1
|
Rakibuzzaman M, Kim HH, Suh SH, Lee BK, Kwon HM, Zhou L. Simulation of stress in a blood vessel due to plaque sediments in coronary artery disease. Biomed Phys Eng Express 2024; 10:045036. [PMID: 38806008 DOI: 10.1088/2057-1976/ad50da] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/28/2024] [Indexed: 05/30/2024]
Abstract
Atherosclerosis is a cardiovascular disease mainly caused by plaque deposition in blood vessels. Plaque comprises components such as thrombosis, fibrin, collagen, and lipid core. It plays an essential role in inducing rupture in a blood vessel. Generally, Plaque could be described as three kinds of elastic models: cellular Plaque, hypocellular Plaque, and calcified Plaque. The present study aimed to investigate the behavior of atherosclerotic plaque rupture according to different lipid cores using Fluid-Structure Interaction (FSI). The blood vessel was also varied with different thicknesses (0.05, 0.25, and 0.5 mm). In this study, FSI simulation with a cellular plaque model with various thicknesses was investigated to obtain information on plaque rupture. Results revealed that the blood vessel with Plaque having a lipid core represents higher stresses than those without a lipid core. Blood vessels' thin thickness, like a thin cap, results in more considerable than Von Mises stress. The result also suggests that even at low fracture stress, the risk of rupture due to platelet decomposition at the gap was more significant for cellular plaques.
Collapse
Affiliation(s)
- Md Rakibuzzaman
- Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, 212013, People's Republic of China
- Department of Mechanical Engineering, International University of Business Agriculture and Technology, Dhaka, 1230, Bangladesh
| | - Hyoung-Ho Kim
- School of Mechanical Material Convergence Engineering, Gyeongsang National University, Jinju, 52725, Republic of Korea
| | - Sang-Ho Suh
- School of Mechanical Engineering, Soongsil University, Seoul, 06978, Republic of Korea
| | - Byoung-Kwon Lee
- Department of Internal Medicine, Gangnam Severance Hospital, 211 Eonju-ro, Gangnam-Gu, Seoul, 06273, Republic of Korea
| | - Hyuck Moon Kwon
- Department of Internal Medicine, Gangnam Severance Hospital, 211 Eonju-ro, Gangnam-Gu, Seoul, 06273, Republic of Korea
| | - Ling Zhou
- Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| |
Collapse
|
2
|
Kiernan MJ, Al Mukaddim R, Mitchell CC, Maybock J, Wilbrand SM, Dempsey RJ, Varghese T. Lumen segmentation using a Mask R-CNN in carotid arteries with stenotic atherosclerotic plaque. ULTRASONICS 2024; 137:107193. [PMID: 37952384 PMCID: PMC10841729 DOI: 10.1016/j.ultras.2023.107193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/19/2023] [Accepted: 10/29/2023] [Indexed: 11/14/2023]
Abstract
In patients at high risk for ischemic stroke, clinical carotid ultrasound is often used to grade stenosis, determine plaque burden and assess stroke risk. Analysis currently requires a trained sonographer to manually identify vessel and plaque regions, which is time and labor intensive. We present a method for automatically determining bounding boxes and lumen segmentation using a Mask R-CNN network trained on sonographer assisted ground-truth carotid lumen segmentations. Automatic lumen segmentation also lays the groundwork for developing methods for accurate plaque segmentation, and wall thickness measurements in cases with no plaque. Different training schemes are used to identify the Mask R-CNN model with the highest accuracy. Utilizing a single-channel B-mode training input, our model produces a mean bounding box intersection over union (IoU) of 0.81 and a mean lumen segmentation IoU of 0.75. However, we encountered errors in prediction when the jugular vein is the most prominently visualized vessel in the B-mode image. This was due to the fact that our dataset has limited instances of B-mode images with both the jugular vein and carotid artery where the vein is dominantly visualized. Additional training datasets are anticipated to mitigate this issue.
Collapse
Affiliation(s)
- Maxwell J Kiernan
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health (UW-SMPH), United States.
| | - Rashid Al Mukaddim
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health (UW-SMPH), United States
| | | | - Jenna Maybock
- Department of Neurological Surgery, UW-SMPH. Madison, WI, United States
| | | | - Robert J Dempsey
- Department of Neurological Surgery, UW-SMPH. Madison, WI, United States
| | - Tomy Varghese
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health (UW-SMPH), United States.
| |
Collapse
|
3
|
Mobadersany N, Liang P, Kemper P, Konofagou EE. Polyvinyl Alcohol Phantoms With Heterogeneous Plaques: Estimation of Pulse Wave Velocity at the Stenotic Region Using Pulse Wave Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:91-98. [PMID: 37838523 PMCID: PMC11102764 DOI: 10.1016/j.ultrasmedbio.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 10/16/2023]
Abstract
OBJECTIVE Plaque characterization is essential for stroke prevention. In the study reported herein, we describe a heterogeneous phantom manufacturing technique with varying plaque compositions of different stiffness using polyvinyl alcohol (PVA) to emulate stenotic arteries and evaluated the use of pulse wave imaging (PWI) to assess plaque stiffness by comparing derived pulse wave velocities, with the goal of assessing plaque vulnerability and identifying high-risk patients for stroke. METHODS Five stenotic phantoms (50% stenosis) were fabricated by pouring PVA solutions into 3-D-printed molds. Two of the phantoms had heterogeneous plaque compositions of soft (E0 = 13 kPa) and intermediate (E0 = 40 kPa) materials and of stiff (E0 = 54 kPa) and intermediate materials. Ultrasound sequences were acquired as the arterial phantoms were connected to a pulsating pump, and PWI was performed on the ultrasound acquisition using normalized cross-correlation to track the pulse-induced phantom wall distension propagations. Pulse wave velocities were estimated by fitting a linear regression line between the arrival time of the peak acceleration of the wall distension waveform and the corresponding location. RESULTS Arterial phantoms with heterogeneous plaque stiffness were successfully fabricated. Pulse wave velocities of 2.06, 2.21, 2.49, 2.67 and 3.31 m/s were found in the phantom experiments using PWI for homogeneous soft plaque, the heterogeneous soft and intermediate plaque, homogeneous intermediate plaque, the heterogeneous stiff and intermediate plaque and homogeneous stiff plaque, respectively. CONCLUSION A novel arterial phantom building technique was reported with varying heterogenous plaque compositions of different stiffness. The feasibility of using PWI to evaluate plaque stiffness in stenotic arteries was determined and found that PWI can distinguish between plaques of distinct stiffness and composition.
Collapse
Affiliation(s)
- Nima Mobadersany
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Pengcheng Liang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Paul Kemper
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Radiology, Columbia University, New York, New York, NY, USA.
| |
Collapse
|
4
|
Mukaddim RA, Liu Y, Graham M, Eickhoff JC, Weichmann AM, Tattersall MC, Korcarz CE, Stein JH, Varghese T, Eliceiri KW, Mitchell C. In Vivo Adaptive Bayesian Regularized Lagrangian Carotid Strain Imaging for Murine Carotid Arteries and Its Associations With Histological Findings. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:2103-2112. [PMID: 37400303 PMCID: PMC10527160 DOI: 10.1016/j.ultrasmedbio.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 07/05/2023]
Abstract
OBJECTIVES Non-invasive methods for monitoring arterial health and identifying early injury to optimize treatment for patients are desirable. The objective of this study was to demonstrate the use of an adaptive Bayesian regularized Lagrangian carotid strain imaging (ABR-LCSI) algorithm for monitoring of atherogenesis in a murine model and examine associations between the ultrasound strain measures and histology. METHODS Ultrasound radiofrequency (RF) data were acquired from both the right and left common carotid artery (CCA) of 10 (5 male and 5 female) ApoE tm1Unc/J mice at 6, 16 and 24 wk. Lagrangian accumulated axial, lateral and shear strain images and three strain indices-maximum accumulated strain index (MASI), peak mean strain of full region of interest (ROI) index (PMSRI) and strain at peak axial displacement index (SPADI)-were estimated using the ABR-LCSI algorithm. Mice were euthanized (n = 2 at 6 and 16 wk, n = 6 at 24 wk) for histology examination. RESULTS Sex-specific differences in strain indices of mice at 6, 16 and 24 wk were observed. For male mice, axial PMSRI and SPADI changed significantly from 6 to 24 wk (mean axial PMSRI at 6 wk = 14.10 ± 5.33% and that at 24 wk = -3.03 ± 5.61%, p < 0.001). For female mice, lateral MASI increased significantly from 6 to 24 wk (mean lateral MASI at 6 wk = 10.26 ± 3.13% and that at 24 wk = 16.42 ± 7.15%, p = 0.048). Both cohorts exhibited strong associations with ex vivo histological findings (male mice: correlation between number of elastin fibers and axial PMSRI: rs = 0.83, p = 0.01; female mice: correlation between shear MASI and plaque score: rs = 0.77, p = 0.009). CONCLUSION The results indicate that ABR-LCSI can be used to measure arterial wall strain in a murine model and that changes in strain are associated with changes in arterial wall structure and plaque formation.
Collapse
Affiliation(s)
- Rashid Al Mukaddim
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Yuming Liu
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA
| | - Melissa Graham
- Research Animal Resources and Compliance, Comparative Pathology Laboratory, University of Wisconsin-Madison, Madison, WI, USA
| | - Jens C Eickhoff
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Ashley M Weichmann
- Small Animal Imaging and Radiotherapy Facility, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Claudia E Korcarz
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - James H Stein
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Tomy Varghese
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Kevin W Eliceiri
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA; Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA; Small Animal Imaging and Radiotherapy Facility, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Morgridge Institute for Research, Madison, WI, USA
| | - Carol Mitchell
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
5
|
Aggarwal A, Mortensen P, Hao J, Kaczmarczyk Ł, Cheung AT, Al Ghofaily L, Gorman RC, Desai ND, Bavaria JE, Pouch AM. Strain estimation in aortic roots from 4D echocardiographic images using medial modeling and deformable registration. Med Image Anal 2023; 87:102804. [PMID: 37060701 PMCID: PMC10358753 DOI: 10.1016/j.media.2023.102804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/30/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Even though the central role of mechanics in the cardiovascular system is widely recognized, estimating mechanical deformation and strains in-vivo remains an ongoing practical challenge. Herein, we present a semi-automated framework to estimate strains from four-dimensional (4D) echocardiographic images and apply it to the aortic roots of patients with normal trileaflet aortic valves (TAV) and congenital bicuspid aortic valves (BAV). The method is based on fully nonlinear shell-based kinematics, which divides the strains into in-plane (shear and dilatational) and out-of-plane components. The results indicate that, even for size-matched non-aneurysmal aortic roots, BAV patients experience larger regional shear strains in their aortic roots. This elevated strains might be a contributing factor to the higher risk of aneurysm development in BAV patients. The proposed framework is openly available and applicable to any tubular structures.
