network and the inflicted radiation damage were simulated to closely mimic experimental data using a novel probabilistic model of radiation damage to blood vessels. It was found that the spatial dose fractionation by microbeam arrays significantly decreased the vascular damage. The higher the peak-to-valley dose ratio, the more pronounced the sparing effect. Simulations of the radiation damage as a function of morphological parameters of the vascular network demonstrated that the distribution of blood vessel radii is a key parameter determining both the overall radiation damage of the vasculature and the dose-dependent differential effect of microbeam irradiation.
Collapse
Affiliation(s)
- A Merrem
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen, Germany
- This work was carried out at the German Cancer Research Center, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - S Bartzsch
- Klinikum Rechts der Isar, Ismaninger Str. 2, 81675 München, Germany
- The Institute of Cancer Research, Royal Marsden Hospital, Fulham Rd, London SW3 6JJ, United Kingdom
- This work was carried out at the German Cancer Research Center, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - J Laissue
- University of Bern, Hochschulstrasse 4, 3012 Bern, Switzerland
| | - U Oelfke
- The Institute of Cancer Research, Royal Marsden Hospital, Fulham Rd, London SW3 6JJ, United Kingdom
- This work was carried out at the German Cancer Research Center, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| |
Collapse
|
45
|
Guardiola C, Peucelle C, Prezado Y. Optimization of the mechanical collimation for minibeam generation in proton minibeam radiation therapy. Med Phys 2017; 44:1470-1478. [DOI: 10.1002/mp.12131] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 01/17/2017] [Accepted: 01/17/2017] [Indexed: 11/11/2022] Open
Affiliation(s)
- Consuelo Guardiola
- IMNC-UMR 8165; CNRS; Paris 7 and Paris 11 Universities; 15 rue Georges Clemenceau Orsay Cedex 91405 France
| | - Cécile Peucelle
- IMNC-UMR 8165; CNRS; Paris 7 and Paris 11 Universities; 15 rue Georges Clemenceau Orsay Cedex 91405 France
| | - Yolanda Prezado
- IMNC-UMR 8165; CNRS; Paris 7 and Paris 11 Universities; 15 rue Georges Clemenceau Orsay Cedex 91405 France
| |
Collapse
|
46
|
Davis W, Crewson C, Alexander A, Kundapur V, Cranmer-Sargison G. Dosimetric characterization of an accessory mounted mini-beam collimator across clinically beam matched medical linear accelerators. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa586d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
47
|
Brönnimann D, Bouchet A, Schneider C, Potez M, Serduc R, Bräuer-Krisch E, Graber W, von Gunten S, Laissue JA, Djonov V. Synchrotron microbeam irradiation induces neutrophil infiltration, thrombocyte attachment and selective vascular damage in vivo. Sci Rep 2016; 6:33601. [PMID: 27640676 PMCID: PMC5027521 DOI: 10.1038/srep33601] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/25/2016] [Indexed: 11/15/2022] Open
Abstract
Our goal was the visualizing the vascular damage and acute inflammatory response to micro- and minibeam irradiation in vivo. Microbeam (MRT) and minibeam radiation therapies (MBRT) are tumor treatment approaches of potential clinical relevance, both consisting of parallel X-ray beams and allowing the delivery of thousands of Grays within tumors. We compared the effects of microbeams (25–100 μm wide) and minibeams (200–800 μm wide) on vasculature, inflammation and surrounding tissue changes during zebrafish caudal fin regeneration in vivo. Microbeam irradiation triggered an acute inflammatory response restricted to the regenerating tissue. Six hours post irradiation (6 hpi), it was infiltrated by neutrophils and fli1a+ thrombocytes adhered to the cell wall locally in the beam path. The mature tissue was not affected by microbeam irradiation. In contrast, minibeam irradiation efficiently damaged the immature tissue at 6 hpi and damaged both the mature and immature tissue at 48 hpi. We demonstrate that vascular damage, inflammatory processes and cellular toxicity depend on the beam width and the stage of tissue maturation. Minibeam irradiation did not differentiate between mature and immature tissue. In contrast, all irradiation-induced effects of the microbeams were restricted to the rapidly growing immature tissue, indicating that microbeam irradiation could be a promising tumor treatment tool.