Collapse
Affiliation(s)
- Ankush Aggarwal
- Glasgow Computational Engineering Centre, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, Scotland, United Kingdom
| | - Peter Mortensen
- Glasgow Computational Engineering Centre, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, Scotland, United Kingdom
| | - Jilei Hao
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Łukasz Kaczmarczyk
- Glasgow Computational Engineering Centre, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, Scotland, United Kingdom
| | - Albert T Cheung
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Lourdes Al Ghofaily
- Department of Anesthesiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert C Gorman
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Nimesh D Desai
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph E Bavaria
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Alison M Pouch
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Al Mukaddim R, Weichmann AM, Mitchell CC, Varghese T. Enhancement of in vivo cardiac photoacoustic signal specificity using spatiotemporal singular value decomposition. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210037RR. [PMID: 33876591 PMCID: PMC8054608 DOI: 10.1117/1.jbo.26.4.046001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/29/2021] [Indexed: 05/07/2023]
Abstract
SIGNIFICANCE Photoacoustic imaging (PAI) can be used to infer molecular information about myocardial health non-invasively in vivo using optical excitation at ultrasonic spatial resolution. For clinical and preclinical linear array imaging systems, conventional delay-and-sum (DAS) beamforming is typically used. However, DAS cardiac PA images are prone to artifacts such as diffuse quasi-static clutter with temporally varying noise-reducing myocardial signal specificity. Typically, multiple frame averaging schemes are utilized to improve the quality of cardiac PAI, which affects the spatial and temporal resolution and reduces sensitivity to subtle PA signal variation. Furthermore, frame averaging might corrupt myocardial oxygen saturation quantification due to the presence of natural cardiac wall motion. In this paper, a spatiotemporal singular value decomposition (SVD) processing algorithm is proposed to reduce DAS PAI artifacts and subsequent enhancement of myocardial signal specificity. AIM Demonstrate enhancement of PA signals from myocardial tissue compared to surrounding tissues and blood inside the left-ventricular (LV) chamber using spatiotemporal SVD processing with electrocardiogram (ECG) and respiratory signal (ECG-R) gated in vivo murine cardiac PAI. APPROACH In vivo murine cardiac PAI was performed by collecting single wavelength (850 nm) photoacoustic channel data on eight healthy mice. A three-dimensional (3D) volume of complex PAI data over a cardiac cycle was reconstructed using a custom ECG-R gating algorithm and DAS beamforming. Spatiotemporal SVD was applied on a two-dimensional Casorati matrix generated using the 3D volume of PAI data. The singular value spectrum (SVS) was then filtered to remove contributions from diffuse quasi-static clutter and random noise. Finally, SVD processed beamformed images were derived using filtered SVS and inverse SVD computations. RESULTS Qualitative comparison with DAS and minimum variance (MV) beamforming shows that SVD processed images had better myocardial signal specificity, contrast, and target detectability. DAS, MV, and SVD images were quantitatively evaluated by calculating contrast ratio (CR), generalized contrast-to-noise ratio (gCNR), and signal-to-noise ratio (SNR). Quantitative evaluations were done at three cardiac time points (during systole, at end-systole (ES), and during diastole) identified from co-registered ultrasound M-Mode image. Mean CR, gCNR, and SNR values of SVD images at ES were 245, 115.15, and 258.17 times higher than DAS images with statistical significance evaluated with one-way analysis of variance. CONCLUSIONS Our results suggest that significantly better-quality images can be realized using spatiotemporal SVD processing for in vivo murine cardiac PAI.
Collapse
Affiliation(s)
- Rashid Al Mukaddim
- University of Wisconsin–Madison, Department of ECE, Madison, Wisconsin, United States
- University of Wisconsin–Madison, School of Medicine and Public Health, Department of Medical Physics, Madison, Wisconsin, United States
- Address all correspondence to Rashid Al Mukaddim,
| | - Ashley M. Weichmann
- Small Animal Imaging and Radiotherapy Facility, UW Carbone Cancer Center, Wisconsin, United States
| | - Carol C. Mitchell
- University of Wisconsin School of Medicine and Public Health, Department of Medicine/Division of Cardiovascular Medicine, Madison, Wisconsin, United States
| | - Tomy Varghese
- University of Wisconsin–Madison, Department of ECE, Madison, Wisconsin, United States
- University of Wisconsin–Madison, School of Medicine and Public Health, Department of Medical Physics, Madison, Wisconsin, United States
| |
Collapse
|
7
|
Zhang J, He Q, Xiao Y, Zheng H, Wang C, Luo J. Ultrasound image reconstruction from plane wave radio-frequency data by self-supervised deep neural network. Med Image Anal 2021; 70:102018. [PMID: 33711740 DOI: 10.1016/j.media.2021.102018] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/20/2021] [Accepted: 02/19/2021] [Indexed: 12/19/2022]
Abstract
Image reconstruction from radio-frequency (RF) data is crucial for ultrafast plane wave ultrasound (PWUS) imaging. Compared with the traditional delay-and-sum (DAS) method based on relatively imprecise assumptions, sparse regularization (SR) method directly solves the inverse problem of image reconstruction and has presented significant improvement in the image quality when the frame rate remains high. However, the computational complexity of SR is too high for practical implementation, which is inherently associated with its iterative process. In this work, a deep neural network (DNN), which is trained with an incorporated loss function including sparse regularization terms, is proposed to reconstruct PWUS images from RF data with significantly reduced computational time. It is remarkable that, a self-supervised learning scheme, in which the RF data are utilized as both the inputs and the labels during the training process, is employed to overcome the lack of the "ideal" ultrasound images as the labels for DNN. In addition, it has been also verified that the trained network can be used on the RF data obtained with steered plane waves (PWs), and thus the image quality can be further improved with coherent compounding. Using simulation data, the proposed method has significantly shorter reconstruction time (∼10 ms) than the conventional SR method (∼1-5 mins), with comparable spatial resolution and 1.5-dB higher contrast-to-noise ratio (CNR). Besides, the proposed method with single PW can achieve higher CNR than DAS with 75 PWs in reconstruction of in-vivo images of human carotid arteries.
Collapse
Affiliation(s)
- Jingke Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Qiong He
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences Department, Tsinghua University, Beijing 100084, China
| | - Yang Xiao
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Congzhi Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; National Innovation Center for Advanced Medical Devices, Shenzhen 518055, China.
| | - Jianwen Luo
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
8
|
Meshram NH, Jackson D, Mitchell CC, Wilbrand SM, Dempsey RJ, Hermann BP, Varghese T. Study of the Relationship Between Ultrasound Strain Indices and Cognitive Decline for Vulnerable Carotid Plaque. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:2088-2091. [PMID: 33018417 DOI: 10.1109/embc44109.2020.9175911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A relationship between ultrasound strain indices in carotid plaque to cognitive domains of executive and language function are studied in 42 symptomatic and 34 asymptomatic patients. The mean and standard deviation of the percentage stenosis were 72.10 ± 15.19 and 77.41 ± 11.20 for symptomatic and asymptomatic patients respectively. Pearson's correlation between axial, lateral and shear strain indices versus executive and language composite scores was performed.. A significant inverse correlation for both executive and language function for symptomatic patients to strain indices was found. On the other hand, for asymptomatic patients only executive function was inversely correlated with the corresponding strain indices. Our hypothesis that microemboli from vulnerable plaque and possible 'silent strokes' may be responsible for decline in executive function for both symptomatic and asymptomatic patients'. Strokes and transient ischemic attacks may be responsible for further cognitive decline in language function for symptomatic patients.
Collapse
|
9
|
Mitchell CC, Wilbrand SM, Cook TD, Meshram NH, Steffel CN, Nye R, Varghese T, Hermann BP, Dempsey RJ. Carotid Plaque Strain Indices Were Correlated With Cognitive Performance in a Cohort With Advanced Atherosclerosis, and Traditional Doppler Measures Showed no Association. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2020; 39:2033-2042. [PMID: 32395885 PMCID: PMC7531894 DOI: 10.1002/jum.15311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/20/2020] [Accepted: 04/06/2020] [Indexed: 05/17/2023]
Abstract
OBJECTIVES Traditional Doppler measures have been used to predict cognitive performance in patients with carotid atherosclerosis. Novel measures, such as carotid plaque strain indices (CPSIs), have shown associations with cognitive performance. We hypothesized that lower mean middle cerebral artery (MCA) velocities, higher bulb-internal carotid artery (ICA) velocities, the MCA pulsatility index (PI), and CPSIs would be associated with poorer cognitive performance in individuals with advanced atherosclerosis. METHODS Neurocognitive testing, carotid ultrasound imaging, transcranial Doppler imaging, and carotid strain imaging were performed on 40 patients scheduled for carotid endarterectomy. Kendall tau correlations were used to examine relationships between cognitive tests and the surgical-side maximum peak systolic velocity (PSV; from the bulb, proximal, mid, or distal ICA), mean MCA velocity and PI, and maximum CPSIs (axial, lateral, and shear strain indices used to characterize plaque deformations with arterial pulsation). Cognitive measures included age-adjusted indices of verbal fluency, verbal and visual learning/memory, psychomotor speed, auditory attention/working memory, visuospatial construction, and mental flexibility. RESULTS Participants had a median age of 71.0 (interquartile range, 9.75) years; 26 were male (65%), and 14 were female (35%). Traditional Doppler parameters, PSV, mean MCA velocity, and MCA PI did not predict cognitive performance (all P > .05). Maximum CPSIs were significantly associated with cognitive performance (P < .05). CONCLUSIONS Traditional velocity measurements of the maximum bulb-ICA PSV, mean MCA velocity, and PI were not associated with cognitive performance in patients with advanced atherosclerotic disease; however, maximum CPSIs were associated with cognitive performance. These findings suggest that cognition may be associated with unstable plaque rather than blood flow.
Collapse
Affiliation(s)
- Carol C. Mitchell
- Department of Medicine, Division of Cardiovascular
Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland
Avenue, Madison, WI, USA 53792
| | - Stephanie M. Wilbrand
- Department of Neurological Surgery, University of Wisconsin
School of Medicine and Public Health, 600 Highland Avenue, Madison, WI, USA
53792
| | - Thomas D. Cook
- Department of Biostatistics and Medical Informatics,
University of Wisconsin School of Medicine and Public Health, 610 Walnut Street,
Madison WI, USA 53726
| | - Nirvedh H. Meshram
- Department of Medical Physics, University of Wisconsin
School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland
Avenue, Madison, WI, USA 53705
- Department of Electrical and Computer Engineering,
University of Wisconsin-Madison, University of Wisconsin-Madison, 1415 Engineering
Drive, Madison, WI, USA 53706
- Corresponding Author: Carol C. Mitchell,
PhD, 600 Highland Avenue, Madison, WI, USA 53792, 608-262-0680,
| | - Catherine N. Steffel
- Department of Medical Physics, University of Wisconsin
School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland
Avenue, Madison, WI, USA 53705
| | - Rebecca Nye
- Department of Medicine, Division of Cardiovascular
Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland
Avenue, Madison, WI, USA 53792
| | - Tomy Varghese
- Department of Medical Physics, University of Wisconsin
School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland
Avenue, Madison, WI, USA 53705
- Department of Electrical and Computer Engineering,
University of Wisconsin-Madison, University of Wisconsin-Madison, 1415 Engineering
Drive, Madison, WI, USA 53706
| | - Bruce P. Hermann
- Department of Neurology, University of Wisconsin School of
Medicine and Public Health, 600 Highland Avenue, Madison, WI USA 53792
| | - Robert J. Dempsey
- Department of Neurological Surgery, University of Wisconsin
School of Medicine and Public Health, 600 Highland Avenue, Madison, WI, USA
53792
| |
Collapse
|
10
|
Meshram NH, Mitchell CC, Wilbrand S, Dempsey RJ, Varghese T. Deep Learning for Carotid Plaque Segmentation using a Dilated U-Net Architecture. ULTRASONIC IMAGING 2020; 42:221-230. [PMID: 32885739 PMCID: PMC8045553 DOI: 10.1177/0161734620951216] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Carotid plaque segmentation in ultrasound longitudinal B-mode images using deep learning is presented in this work. We report on 101 severely stenotic carotid plaque patients. A standard U-Net is compared with a dilated U-Net architecture in which the dilated convolution layers were used in the bottleneck. Both a fully automatic and a semi-automatic approach with a bounding box was implemented. The performance degradation in plaque segmentation due to errors in the bounding box is quantified. We found that the bounding box significantly improved the performance of the networks with U-Net Dice coefficients of 0.48 for automatic and 0.83 for semi-automatic segmentation of plaque. Similar results were also obtained for the dilated U-Net with Dice coefficients of 0.55 for automatic and 0.84 for semi-automatic when compared to manual segmentations of the same plaque by an experienced sonographer. A 5% error in the bounding box in both dimensions reduced the Dice coefficient to 0.79 and 0.80 for U-Net and dilated U-Net respectively.
Collapse
Affiliation(s)
- Nirvedh H Meshram
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Department of Electrical and Computer Engineering, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Carol C Mitchell
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Stephanie Wilbrand
- Department of Neurological Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Robert J Dempsey
- Department of Neurological Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Tomy Varghese
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Department of Electrical and Computer Engineering, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
11
|
Dempsey RJ, Bowman K. The past, present, and future of neurosurgery's role in stroke. J Neurosurg 2020; 133:260-266. [PMID: 32244210 DOI: 10.3171/2020.1.jns193043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Steffel CN, Salamat S, Cook TD, Wilbrand SM, Dempsey RJ, Mitchell CC, Varghese T. Attenuation Coefficient Parameter Computations for Tissue Composition Assessment of Carotid Atherosclerotic Plaque in Vivo. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1513-1532. [PMID: 32291105 PMCID: PMC7216316 DOI: 10.1016/j.ultrasmedbio.2020.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/17/2020] [Accepted: 02/26/2020] [Indexed: 06/11/2023]
Abstract
Quantitative ultrasound has been used to assess carotid plaque tissue composition. Here, we compute the attenuation coefficient (AC) in vivo with the optimum power spectral shift estimator (OPSSE) and reference phantom method (RPM), extract AC parameters and form parametric maps. Differences between OPSSE and RPM AC parameters are computed. Relationships between AC parameters, surgical scores and histopathology assessments are examined. Kendall's τ correlations between OPSSE AC and surgical scores are significant, including those between cholesterol and Standard Deviation (adjusted p = 0.038); thrombus and Minimum (adjusted p = 0.002), Maximum (adjusted p = 0.021) and Standard Deviation (adjusted p = 0.001); ulceration and Average (adjusted p = 0.033), Median (unadjusted p = 0.013), Maximum (unadjusted p = 0.039) and Mode (adjusted p = 0.009). The strongest correlations with histopathology are percentage cholesterol and Median OPSSE (unadjusted p = 0.007); percentage hemorrhage and Minimum OPSSE (adjusted p < 0.001); hemosiderin score and Median OPSSE (adjusted p = 0.010); and percentage calcium and Percentage Non-physical RPM Pixels (unadjusted p = 0.014). Kruskal-Wallis H and Dunn's post hoc tests have the ability to distinguish between groups (p < 0.05). Results suggest AC parameters may assist in vivo evaluation of carotid plaque vulnerability.
Collapse
Affiliation(s)
- Catherine N Steffel
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.
| | - Shahriar Salamat
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Thomas D Cook
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Stephanie M Wilbrand
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Robert J Dempsey
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Carol C Mitchell
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Tomy Varghese
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
13
|
Al Mukaddim R, Meshram NH, Varghese T. Locally optimized correlation-guided Bayesian adaptive regularization for ultrasound strain imaging. Phys Med Biol 2020; 65:065008. [PMID: 32028272 DOI: 10.1088/1361-6560/ab735f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ultrasound strain imaging utilizes radio-frequency (RF) ultrasound echo signals to estimate the relative elasticity of tissue under deformation. Due to the diagnostic value inherent in tissue elasticity, ultrasound strain imaging has found widespread clinical and preclinical applications. Accurate displacement estimation using pre and post-deformation RF signals is a crucial first step to derive high quality strain tensor images. Incorporating regularization into the displacement estimation framework is a commonly employed strategy to improve estimation accuracy and precision. In this work, we propose an adaptive variation of the iterative Bayesian regularization scheme utilizing RF similarity metric signal-to-noise ratio previously proposed by our group. The regularization scheme is incorporated into a 2D multi-level block matching (BM) algorithm for motion estimation. Adaptive nature of our algorithm is attributed to the dynamic variation of iteration number based on the normalized cross-correlation (NCC) function quality and a similarity measure between pre-deformation and motion compensated post-deformation RF signals. The proposed method is validated for either quasi-static and cardiac elastography or strain imaging applications using uniform and inclusion phantoms and canine cardiac deformation simulation models. Performance of adaptive Bayesian regularization was compared to conventional NCC and Bayesian regularization with fixed number of iterations. Results from uniform phantom simulation study show significant improvement in lateral displacement and strain estimation accuracy. For instance, at 1.5% lateral strain in a uniform phantom, Bayesian regularization with five iterations incurred a lateral strain error of 104.49%, which was significantly reduced using our adaptive approach to 27.51% (p < 0.001). Contrast-to-noise (CNR e ) ratios obtained from inclusion phantom indicate improved lesion detectability for both axial and lateral strain images. For instance, at 1.5% lateral strain, Bayesian regularization with five iterations had lateral CNR e of -0.31 dB which was significantly increased using the adaptive approach to 7.42 dB (p < 0.001). Similar results are seen with cardiac deformation modelling with improvement in myocardial strain images. In vivo feasibility was also demonstrated using data from a healthy murine heart. Overall, the proposed method makes Bayesian regularization robust for clinical and preclinical applications.
Collapse
Affiliation(s)
- Rashid Al Mukaddim
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, United States of America. Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States of America. Author to whom any correspondence should be addressed
| | | | | |
Collapse
|
14
|
Mukaddim RA, Meshram NH, Mitchell CC, Varghese T. Hierarchical Motion Estimation With Bayesian Regularization in Cardiac Elastography: Simulation and In Vivo Validation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:1708-1722. [PMID: 31329553 PMCID: PMC6855404 DOI: 10.1109/tuffc.2019.2928546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cardiac elastography (CE) is an ultrasound-based technique utilizing radio-frequency (RF) signals for assessing global and regional myocardial function. In this work, a complete strain estimation pipeline for incorporating a Bayesian regularization-based hierarchical block-matching algorithm, with Lagrangian motion description and myocardial polar strain estimation is presented. The proposed regularization approach is validated using finite-element analysis (FEA) simulations of a canine cardiac deformation model that is incorporated into an ultrasound simulation program. Interframe displacements are initially estimated using a hierarchical motion estimation framework. Incremental displacements are then accumulated under a Lagrangian description of cardiac motion from end-diastole (ED) to end-systole (ES). In-plane Lagrangian finite strain tensors are then derived from the accumulated displacements. Cartesian to cardiac coordinate transformation is utilized to calculate radial and longitudinal strains for ease of interpretation. Benefits of regularization are demonstrated by comparing the same hierarchical block-matching algorithm with and without regularization. Application of Bayesian regularization in the canine FEA model provided improved ES radial and longitudinal strain estimation with statistically significant ( ) error reduction of 48.88% and 50.16%, respectively. Bayesian regularization also improved the quality of temporal radial and longitudinal strain curves with error reductions of 78.38% and 86.67% ( ), respectively. Qualitative and quantitative improvements were also visualized for in vivo results on a healthy murine model after Bayesian regularization. Radial strain elastographic signal-to-noise ratio (SNRe) increased from 3.83 to 4.76 dB, while longitudinal strain SNRe increased from 2.29 to 4.58 dB with regularization.
Collapse
|
15
|
Varghese T, Meshram NH, Mitchell CC, Wilbrand SM, Hermann BP, Dempsey RJ. Lagrangian carotid strain imaging indices normalized to blood pressure for vulnerable plaque. JOURNAL OF CLINICAL ULTRASOUND : JCU 2019; 47:477-485. [PMID: 31168787 PMCID: PMC6760247 DOI: 10.1002/jcu.22739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/10/2019] [Accepted: 05/22/2019] [Indexed: 05/14/2023]
Abstract
OBJECTIVE Ultrasound Lagrangian carotid strain imaging (LCSI) utilizes physiological deformation caused by arterial pressure variations to generate strain tensor maps of the vessel walls and plaques. LCSI has been criticized for the lack of normalization of magnitude-based strain indices to physiological stimuli, namely blood pressure. We evaluated the impact of normalization of magnitude-based strain indices to blood pressure measured immediately after the acquisition of radiofrequency (RF) data loops for LCSI. MATERIALS AND METHODS A complete clinical ultrasound examination along with RF data loops for LCSI was performed on 50 patients (30 males and 20 females) who presented with >60% carotid stenosis and were scheduled for carotid endarterectomy. Cognition was assessed using the 60-minute neuropsychological test protocol. RESULTS For axial strains correlation of maximum accumulated strain indices (MASI), cognition scores were -0.46 for non-normalized and -0.45, -0.49, -0.37, and -0.48 for systolic, diastolic, pulse pressure, and mean arterial pressure normalized data, respectively. The corresponding area under the curve (AUC) values for classifiers designed using maximum likelihood estimation of a binormal distribution with a median-split of the executive function cognition scores were 0.73, 0.70, 0.71, 0.70, and 0.71, respectively. CONCLUSIONS No significant differences in the AUC estimates were obtained between normalized and non-normalized magnitude-based strain indices.