Collapse
Affiliation(s)
- Daniel Brönnimann
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Audrey Bouchet
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Christoph Schneider
- Institute of Pharmacology, University of Bern, Inselspital INO-F, 3010 Bern, Switzerland
| | - Marine Potez
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Raphaël Serduc
- Université Grenoble Alpes, EA-Rayonnement Synchrotron et Recherche Medicale, ESRF, ID17 F-38043 Grenoble, France
| | - Elke Bräuer-Krisch
- Biomedical Beamline, European Synchrotron Radiation Facility, BP220, F38043 Grenoble, France
| | - Werner Graber
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Stephan von Gunten
- Institute of Pharmacology, University of Bern, Inselspital INO-F, 3010 Bern, Switzerland
| | - Jean Albert Laissue
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| |
Collapse
|
48
|
Fournier P, Cornelius I, Donzelli M, Requardt H, Nemoz C, Petasecca M, Bräuer-Krisch E, Rosenfeld A, Lerch M. X-Tream quality assurance in synchrotron X-ray microbeam radiation therapy. JOURNAL OF SYNCHROTRON RADIATION 2016; 23:1180-1190. [PMID: 27577773 DOI: 10.1107/s1600577516009322] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/08/2016] [Indexed: 06/06/2023]
Abstract
Microbeam radiation therapy (MRT) is a novel irradiation technique for brain tumours treatment currently under development at the European Synchrotron Radiation Facility in Grenoble, France. The technique is based on the spatial fractionation of a highly brilliant synchrotron X-ray beam into an array of microbeams using a multi-slit collimator (MSC). After promising pre-clinical results, veterinary trials have recently commenced requiring the need for dedicated quality assurance (QA) procedures. The quality of MRT treatment demands reproducible and precise spatial fractionation of the incoming synchrotron beam. The intensity profile of the microbeams must also be quickly and quantitatively characterized prior to each treatment for comparison with that used for input to the dose-planning calculations. The Centre for Medical Radiation Physics (University of Wollongong, Australia) has developed an X-ray treatment monitoring system (X-Tream) which incorporates a high-spatial-resolution silicon strip detector (SSD) specifically designed for MRT. In-air measurements of the horizontal profile of the intrinsic microbeam X-ray field in order to determine the relative intensity of each microbeam are presented, and the alignment of the MSC is also assessed. The results show that the SSD is able to resolve individual microbeams which therefore provides invaluable QA of the horizontal field size and microbeam number and shape. They also demonstrate that the SSD used in the X-Tream system is very sensitive to any small misalignment of the MSC. In order to allow as rapid QA as possible, a fast alignment procedure of the SSD based on X-ray imaging with a low-intensity low-energy beam has been developed and is presented in this publication.
Collapse
Affiliation(s)
- Pauline Fournier
- Centre for Medical Radiation Physics, University of Wollongong, Australia
| | - Iwan Cornelius
- Centre for Medical Radiation Physics, University of Wollongong, Australia
| | | | | | | | - Marco Petasecca
- Centre for Medical Radiation Physics, University of Wollongong, Australia
| | | | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Australia
| | - Michael Lerch
- Centre for Medical Radiation Physics, University of Wollongong, Australia
| |
Collapse
|
49
|
Belley MD, Stanton IN, Hadsell M, Ger R, Langloss BW, Lu J, Zhou O, Chang SX, Therien MJ, Yoshizumi TT. Fiber-optic detector for real time dosimetry of a micro-planar x-ray beam. Med Phys 2015; 42:1966-72. [PMID: 25832087 DOI: 10.1118/1.4915078] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Here, the authors describe a dosimetry measurement technique for microbeam radiation therapy using a nanoparticle-terminated fiber-optic dosimeter (nano-FOD). METHODS The nano-FOD was placed in the center of a 2 cm diameter mouse phantom to measure the deep tissue dose and lateral beam profile of a planar x-ray microbeam. RESULTS The continuous dose rate at the x-ray microbeam peak measured with the nano-FOD was 1.91 ± 0.06 cGy s(-1), a value 2.7% higher than that determined via radiochromic film measurements (1.86 ± 0.15 cGy s(-1)). The nano-FOD-determined lateral beam full-width half max value of 420 μm exceeded that measured using radiochromic film (320 μm). Due to the 8° angle of the collimated microbeam and resulting volumetric effects within the scintillator, the profile measurements reported here are estimated to achieve a resolution of ∼0.1 mm; however, for a beam angle of 0°, the theoretical resolution would approach the thickness of the scintillator (∼0.01 mm). CONCLUSIONS This work provides proof-of-concept data and demonstrates that the novel nano-FOD device can be used to perform real-time dosimetry in microbeam radiation therapy to measure the continuous dose rate at the x-ray microbeam peak as well as the lateral beam shape.