Collapse
Affiliation(s)
- Tomy Varghese
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Nirvedh H Meshram
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Carol C Mitchell
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Stephanie M Wilbrand
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Bruce P Hermann
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Robert J Dempsey
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
16
|
Meshram NH, Mitchell CC, Wilbrand SM, Dempsey RJ, Varghese T. In vivo carotid strain imaging using principal strains in longitudinal view. Biomed Phys Eng Express 2019; 5. [PMID: 31240113 DOI: 10.1088/2057-1976/ab15c9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Carotid plaque rupture can result in stroke or transient ischemic attack that can be devastating for patients. Ultrasound strain imaging provides a noninvasive method to identify unstable plaque likely to rupture. Axial, lateral and shear strains in carotid plaque have been shown to be linked to carotid plaque instability. Recently, there has been interest in using principal strains, which do not depend on angle of insonification of the carotid artery for quantifying instability in plaque along the longitudinal view. In this work relationships between angle dependent axial, lateral and shear strain along with axis independent principal strains are compared. Three strain indices were defined, 1) Average Mean Strain (AMS), 2) Maximum Mean Strain (MMS) and 3) Mean Standard Deviation (MSD) to identify relationships between these five strain image types in a group of 76 in vivo patients. The maximum principal strain demonstrated the highest strain values when compared to axial strain for all patients with a linear regression slope of 1.6 and a y intercept of 2.4 percent strain for AMS. The maximum shear strain when compared to shear strain had a slope of 1.15 and a y intercept of 0.21 percent for AMS. Next, the effect of insonification angle, which is the angle subtended by the artery at the location of plaque was studied. Patients were divided into three sub groups, i.e. less than 5 degrees (n = 31), between 5 and 10 degrees (n = 24) and above 10 degrees (n = 21). The angle of insonification did not make a significant difference between the three angle groups when comparing the relationship between the angle dependent and independent strain values.
Collapse
Affiliation(s)
- N H Meshram
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, 53706.,Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - C C Mitchell
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, 53706
| | - S M Wilbrand
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, 53706
| | - R J Dempsey
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, 53706
| | - T Varghese
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, 53706.,Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| |
Collapse
|
17
|
Meshram NH, Jackson D, Varghese T, Mitchell CC, Wilbrand SM, Dempsey RJ, Hermann BP. A Cross-Sectional Investigation of Cognition and Ultrasound-Based Vascular Strain Indices. Arch Clin Neuropsychol 2019; 35:46-55. [PMID: 30805597 PMCID: PMC7014973 DOI: 10.1093/arclin/acz006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/19/2018] [Accepted: 01/30/2019] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE We examine the relationship between variability in the plaque strain distribution estimated using ultrasound with multiple cognitive domains including executive, language, visuospatial reasoning, and memory function. METHOD Asymptomatic (n = 42) and symptomatic (n = 34) patients with significant (>60%) carotid artery stenosis were studied for plaque instability using ultrasound strain imaging and multiple cognitive domains including executive, language, visuospatial reasoning, and memory function. Correlation and ROC analyses were performed between ultrasound strain indices and cognitive function. Strain indices and cognition scores were also compared between symptomatic and asymptomatic patients to determine whether there are significant group differences. RESULTS Association of high-strain distributions with dysexecutive function was observed in both asymptomatic and symptomatic patients. For memory, visuospatial, and language functions, the correlations between strain and cognition were weaker for the asymptomatic compared to symptomatic group. CONCLUSIONS Both asymptomatic and symptomatic patients demonstrate a relationship between vessel strain indices and executive function indicating that silent strokes and micro-emboli could initially contribute to a decline in executive function, whereas strokes and transient ischemic attacks may cause the further decline in other cognitive functions.
Collapse
Affiliation(s)
- N H Meshram
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - D Jackson
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - T Varghese
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - C C Mitchell
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - S M Wilbrand
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - R J Dempsey
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - B P Hermann
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
18
|
Pohlman RM, Varghese T, Jiang J, Ziemlewicz TJ, Alexander ML, Wergin KL, Hinshaw JL, Lubner MG, Wells SA, Lee FT. Comparison of Displacement Tracking Algorithms for in Vivo Electrode Displacement Elastography. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:218-232. [PMID: 30318122 PMCID: PMC6324563 DOI: 10.1016/j.ultrasmedbio.2018.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/21/2018] [Accepted: 09/03/2018] [Indexed: 05/09/2023]
Abstract
Hepatocellular carcinoma and liver metastases are common hepatic malignancies presenting with high mortality rates. Minimally invasive microwave ablation (MWA) yields high success rates similar to surgical resection. However, MWA procedures require accurate image guidance during the procedure and for post-procedure assessments. Ultrasound electrode displacement elastography (EDE) has demonstrated utility for non-ionizing imaging of regions of thermal necrosis created with MWA in the ablation suite. Three strategies for displacement vector tracking and strain tensor estimation, namely coupled subsample displacement estimation (CSDE), a multilevel 2-D normalized cross-correlation method, and quality-guided displacement tracking (QGDT) have previously shown accurate estimations for EDE. This paper reports on a qualitative and quantitative comparison of these three algorithms over 79 patients after an MWA procedure. Qualitatively, CSDE presents sharply delineated, clean ablated regions with low noise except for the distal boundary of the ablated region. Multilevel and QGDT contain more visible noise artifacts, but delineation is seen over the entire ablated region. Quantitative comparison indicates CSDE with more consistent mean and standard deviations of region of interest within the mass of strain tensor magnitudes and higher contrast, while Multilevel and QGDT provide higher CNR. This fact along with highest success rates of 89% and 79% on axial and lateral strain tensor images for visualization of thermal necrosis using the Multilevel approach leads to it being the best choice in a clinical setting. All methods, however, provide consistent and reproducible delineation for EDE in the ablation suite.
Collapse
Affiliation(s)
- Robert M Pohlman
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Tomy Varghese
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.
| | - Jingfeng Jiang
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan, USA
| | - Timothy J Ziemlewicz
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Marci L Alexander
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Kelly L Wergin
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - James L Hinshaw
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Meghan G Lubner
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Shane A Wells
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Fred T Lee
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
19
|
Li H, Chayer B, Roy Cardinal MH, Muijsers J, van den Hoven M, Qin Z, Gesnik M, Soulez G, Lopata RGP, Cloutier G. Investigation of out-of-plane motion artifacts in 2D noninvasive vascular ultrasound elastography. Phys Med Biol 2018; 63:245003. [PMID: 30524065 DOI: 10.1088/1361-6560/aaf0d3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ultrasound noninvasive vascular elastography (NIVE) has shown its potential to measure strains of carotid arteries to predict plaque instability. When two-dimensional (2D) strain estimation is performed, either in longitudinal or cross-sectional view, only in-plane motions are considered. The motions in elevation direction (i.e. perpendicular to the imaging plane), can induce estimation artifacts affecting the accuracy of 2D NIVE. The influence of such out-of-plane motions on the performance of axial strain and axial shear strain estimations has been evaluated in this study. For this purpose, we designed a diseased carotid bifurcation phantom with a 70% stenosis and an in vitro experimental setup to simulate orthogonal out-of-plane motions of 1 mm, 2 mm and 3 mm. The Lagrangian speckle model estimator (LSME) was used to estimate axial strains and shears under pulsatile conditions. As anticipated, in vitro results showed more strain estimation artifacts with increasing magnitudes of motions in elevation. However, even with an out-of-plane motion of 2.0 mm, strain and shear estimations having inter-frame correlation coefficients higher than 0.85 were obtained. To verify findings of in vitro experiments, a clinical LSME dataset obtained from 18 participants with carotid artery stenosis was used. Deduced out-of-plane motions (ranging from 0.25 mm to 1.04 mm) of the clinical dataset were classified into three groups: small, moderate and large elevational motions. Clinical results showed that pulsatile time-varying strains and shears remained reproducible for all motion categories since inter-frame correlation coefficients were higher than 0.70, and normalized cross-correlations (NCC) between radiofrequency (RF) images were above 0.93. In summary, the performance of LSME axial strain and shear estimations appeared robust in the presence of out-of-plane motions (<2 mm) as encountered during clinical ultrasound imaging.
Collapse
Affiliation(s)
- Hongliang Li
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, QC, Canada. Institute of Biomedical Engineering, University of Montreal, Montréal, QC, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Tang S, Sabonghy EP, Chaudhry A, Shajudeen PS, Islam MT, Kim N, Cabrera FJ, Reddy JN, Tasciotti E, Righetti R. A Model-Based Approach to Investigate the Effect of a Long Bone Fracture on Ultrasound Strain Elastography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:1178-1191. [PMID: 29994472 DOI: 10.1109/tmi.2018.2792437] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The mechanical behavior of long bones and fractures has been under investigation for many decades due to its complexity and clinical relevance. In this paper, we report a new subject-specific methodology to predict and analyze the mechanical behavior of the soft tissue at a bone interface with the intent of identifying the presence and location of bone abnormalities with high accuracy, spatial resolution, and contrast. The proposed methodology was tested on both intact and fractured rabbit femur samples with finite element-based 3-D simulations, created from actual femur computed tomography data, and ultrasound elastography experiments. The results included in this study demonstrate that elastographic strains at the bone/soft tissue interface can be used to differentiate fractured femurs from the intact ones on a distribution level. These results also demonstrate that coronal plane axial shear strain creates a unique contrast mechanism that can be used to reliably detect fractures (both complete and incomplete) in long bones. Kruskal-Wallis test further demonstrates that the contrast measure for the fracture group (simulation: 2.1286±0.2206; experiment: 2.7034 ± 1.0672) is significantly different from that for the intact group (simulation: 0 ± 0; experiment: 1.1540±0.6909) when using coronal plane axial shear strain elastography ( < 0.01). We conclude that: 1) elastography techniques can be used to accurately identify the presence and location of fractures in a long bone and 2) the proposed model-based approach can be used to predict and analyze strains at a bone fracture site and to better interpret experimental elastographic data.
Collapse
|
21
|
Fast Von Mises strain imaging on ultrasound carotid vessel wall by flow driven diffusion method. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2018; 41:669-686. [DOI: 10.1007/s13246-018-0662-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 06/24/2018] [Indexed: 11/28/2022]
|
22
|
Meshram NH, Varghese T. GPU Accelerated Multilevel Lagrangian Carotid Strain Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:1370-1379. [PMID: 29993716 PMCID: PMC6128663 DOI: 10.1109/tuffc.2018.2841346] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A multilevel Lagrangian carotid strain imaging algorithm is analyzed to identify computational bottlenecks for implementation on a graphics processing unit (GPU). Displacement tracking including regularization was found to be the most computationally expensive aspect of this strain imaging algorithm taking about 2.2 h for an entire cardiac cycle. This intensive displacement tracking was essential to obtain Lagrangian strain tensors. However, most of the computational techniques used for displacement tracking are parallelizable, and hence GPU implementation is expected to be beneficial. A new scheme for subsample displacement estimation referred to as a multilevel global peak finder was also developed since the Nelder-Mead simplex optimization technique used in the CPU implementation was not suitable for GPU implementation. GPU optimizations to minimize thread divergence and utilization of shared and texture memories were also implemented. This enables efficient use of the GPU computational hardware and memory bandwidth. Overall, an application speedup of was obtained enabling the algorithm to finish in about 50 s for a cardiac cycle. Last, comparison of GPU and CPU implementations demonstrated no significant difference in the quality of displacement vector and strain tensor estimation with the two implementations up to a 5% interframe deformation. Hence, a GPU implementation is feasible for clinical adoption and opens opportunity for other computationally intensive techniques.
Collapse
|
23
|
Multi-Plane Ultrafast Compound 3D Strain Imaging: Experimental Validation in a Carotid Bifurcation Phantom. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8040637] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Dempsey RJ, Varghese T, Jackson DC, Wang X, Meshram NH, Mitchell CC, Hermann BP, Johnson SC, Berman SE, Wilbrand SM. Carotid atherosclerotic plaque instability and cognition determined by ultrasound-measured plaque strain in asymptomatic patients with significant stenosis. J Neurosurg 2018; 128:111-119. [PMID: 28298048 PMCID: PMC5592121 DOI: 10.3171/2016.10.jns161299] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE This article describes the use of ultrasound measurements of physical strain within carotid atherosclerotic plaques as a measure of instability and the potential for vascular cognitive decline, microemboli, and white matter changes. METHODS Asymptomatic patients with significant (> 60%) carotid artery stenosis were studied for dynamic measures of plaque instability, presence of microemboli, white matter changes, and vascular cognitive decline in comparison with normative controls and premorbid state. RESULTS Although classically asymptomatic, these patients showed vascular cognitive decline. The degree of strain instability measured within the atherosclerotic plaque directly predicted vascular cognitive decline in these patients thought previously to be asymptomatic according to classic criteria. Furthermore, 26% of patients showed microemboli, and patients had twice as much white matter hyperintensity as controls. CONCLUSIONS These data show that physical measures of plaque instability are possible through interpretation of ultrasound strain data during pulsation, which may be more clinically relevant than solely measuring degree of stenosis. The data also highlight the importance of understanding that the definition of symptoms should not be limited to motor, speech, and vision function but underscore the role of vascular cognitive decline in the pathophysiology of carotid atherosclerotic disease. Clinical trial registration no.: NCT02476396 (clinicaltrials.gov).
Collapse
Affiliation(s)
| | - Tomy Varghese
- 2Medical Physics, University of Wisconsin School of Medicine and Public Health
| | - Daren C Jackson
- 3Wisconsin Surgical Outcomes Research Program, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Xiao Wang
- 4Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Nirvedh H Meshram
- 2Medical Physics, University of Wisconsin School of Medicine and Public Health
| | | | - Bruce P Hermann
- 6Department of Neurology, University of Wisconsin School of Medicine and Public Health; and
| | - Sterling C Johnson
- 7Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Waisman Laboratory for Brain Injury and Behavior, University of Wisconsin-Madison & Geriatric Research Education & Clinical Center, William S. Middleton Veterans Hospital, Madison, Wisconsin
| | - Sara E Berman
- 7Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Waisman Laboratory for Brain Injury and Behavior, University of Wisconsin-Madison & Geriatric Research Education & Clinical Center, William S. Middleton Veterans Hospital, Madison, Wisconsin
| | | |
Collapse
|
25
|
Carotid Artery Plaque Vulnerability Assessment Using Noninvasive Ultrasound Elastography: Validation With MRI. AJR Am J Roentgenol 2017. [PMID: 28639927 DOI: 10.2214/ajr.16.17176] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Vulnerable and nonvulnerable carotid artery plaques have different tissue morphology and composition that may affect plaque biomechanics. The objective of this study is to evaluate plaque vulnerability with the use of ultrasound noninvasive vascular elastography (NIVE). MATERIALS AND METHODS Thirty-one patients (mean [± SD] age, 69 ± 7 years) with stenosis of the internal carotid artery of 50% or greater were enrolled in this cross-sectional study. Elastography parameters quantifying axial strain, shear strain, and translation motion were used to characterize carotid artery plaques as nonvulnerable, neovascularized, and vulnerable. Maximum axial strain, cumulated axial strain, mean shear strain, cumulated shear strain, cumulated axial translation, and cumulated lateral translations were measured. Cumulated measurements were summed over a cardiac cycle. The ratio of cumulated axial strain to cumulated axial translation was also evaluated. The reference method used to characterize plaques was high-resolution MRI. RESULTS According to MRI, seven plaques were vulnerable, 12 were nonvulnerable without neovascularity, and 12 were nonvulnerable with neovascularity (a precursor of vulnerability). The two parameters cumulated axial translation and the ratio of cumulated axial strain to cumulated axial translation could discriminate between nonvulnerable plaques and vulnerable plaques or determine the presence of neovascularity in nonvulnerable plaques (which was also possible with the mean shear strain parameter). All parameters differed between the non-vulnerable plaque group and the group that combined vulnerable plaques and plaques with neovascularity. The most discriminating parameter for the detection of vulnerable neovascularized plaques was the ratio of cumulated axial strain to cumulated axial translation (expressed as percentage per millimeter) (mean ratio, 39.30%/mm ± 12.80%/mm for nonvulnerable plaques without neovascularity vs 63.79%/mm ± 17.59%/mm for vulnerable plaques and nonvulnerable plaques with neovascularity, p = 0.002), giving an AUC value of 0.886. CONCLUSION The imaging parameters cumulated axial translation and the ratio of cumulated axial strain to cumulated axial translation, as computed using NIVE, were able to discriminate vulnerable carotid artery plaques characterized by MRI from nonvulnerable carotid artery plaques. Consideration of neovascularized plaques improved the performance of NIVE. NIVE may be a valuable alternative to MRI for carotid artery plaque assessment.
Collapse
|
26
|
Meshram NH, Varghese T, Mitchell CC, Jackson DC, Wilbrand SM, Hermann BP, Dempsey RJ. Quantification of carotid artery plaque stability with multiple region of interest based ultrasound strain indices and relationship with cognition. Phys Med Biol 2017; 62:6341-6360. [PMID: 28594333 DOI: 10.1088/1361-6560/aa781f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vulnerability and instability in carotid artery plaque has been assessed based on strain variations using noninvasive ultrasound imaging. We previously demonstrated that carotid plaques with higher strain indices in a region of interest (ROI) correlated to patients with lower cognition, probably due to cerebrovascular emboli arising from these unstable plaques. This work attempts to characterize the strain distribution throughout the entire plaque region instead of being restricted to a single localized ROI. Multiple ROIs are selected within the entire plaque region, based on thresholds determined by the maximum and average strains in the entire plaque, enabling generation of additional relevant strain indices. Ultrasound strain imaging of carotid plaques, was performed on 60 human patients using an 18L6 transducer coupled to a Siemens Acuson S2000 system to acquire radiofrequency data over several cardiac cycles. Patients also underwent a battery of neuropsychological tests under a protocol based on National Institute of Neurological Disorders and Stroke and Canadian Stroke Network guidelines. Correlation of strain indices with composite cognitive index of executive function revealed a negative association relating high strain to poor cognition. Patients grouped into high and low cognition groups were then classified using these additional strain indices. One of our newer indices, namely the average L - 1 norm with plaque (AL1NWP) presented with significantly improved correlation with executive function when compared to our previously reported maximum accumulated strain indices. An optimal combination of three of the new indices generated classifiers of patient cognition with an area under the curve (AUC) of 0.880, 0.921 and 0.905 for all (n = 60), symptomatic (n = 33) and asymptomatic patients (n = 27) whereas classifiers using maximum accumulated strain indices alone provided AUC values of 0.817, 0.815 and 0.813 respectively.
Collapse
Affiliation(s)
- N H Meshram
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI-53706, United States of America. Department of Electrical and Computer Engineering, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI-53706, United States of America
| | | | | | | | | | | | | |
Collapse
|
27
|
Maessen MFH, Eijsvogels TMH, Grotens A, Hopman MTE, Thijssen DHJ, Hansen HHG. Feasibility and relevance of compound strain imaging in non-stenotic arteries: comparison between individuals with cardiovascular diseases and healthy controls. Cardiovasc Ultrasound 2017; 15:13. [PMID: 28521772 PMCID: PMC5437491 DOI: 10.1186/s12947-017-0104-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 05/05/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Compound strain imaging is a novel method to noninvasively evaluate arterial wall deformation which has recently shown to enable differentiation between fibrous and (fibro-)atheromatous plaques in patients with severe stenosis. We tested the hypothesis that compound strain imaging is feasible in non-stenotic arteries and provides incremental discriminative power to traditional measures of vascular health (i.e., distensibility coefficient (DC), central pulse wave velocity [cPWV], and intima-media thickness [IMT]) for differentiating between participants with and without a history of cardiovascular diseases (CVD). METHODS Seventy two participants (60 ± 7 years) with non-stenotic arteries (IMT < 1.1 mm) were categorized in healthy participants (CON, n = 36) and CVD patients (n = 36) based on CVD history. Participants underwent standardised ultrasound-based assessment (DC, cPWV, and IMT) and compound strain imaging (radial [RS] and circumferential [CS] strain) in left common carotid artery. Area under receiver operating characteristics (AROC)-curve was used to determine the discriminatory power between CVD and CON of the various measures. RESULTS CON had a significantly (P < 0.05) smaller carotid IMT (0.68 [0.58 to 0.76] mm) than CVD patients (0.76 [0.68 to 0.80] mm). DC, cPWV, RS, and CS did not significantly differ between groups (P > 0.05). A higher CS or RS was associated with a higher DC (CS: r = -0.32;p < 0.05 and RS: r = 0.24;p < 0.05) and lower cPWV (CS: r = 0.24;p < 0.05 and RS: r = -0.25;p < 0.05). IMT could identify CVD (AROC: 0.66, 95%-CI: 0.53 to 0.79), whilst the other measurements, alone or in combination, did not significantly increase the discriminatory power compared to IMT. CONCLUSIONS In non-stenotic arteries, compound strain imaging is feasible, but does not seem to provide incremental discriminative power to traditional measures of vascular health for differentiation between individuals with and without a history of CVD.
Collapse
Affiliation(s)
- Martijn F H Maessen
- Department of Physiology, Radboud university medical center, Nijmegen, The Netherlands
| | - Thijs M H Eijsvogels
- Department of Physiology, Radboud university medical center, Nijmegen, The Netherlands.,Research Institute for Sports and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Ayla Grotens
- Department of Physiology, Radboud university medical center, Nijmegen, The Netherlands
| | - Maria T E Hopman
- Department of Physiology, Radboud university medical center, Nijmegen, The Netherlands
| | - Dick H J Thijssen
- Department of Physiology, Radboud university medical center, Nijmegen, The Netherlands.,Research Institute for Sports and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Hendrik H G Hansen
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Medical UltraSound Imaging Center (MUSIC), P.O. Box 9101 (766), 6500, HB, Nijmegen, The Netherlands.
| |
Collapse
|
28
|
Khan AA, Hecker JC, Lal BK, Sikdar S. Clinical viability of carotid plaque strain estimation using B-mode ultrasound image sequences. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:2877-2880. [PMID: 28268915 DOI: 10.1109/embc.2016.7591330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It is estimated that approximately 30% of ischemic strokes are caused by rupture of plaque in the carotid artery. Development of techniques focusing on identifying plaques that are vulnerable to rupture is thus indispensable for stroke prevention. Recent studies have demonstrated that motion analysis of plaques from B-mode and RF ultrasound (US) image sequences can be used to estimate plaque strain. However, viability of these methods in a clinical setting, with variable acquisition protocols, has not been demonstrated yet. In this paper, we explore the viability of estimating plaque strain from B-mode US images of asymptomatic patients, acquired in a real clinical setting with different acquisition settings, frame rates, and operators. Our proposed strain measures, shear strain rate entropy and variance, combined with the recently reported maximum absolute shear strain rate, show that the plaques fall into two distinct clusters. Moreover, these clusters show good correlations with plaque echolucency and echogenicity. We conclude that B-mode US imaging is a viable tool for characterizing plaque dynamics in clinical environments. In future studies, we plan to implement this method on multi-center studies for longitudinal monitoring of plaque.