Collapse
Affiliation(s)
- Matthew D Belley
- Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27705 and Duke Radiation Dosimetry Laboratory, Duke University Medical Center, Durham, North Carolina 27710
| | - Ian N Stanton
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708
| | - Mike Hadsell
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Rachel Ger
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Brian W Langloss
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708
| | - Jianping Lu
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Otto Zhou
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599 and UNC Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina 27599
| | - Sha X Chang
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599; Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina 27599; and UNC Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina 27599
| | - Michael J Therien
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708
| | - Terry T Yoshizumi
- Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27705;Duke Radiation Dosimetry Laboratory, Duke University Medical Center, Durham, North Carolina 27710; and Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
50
|
Chtcheprov P, Burk L, Yuan H, Inscoe C, Ger R, Hadsell M, Lu J, Zhang L, Chang S, Zhou O. Physiologically gated microbeam radiation using a field emission x-ray source array. Med Phys 2015; 41:081705. [PMID: 25086515 DOI: 10.1118/1.4886015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Microbeam radiation therapy (MRT) uses narrow planes of high dose radiation beams to treat cancerous tumors. This experimental therapy method based on synchrotron radiation has been shown to spare normal tissue at up to 1000 Gy of peak entrance dose while still being effective in tumor eradication and extending the lifetime of tumor-bearing small animal models. Motion during treatment can lead to significant movement of microbeam positions resulting in broader beam width and lower peak to valley dose ratio (PVDR), which reduces the effectiveness of MRT. Recently, the authors have demonstrated the feasibility of generating microbeam radiation for small animal treatment using a carbon nanotube (CNT) x-ray source array. The purpose of this study is to incorporate physiological gating to the CNT microbeam irradiator to minimize motion-induced microbeam blurring. METHODS The CNT field emission x-ray source array with a narrow line focal track was operated at 160 kVp. The x-ray radiation was collimated to a single 280 μm wide microbeam at entrance. The microbeam beam pattern was recorded using EBT2 Gafchromic(©) films. For the feasibility study, a strip of EBT2 film was attached to an oscillating mechanical phantom mimicking mouse chest respiratory motion. The servo arm was put against a pressure sensor to monitor the motion. The film was irradiated with three microbeams under gated and nongated conditions and the full width at half maximums and PVDRs were compared. An in vivo study was also performed with adult male athymic mice. The liver was chosen as the target organ for proof of concept due to its large motion during respiration compared to other organs. The mouse was immobilized in a specialized mouse bed and anesthetized using isoflurane. A pressure sensor was attached to a mouse's chest to monitor its respiration. The output signal triggered the electron extraction voltage of the field emission source such that x-ray was generated only during a portion of the mouse respiratory cycle when there was minimum motion. Parallel planes of microbeams with 12.4 Gy/plane dose and 900 μm pitch were delivered. The microbeam profiles with and without gating were analyzed using γ-H2Ax immunofluorescence staining. RESULTS The phantom study showed that the respiratory motion caused a 50% drop in PVDR from 11.5 when there is no motion to 5.4, whereas there was only a 5.5% decrease in PVDR for gated irradiation compared to the no motion case. In the in vivo study, the histology result showed gating increased PVDR by a factor of 2.4 compared to the nongated case, similar to the result from the phantom study. The full width at tenth maximum of the microbeam decreased by 40% in gating in vivo and close to 38% with phantom studies. CONCLUSIONS The CNT field emission x-ray source array can be synchronized to physiological signals for gated delivery of x-ray radiation to minimize motion-induced beam blurring. Gated MRT reduces valley dose between lines during long-time radiation of a moving object. The technique allows for more precise MRT treatments and makes the CNT MRT device practical for extended treatment.
Collapse
Affiliation(s)
- Pavel Chtcheprov
- Department of Biomedical Engineering, University of North Carolina, 152 MacNider Hall, Campus Box 7575, Chapel Hill, North Carolina 27599
| | - Laurel Burk
- Department of Physics and Astronomy, University of North Carolina, Phillips Hall, CB #3255, 120 East Cameron Avenue, Chapel Hill, North Carolina 27599
| | - Hong Yuan
- Department of Radiology, University of North Carolina, 2006 Old Clinic, CB #7510, Chapel Hill, North Carolina 27599
| | - Christina Inscoe
- Department of Physics and Astronomy, University of North Carolina, Phillips Hall, CB #3255, 120 East Cameron Avenue, Chapel Hill, North Carolina 27599
| | - Rachel Ger
- Department of Physics and Astronomy, University of North Carolina, Phillips Hall, CB #3255, 120 East Cameron Avenue, Chapel Hill, North Carolina 27599
| | - Michael Hadsell
- Department of Physics and Astronomy, University of North Carolina, Phillips Hall, CB #3255, 120 East Cameron Avenue, Chapel Hill, North Carolina 27599
| | - Jianping Lu
- Department of Physics and Astronomy, University of North Carolina, Phillips Hall, CB #3255, 120 East Cameron Avenue, Chapel Hill, North Carolina 27599
| | - Lei Zhang
- Department of Applied Physical Sciences, University of North Carolina, Chapman Hall, CB#3216, Chapel Hill, North Carolina 27599
| | - Sha Chang
- Department of Radiation Oncology, University of North Carolina, 101 Manning Drive, Chapel Hill, North Carolina 27514 and UNC Lineberger Comprehensive Cancer Center, University of North Carolina, 101 Manning Drive, Chapel Hill, North Carolina 27514
| | - Otto Zhou
- Department of Physics and Astronomy, University of North Carolina, Phillips Hall, CB #3255, 120 East Cameron Avenue, Chapel Hill, North Carolina 27599 and UNC Lineberger Comprehensive Cancer Center, University of North Carolina, 101 Manning Drive, Chapel Hill, North Carolina 27514
| |
Collapse
|