Collapse
|
29
|
Noninvasive characterization of carotid plaque strain. J Vasc Surg 2017; 65:1653-1663. [PMID: 28274754 DOI: 10.1016/j.jvs.2016.12.105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 12/06/2016] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Current risk stratification of internal carotid artery plaques based on diameter-reducing percentage stenosis may be unreliable because ischemic stroke results from plaque disruption with atheroembolization. Biomechanical forces acting on the plaque may render it vulnerable to rupture. The feasibility of ultrasound-based quantification of plaque displacement and strain induced by hemodynamic forces and their relationship to high-risk plaques have not been determined. We studied the feasibility and reliability of carotid plaque strain measurement from clinical B-mode ultrasound images and the relationship of strain to high-risk plaque morphology. METHODS We analyzed carotid ultrasound B-mode cine loops obtained in patients with asymptomatic ≥50% stenosis during routine clinical scanning. Optical flow methods were used to quantify plaque motion and shear strain during the cardiac cycle. The magnitude (maximum absolute shear strain rate [MASSR]) and variability (entropy of shear strain rate [ESSR] and variance of shear strain rate [VSSR]) of strain were combined into a composite shear strain index (SSI), which was assessed for interscan repeatability and correlated with plaque echolucency. RESULTS Nineteen patients (mean age, 70 years) constituting 36 plaques underwent imaging; 37% of patients (n = 7) showed high strain (SSI ≥0.5; MASSR, 2.2; ESSR, 39.7; VSSR, 0.03) in their plaques; the remaining clustered into a low-strain group (SSI <0.5; MASSR, 0.58; ESSR, 21.2; VSSR, 0.002). The area of echolucent morphology was greater in high-strain plaques vs low-strain plaques (28% vs 17%; P = .018). Strain measurements showed low variability on Bland-Altman plots with cluster assignment agreement of 76% on repeated scanning. Two patients developed a stroke during 2 years of follow-up; both demonstrated high SSI (≥0.5) at baseline. CONCLUSIONS Carotid plaque strain is reliably computed from routine B-mode imaging using clinical ultrasound machines. High plaque strain correlates with known high-risk echolucent morphology. Strain measurement can complement identification of patients at high risk for plaque disruption and stroke.
Collapse
|
30
|
Papadacci C, Bunting EA, Wan EY, Nauleau P, Konofagou EE. 3D Myocardial Elastography In Vivo. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:618-627. [PMID: 27831864 PMCID: PMC5528164 DOI: 10.1109/tmi.2016.2623636] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Strain evaluation is of major interest in clinical cardiology as it can quantify the cardiac function. Myocardial elastography, a radio-frequency (RF)-based cross-correlation method, has been developed to evaluate the local strain distribution in the heart in vivo. However, inhomogeneities such as RF ablation lesions or infarction require a three-dimensional approach to be measured accurately. In addition, acquisitions at high volume rate are essential to evaluate the cardiac strain in three dimensions. Conventional focused transmit schemes using 2D matrix arrays, trade off sufficient volume rate for beam density or sector size to image rapid moving structure such as the heart, which lowers accuracy and precision in the strain estimation. In this study, we developed 3D myocardial elastography at high volume rates using diverging wave transmits to evaluate the local axial strain distribution in three dimensions in three open-chest canines before and after radio-frequency ablation. Acquisitions were performed with a 2.5 MHz 2D matrix array fully programmable used to emit 2000 diverging waves at 2000 volumes/s. Incremental displacements and strains enabled the visualization of rapid events during the QRS complex along with the different phases of the cardiac cycle in entire volumes. Cumulative displacement and strain volumes depict high contrast between non-ablated and ablated myocardium at the lesion location, mapping the tissue coagulation. 3D myocardial strain elastography could thus become an important technique to measure the regional strain distribution in three dimensions in humans.
Collapse
|
31
|
Papadacci C, Bunting EA, Konofagou EE. 3D Quasi-Static Ultrasound Elastography With Plane Wave In Vivo. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:357-365. [PMID: 27483021 PMCID: PMC5528176 DOI: 10.1109/tmi.2016.2596706] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In biological tissue, an increase in elasticity is often a marker of abnormalities. Techniques such as quasi-static ultrasound elastography have been developed to assess the strain distribution in soft tissues in two dimensions using a quasi-static compression. However, as abnormalities can exhibit very heterogeneous shapes, a three dimensional approach would be necessary to accurately measure their volume and remove operator dependency. Acquisition of volumes at high rates is also critical to performing real-time imaging with a simple freehand compression. In this study, we developed for the first time a 3D quasi-static ultrasound elastography method with plane waves that estimates axial strain distribution in vivo in entire volumes at high volume rate. Acquisitions were performed with a 2D matrix array probe of 2.5 MHz frequency and 256 elements. Plane waves were emitted at a volume rate of 100 volumes/s during a continuous motorized and freehand compression. 3D B-mode volumes and 3D cumulative axial strain volumes were successfully estimated in inclusion phantoms and in ex vivo canine liver before and after a high intensity focused ultrasound ablation. We also demonstrated the in vivo feasibility of the method using freehand compression on the calf muscle of a human volunteer and were able to retrieve 3D axial strain volume at a high volume rate depicting the differences in stiffness of the two muscles which compose the calf muscle. 3D ultrasound quasi-static elastography with plane waves could become an important technique for the imaging of the elasticity in human bodies in three dimensions using simple freehand scanning.
Collapse
|
32
|
Wang X, Mitchell CC, Varghese T, Jackson DC, Rocque BG, Hermann BP, Dempsey RJ. Improved Correlation of Strain Indices with Cognitive Dysfunction with Inclusion of Adventitial Layer with Carotid Plaque. ULTRASONIC IMAGING 2016; 38:194-208. [PMID: 26025578 PMCID: PMC4662918 DOI: 10.1177/0161734615589252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plaque instability may lead to chronic embolization, which in turn may contribute to progressive cognitive decline. Accumulated strain tensor indices over a cardiac cycle within a pulsating carotid plaque may be viable biomarkers for the diagnosis of plaque instability. Using plaque-only carotid artery segmentations, we recently demonstrated that impaired cognitive function correlated significantly with maximum axial and lateral strain indices within a localized region of interest in plaque. Inclusion of the adventitial layer focuses our strain or instability measures on the vessel wall-plaque interface hypothesized to be a region with increased shearing forces and measureable instability. A hierarchical block-matching motion tracking algorithm developed in our laboratory was used to estimate accumulated axial, lateral, and shear strain distribution in plaques identified with the plaque-with-adventitia segmentation. Correlations of strain indices to the Repeatable Battery for the Assessment of Neuropsychological Status Total score were performed and compared with previous results. Overall, correlation coefficients (r) and significance (p) values improved for axial, lateral, and shear strain indices. Shear strain indices, however, demonstrated the largest improvement. The Pearson correlation coefficients for maximum shear strain and cognition improved from the previous plaque-only analyses of -0.432 and -0.345 to -0.795 and -0.717 with the plaque-with-adventitia segmentation for the symptomatic group and for all patients combined, respectively. Our results demonstrate the advantage of including adventitia for ultrasound carotid strain imaging providing improved association to parameters assessing cognitive impairment in patients. This supports theories of the importance of the vessel wall plaque interface in the pathophysiology of embolic disease.
Collapse
Affiliation(s)
- X Wang
- Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - C C Mitchell
- Department of Medicine, University of Wisconsin-Madison, Madison School of Medicine and Public Health, WI, USA
| | - T Varghese
- Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - D C Jackson
- Department of Neurology, University of Wisconsin-Madison, Madison School of Medicine and Public Health, WI, USA
| | - B G Rocque
- Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - B P Hermann
- Department of Neurology, University of Wisconsin-Madison, Madison School of Medicine and Public Health, WI, USA
| | - R J Dempsey
- Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
33
|
Wang X, Jackson DC, Mitchell CC, Varghese T, Wilbrand SM, Rocque BG, Hermann BP, Dempsey RJ. Classification of Symptomatic and Asymptomatic Patients with and without Cognitive Decline Using Non-invasive Carotid Plaque Strain Indices as Biomarkers. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:909-18. [PMID: 26778288 PMCID: PMC4775393 DOI: 10.1016/j.ultrasmedbio.2015.11.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 11/17/2015] [Accepted: 11/30/2015] [Indexed: 05/03/2023]
Abstract
Vascular cognitive decline may be caused by micro-emboli generated by carotid plaque instability. We previously found that maximum strain indices in carotid plaque were significantly correlated with cognitive function. In the work described here, we examined these associations with a larger sample size, as well as evaluated the performance of these maximum strain indices in predicting cognitive impairment. Ultrasound-based strain imaging and cognition assessment were conducted on 75 human patients. Patients underwent one of two standardized cognitive test batteries, either the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) or the National Institute of Neurologic Disorder and Stroke-Canadian Stroke Network (NINDS-CSN) Vascular Cognitive Impairment Harmonization Standards (60 min). Scores were standardized within each battery to allow these data to be combined across all participants. Radiofrequency signals for ultrasound strain imaging were acquired on the carotid arteries using either a Siemens Antares with a VFX 13-5 linear array transducer or a Siemens S2000 with an 18 L6 linear array transducer. The same hierarchical block-matching motion tracking algorithm developed in our laboratory was used to estimate accumulated axial, lateral, and shear strain indices in carotid plaque, with inclusion of adventitia regardless of the ultrasound system and transducer used. Associations between cognitive z-scores and maximum strain indices were examined using Pearson's correlation coefficients. Maximum strain indices were also employed to predict cognitive impairment using receiver operating characteristic analysis. All correlations between maximum strain indices and total cognition were statistically significant (p < 0.05), indicating that these indices have good utility in predicting cognitive impairment. Maximum lateral strain indices provided an area under the curve of 0.85 for symptomatic patients and 0.68 for asymptomatic patients. Our results indicate the important relationship of maximum strain indices to cognitive function and the feasibility of using maximum strain indices to predict cognitive decline with inclusion of the adventitia layer into the segmentation of plaque.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | - Daren C Jackson
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Carol C Mitchell
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Tomy Varghese
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Stephanie M Wilbrand
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Brandon G Rocque
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Bruce P Hermann
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Robert J Dempsey
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
34
|
Zhang Q, Li C, Zhou M, Liao Y, Huang C, Shi J, Wang Y, Wang W. Quantification of carotid plaque elasticity and intraplaque neovascularization using contrast-enhanced ultrasound and image registration-based elastography. ULTRASONICS 2015; 62:253-262. [PMID: 26074459 DOI: 10.1016/j.ultras.2015.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/18/2015] [Accepted: 05/29/2015] [Indexed: 06/04/2023]
Abstract
It is valuable for evaluation of carotid plaque vulnerability to investigate the relation between intraplaque neovascularization (IPN) and plaque elasticity. The contrast-enhanced ultrasound (CEUS) has been used in IPN measurement, but it cannot assess plaque elasticity. The aim of this study was to develop an ultrasound elastography technique based on registration of CEUS sequential images and to use this technique for direct comparison between IPN and plaque elasticity. We employed a nonrigid image registration method using the free-form deformation model to register a pair of clinical CEUS images at systole and diastole. The 2D displacement field of the plaque was estimated and then utilized to calculate the axial and lateral strain distributions within the plaque, from which quantitative strain parameters were obtained. The IPN was measured semiquantitatively with visual assessment and quantitatively with the time-intensity curve analysis and the analysis of contrast agent spatial distributions. Histopathology with CD34 staining for quantification of microvessel density (MVD) was performed on plaques excised by carotid endarterectomy. Simulation experiments showed that the mean absolute error and the root mean squared error of the displacement estimation were 0.325±0.180 pixel (7.2%±3.8%) and 0.556±0.284 pixel (12.3%±6.1%), respectively, demonstrating high accuracy of the elastography technique. Thirty-eight plaques in 29 patients met the inclusion criteria for the elastography and image analysis, where ten plaques underwent endarterectomy. The 95th percentile (A95) and standard deviation (Asd) of the axial strains exhibited significant differences between the low and high grades of IPN visually assessed (p<0.01). A95 (R=0.579; p<0.001) and Asd (R=0.609; p<0.001) were correlated with the enhanced intensity of plaque, and also correlated with the MVD (R=0.793 and 0.817, respectively; p<0.01), suggesting that plaque became softer and more elastically heterogeneous as IPN increased. These findings provide direct and quantitative evidence for the associations between plaque strains and IPN and might be helpful for evaluation of carotid plaque vulnerability and for plaque risk stratification.
Collapse
Affiliation(s)
- Qi Zhang
- School of Communication and Information Engineering, Shanghai University, 200444 Shanghai, China.
| | - Chaolun Li
- Department of Ultrasound, Zhongshan Hospital, Fudan University, 200032 Shanghai, China.
| | - Moli Zhou
- School of Communication and Information Engineering, Shanghai University, 200444 Shanghai, China
| | - Yu Liao
- School of Communication and Information Engineering, Shanghai University, 200444 Shanghai, China
| | - Chunchun Huang
- School of Communication and Information Engineering, Shanghai University, 200444 Shanghai, China
| | - Jun Shi
- School of Communication and Information Engineering, Shanghai University, 200444 Shanghai, China.
| | - Yuanyuan Wang
- Department of Electronic Engineering, Fudan University, 200433 Shanghai, China.
| | - Wenping Wang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, 200032 Shanghai, China.
| |
Collapse
|
35
|
Berman SE, Wang X, Mitchell CC, Kundu B, Jackson DC, Wilbrand SM, Varghese T, Hermann BP, Rowley HA, Johnson SC, Dempsey RJ. The relationship between carotid artery plaque stability and white matter ischemic injury. NEUROIMAGE-CLINICAL 2015; 9:216-22. [PMID: 26448914 PMCID: PMC4572385 DOI: 10.1016/j.nicl.2015.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/17/2015] [Accepted: 08/17/2015] [Indexed: 12/12/2022]
Abstract
Higher local carotid artery strain has previously been shown to be a characteristic of unstable carotid plaques. These plaques may be characterized by microvascular changes that predispose to intraplaque hemorrhage, increasing the likelihood of embolization. Little is known however, about how these strain indices correspond with imaging markers of brain health and metrics of brain structure. White matter hyperintensities (WMHs), which are bright regions seen on T2-weighted brain MRI imaging, are postulated to result from cumulative ischemic vascular injury. Consequently, we hypothesized that plaques that are more prone to microvascular changes and embolization, represented by higher strain indices on ultrasound, would be associated with an increased amount of WMH lesion volume. This relationship would suggest not only emboli as a cause for the brain degenerative changes, but more importantly, a common microvascular etiology for large and small vessel contributions to this process. Subjects scheduled to undergo a carotid endarterectomy were recruited from a neurosurgery clinic. Prior to surgery, participating subjects underwent both ultrasound strain imaging and brain MRI scans as part of a larger clinical study on vascular health and cognition. A linear regression found that maximum absolute strain and peak to peak strain in the surgical side carotid artery were predictive of WMH burden. Furthermore, the occurrence of microembolic signals monitored using transcranial Doppler (TCD) ultrasound examinations also correlated with increasing lesion burden. It is becoming increasingly recognized that cognitive decline is often multifactorial in nature. One contributing extra-brain factor may be changes in the microvasculature that produce unstable carotid artery plaques. In this study, we have shown that higher strain indices in carotid artery plaques are significantly associated with an increased WMH burden, a marker of vascular mediated brain damage. We examine how carotid artery plaque strain indices correspond with MRI metrics. Strain in the ICA predicts increased white matter hyperintensity lesion burden. Subjects with embolizing plaques have greater white matter lesion burden.
Collapse
Affiliation(s)
- Sara E Berman
- Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA ; Neuroscience Training Program, University of Wisconsin - Madison, Madison, WI 53705, USA ; Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Xiao Wang
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Carol C Mitchell
- Department of Medicine, Cardiovascular Medicine Section, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Bornali Kundu
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Daren C Jackson
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Stephanie M Wilbrand
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Tomy Varghese
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Bruce P Hermann
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Howard A Rowley
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Sterling C Johnson
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Veterans Hospital, Madison, WI 53705, USA ; Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA ; Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Robert J Dempsey
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| |
Collapse
|
36
|
Nieuwstadt HA, Fekkes S, Hansen HHG, de Korte CL, van der Lugt A, Wentzel JJ, van der Steen AFW, Gijsen FJH. Carotid plaque elasticity estimation using ultrasound elastography, MRI, and inverse FEA - A numerical feasibility study. Med Eng Phys 2015; 37:801-7. [PMID: 26130603 DOI: 10.1016/j.medengphy.2015.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 06/02/2015] [Accepted: 06/07/2015] [Indexed: 12/13/2022]
Abstract
The material properties of atherosclerotic plaques govern the biomechanical environment, which is associated with rupture-risk. We investigated the feasibility of noninvasively estimating carotid plaque component material properties through simulating ultrasound (US) elastography and in vivo magnetic resonance imaging (MRI), and solving the inverse problem with finite element analysis. 2D plaque models were derived from endarterectomy specimens of nine patients. Nonlinear neo-Hookean models (tissue elasticity C1) were assigned to fibrous intima, wall (i.e., media/adventitia), and lipid-rich necrotic core. Finite element analysis was used to simulate clinical cross-sectional US strain imaging. Computer-simulated, single-slice in vivo MR images were segmented by two MR readers. We investigated multiple scenarios for plaque model elasticity, and consistently found clear separations between estimated tissue elasticity values. The intima C1 (160 kPa scenario) was estimated as 125.8 ± 19.4 kPa (reader 1) and 128.9 ± 24.8 kPa (reader 2). The lipid-rich necrotic core C1 (5 kPa) was estimated as 5.6 ± 2.0 kPa (reader 1) and 8.5 ± 4.5 kPa (reader 2). A scenario with a stiffer wall yielded similar results, while realistic US strain noise and rotating the models had little influence, thus demonstrating robustness of the procedure. The promising findings of this computer-simulation study stimulate applying the proposed methodology in a clinical setting.
Collapse
Affiliation(s)
- H A Nieuwstadt
- Department of Biomedical Engineering, Erasmus MC, Rotterdam, The Netherlands.
| | - S Fekkes
- Department of Radiology and Nuclear Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - H H G Hansen
- Department of Radiology and Nuclear Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - C L de Korte
- Department of Radiology and Nuclear Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - A van der Lugt
- Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
| | - J J Wentzel
- Department of Biomedical Engineering, Erasmus MC, Rotterdam, The Netherlands
| | - A F W van der Steen
- Department of Biomedical Engineering, Erasmus MC, Rotterdam, The Netherlands; Department of Imaging Science and Technology, Delft University of Technology, Delft, The Netherlands
| | - F J H Gijsen
- Department of Biomedical Engineering, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
37
|
Larsson M, Heyde B, Kremer F, Brodin LÅ, D'hooge J. Ultrasound speckle tracking for radial, longitudinal and circumferential strain estimation of the carotid artery--an in vitro validation via sonomicrometry using clinical and high-frequency ultrasound. ULTRASONICS 2015; 56:399-408. [PMID: 25262347 DOI: 10.1016/j.ultras.2014.09.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 08/14/2014] [Accepted: 09/09/2014] [Indexed: 06/03/2023]
Abstract
Ultrasound speckle tracking for carotid strain assessment has in the past decade gained interest in studies of arterial stiffness and cardiovascular diseases. The aim of this study was to validate and directly contrast carotid strain assessment by speckle tracking applied on clinical and high-frequency ultrasound images in vitro. Four polyvinyl alcohol phantoms mimicking the carotid artery were constructed with different mechanical properties and connected to a pump generating carotid flow profiles. Gray-scale ultrasound long- and short-axis images of the phantoms were obtained using a standard clinical ultrasound system, Vivid 7 (GE Healthcare, Horten, Norway) and a high-frequency ultrasound system, Vevo 2100 (FUJIFILM, VisualSonics, Toronto, Canada) with linear-array transducers (12L/MS250). Radial, longitudinal and circumferential strains were estimated using an in-house speckle tracking algorithm and compared with reference strain acquired by sonomicrometry. Overall, the estimated strain corresponded well with the reference strain. The correlation between estimated peak strain in clinical ultrasound images and reference strain was 0.91 (p<0.001) for radial strain, 0.73 (p<0.001) for longitudinal strain and 0.90 (p<0.001) for circumferential strain and for high-frequency ultrasound images 0.95 (p<0.001) for radial strain, 0.93 (p<0.001) for longitudinal strain and 0.90 (p<0.001) for circumferential strain. A significant larger bias and root mean square error was found for circumferential strain estimation on clinical ultrasound images compared to high frequency ultrasound images, but no significant difference in bias and root mean square error was found for radial and longitudinal strain when comparing estimation on clinical and high-frequency ultrasound images. The agreement between sonomicrometry and speckle tracking demonstrates that carotid strain assessment by ultrasound speckle tracking is feasible.
Collapse
Affiliation(s)
- Matilda Larsson
- Department of Medical Engineering, School of Technology and Health, KTH Royal Institute of Technology, Stockholm, Alfred Nobels Allé 10, 141 52 Huddinge, Sweden; Lab on Cardiovascular Imaging & Dynamics, KU Leuven, Campus Gasthuisberg O&N1, Herestraat 49 box 911, 3000 Leuven, Belgium.
| | - Brecht Heyde
- Lab on Cardiovascular Imaging & Dynamics, KU Leuven, Campus Gasthuisberg O&N1, Herestraat 49 box 911, 3000 Leuven, Belgium
| | - Florence Kremer
- Lab on Cardiovascular Imaging & Dynamics, KU Leuven, Campus Gasthuisberg O&N1, Herestraat 49 box 911, 3000 Leuven, Belgium
| | - Lars-Åke Brodin
- Department of Medical Engineering, School of Technology and Health, KTH Royal Institute of Technology, Stockholm, Alfred Nobels Allé 10, 141 52 Huddinge, Sweden
| | - Jan D'hooge
- Lab on Cardiovascular Imaging & Dynamics, KU Leuven, Campus Gasthuisberg O&N1, Herestraat 49 box 911, 3000 Leuven, Belgium
| |
Collapse
|
38
|
Larsson M, Verbrugghe P, Smoljkić M, Verhoeven J, Heyde B, Famaey N, Herijgers P, D’hooge J. Strain assessment in the carotid artery wall using ultrasound speckle tracking: validation in a sheep model. Phys Med Biol 2015; 60:1107-23. [DOI: 10.1088/0031-9155/60/3/1107] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
39
|
Widman E, Caidahl K, Heyde B, D'hooge J, Larsson M. Ultrasound speckle tracking strain estimation of in vivo carotid artery plaque with in vitro sonomicrometry validation. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:77-88. [PMID: 25308946 DOI: 10.1016/j.ultrasmedbio.2014.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/03/2014] [Accepted: 06/23/2014] [Indexed: 06/04/2023]
Abstract
Our objective was to validate a previously developed speckle tracking (ST) algorithm to assess strain in common carotid artery plaques. Radial and longitudinal strain was measured in common carotid artery gel phantoms with a plaque-mimicking inclusion using an in-house ST algorithm and sonomicrometry. Moreover, plaque strain by ST for seven patients (77 ± 6 y) with carotid atherosclerosis was compared with a quantitative visual assessment by two experienced physicians. In vitro, good correlation existed between ST and sonomicrometry peak strains, both radially (r = 0.96, p < 0.001) and longitudinally (r = 0.75, p < 0.01). In vivo, greater pulse pressure-adjusted radial and longitudinal strains were found in echolucent plaques than in echogenic plaques. This illustrates the feasibility of ultrasound ST strain estimation in plaques and the possibility of characterizing plaques using ST strain in vivo.
Collapse
Affiliation(s)
- Erik Widman
- Department of Medical Engineering, School of Technology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - Kenneth Caidahl
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Brecht Heyde
- Cardiovascular Imaging & Dynamics, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Jan D'hooge
- Cardiovascular Imaging & Dynamics, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Matilda Larsson
- Department of Medical Engineering, School of Technology and Health, KTH Royal Institute of Technology, Stockholm, Sweden; Cardiovascular Imaging & Dynamics, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
40
|
Lopata RGP, Peters MFJ, Nijs J, Oomens CWJ, Rutten MCM, van de Vosse FN. Vascular elastography: a validation study. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:1882-1895. [PMID: 24798385 DOI: 10.1016/j.ultrasmedbio.2014.02.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/13/2014] [Accepted: 02/23/2014] [Indexed: 06/03/2023]
Abstract
Vascular elastography techniques are promising tools for mechanical characterization of diseased arteries. These techniques are usually validated with simulations or phantoms or by comparing results with histology or other imaging modalities. In the study described here, vascular elastography was applied to porcine aortas in vitro during inflation testing (n = 10) and results were compared with those of standard bi-axial tensile testing, a technique that directly measures the force applied to the tissue. A neo-Hookean model was fit to the stress-strain data, valid for large deformations. Results indicated good correspondence between the two techniques, with GUS = 110 ± 11 kPa and GTT = 108 ± 10 kPa for ultrasound and tensile testing, respectively. Bland-Altman analysis revealed little bias (GUS-GTT = 2 ± 20 kPa). The next step will be the application of a non-linear material model that is also adaptable for in vivo measurements.
Collapse
Affiliation(s)
- Richard G P Lopata
- Cardiovascular Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Mathijs F J Peters
- Cardiovascular Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jan Nijs
- Department of Cardiac Surgery, University Hospital Brussels, Brussels, Belgium
| | - Cees W J Oomens
- Soft Tissue Biomechanics & Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marcel C M Rutten
- Cardiovascular Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Frans N van de Vosse
- Cardiovascular Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
41
|
Gastounioti A, Makrodimitris S, Golemati S, Kadoglou NPE, Liapis CD, Nikita KS. A novel computerized tool to stratify risk in carotid atherosclerosis using kinematic features of the arterial wall. IEEE J Biomed Health Inform 2014; 19:1137-45. [PMID: 24951709 DOI: 10.1109/jbhi.2014.2329604] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Valid characterization of carotid atherosclerosis (CA) is a crucial public health issue, which would limit the major risks held by CA for both patient safety and state economies. This paper investigated the unexplored potential of kinematic features in assisting the diagnostic decision for CA in the framework of a computer-aided diagnosis (CAD) tool. To this end, 15 CAD schemes were designed and were fed with a wide variety of kinematic features of the atherosclerotic plaque and the arterial wall adjacent to the plaque for 56 patients from two different hospitals. The CAD schemes were benchmarked in terms of their ability to discriminate between symptomatic and asymptomatic patients and the combination of the Fisher discriminant ratio, as a feature-selection strategy, and support vector machines, in the classification module, was revealed as the optimal motion-based CAD tool. The particular CAD tool was evaluated with several cross-validation strategies and yielded higher than 88% classification accuracy; the texture-based CAD performance in the same dataset was 80%. The incorporation of kinematic features of the arterial wall in CAD seems to have a particularly favorable impact on the performance of image-data-driven diagnosis for CA, which remains to be further elucidated in future prospective studies on large datasets.
Collapse
|
42
|
Boekhoven RW, Rutten MCM, van Sambeek MR, van de Vosse FN, Lopata RGP. Echo-computed tomography strain imaging of healthy and diseased carotid specimens. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:1329-1342. [PMID: 24613555 DOI: 10.1016/j.ultrasmedbio.2013.11.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 11/14/2013] [Accepted: 11/18/2013] [Indexed: 06/03/2023]
Abstract
To improve our understanding of the mechanical behavior of human atherosclerotic plaque tissue, fully 3-D geometrical, morphological and dynamical information is essential. For this purpose, four-dimensional (3-D+t) strain imaging using an ultrasound tomography approach (echo-computed tomography) was performed in carotid arteries in vitro. The method was applied to a carotid phantom (CPh), a porcine carotid artery (PC) and human carotid atherosclerotic plaque samples (HC, n = 5). Each sample was subjected to an intraluminal pressure, after which 2-D longitudinal ultrasound images were obtained for 36 angles along the circumferential direction. Local deformations were estimated using a 2-D strain algorithm, and 3-D radial strain data were reconstructed. At systole, median luminal strains of 15% (CPh) and 18% (PC) were found, which is in agreement with the stiffness of the material and applied pressure pulse. The elastographic signal-to-noise ratio was consistent in all directions and ranged from 16 to 36 dB. Furthermore, realistic but more complex strain patterns were found for the HC, with 99th percentile systolic strain values ranging from 0.1% to 18%.
Collapse
Affiliation(s)
- Renate W Boekhoven
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Marcel C M Rutten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marc R van Sambeek
- Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Frans N van de Vosse
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Richard G P Lopata
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
43
|
Towards mechanical characterization of intact endarterectomy samples of carotid arteries during inflation using Echo-CT. J Biomech 2014; 47:805-14. [DOI: 10.1016/j.jbiomech.2014.01.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2014] [Indexed: 11/18/2022]
|
44
|
Wang X, Jackson DC, Varghese T, Mitchell CC, Hermann BP, Kliewer MA, Dempsey RJ. Correlation of cognitive function with ultrasound strain indices in carotid plaque. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:78-89. [PMID: 24120415 PMCID: PMC3849143 DOI: 10.1016/j.ultrasmedbio.2013.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/10/2013] [Accepted: 08/01/2013] [Indexed: 05/03/2023]
Abstract
Instability in carotid vulnerable plaque can generate cerebral micro-emboli, which may be related to both stroke and eventual cognitive abnormality. Strain imaging to detect plaque vulnerability based on regions with large strain fluctuations, with arterial pulsation, may be able to determine the risk of cognitive impairment. Plaque instability may be characterized by increased strain variations over a cardiac cycle. Radiofrequency signals for ultrasound strain imaging were acquired from the carotid arteries of 24 human patients using a Siemens Antares with a VFX 13-5 linear array transducer. These patients underwent standardized cognitive assessment (Repeatable Battery for the Assessment of Neuropsychological Status [RBANS]). Plaque regions were segmented by a radiologist at end-diastole using the Medical Imaging Interaction Toolkit. A hierarchical block-matching motion tracking algorithm was used to estimate the cumulated axial, lateral and shear strains within the imaging plane. The maximum, minimum and peak-to-peak strain indices in the plaque computed from the mean cumulated strain over a small region of interest in the plaque with large deformations were obtained. The maximum and peak-to-peak mean cumulated strain indices over the entire plaque region were also computed. All strain indices were then correlated with RBANS Total performance. Overall cognitive performance (RBANS Total) was negatively associated with values of the maximum strain and the peak-to-peak for axial and lateral strains, respectively. There was no significant correlation between the RBANS Total score and shear strain and strain indices averaged over the entire identified plaque for this group of patients. However, correlation of maximum lateral strain was higher for symptomatic patients (r = -0.650, p = 0.006) than for asymptomatic patients (r = -0.115, p = 0.803). On the other hand, correlation of maximum axial strain averaged over the entire plaque region was significantly higher for asymptomatic patients (r = -0.817, p = 0.016) than for symptomatic patients (r = -0.224, p = 0.402). The results reveal a direct relationship between the maximum axial and lateral strain indices in carotid plaque and cognitive impairment.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Wang X, Jackson D, Mitchell C, Varghese T, Hermann B, Kliewer M, Dempsey RJ. Estimation of ultrasound strain indices in carotid plaque and correlation to cognitive dysfunction. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2014; 2014:5627-30. [PMID: 25571271 PMCID: PMC4288023 DOI: 10.1109/embc.2014.6944903] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Carotid plaque prone to release emboli may be predicted by increased strain variations within plaque due to arterial pulsation over a cardiac cycle. Non-invasive ultrasound strain imaging may therefore be a viable surrogate to determine the risk of embolic stroke and possible cognitive impairment. Ultrasound strain imaging was performed on 24 human subjects with significant plaque, who also underwent standardized cognitive assessment (Repeatable Battery for the Assessment of Neuropsychological Status (RBANS)) prior to a carotid endarterectomy (CEA) procedure. Radiofrequency signals were acquired using a Siemens Antares with a VFX 13-5 linear array transducer. Plaque regions were segmented by a radiologist at end-diastole using the Medical Imaging Interaction Toolkit. A hierarchical block-matching motion tracking algorithm was utilized to estimate the cumulated axial, lateral, and shear strains within the imaging plane. The maximum strain indices of the plaque, defined as mean accumulated strain over a small region of interest in the plaque with large deformations, were obtained. All the strain indices were then correlated with RBANS Total score. Overall cognitive performance was negatively associated with maximum axial and lateral strains respectively. The results demonstrate a direct relationship between the maximum axial and lateral strain indices in carotid plaque and cognitive impairment.
Collapse
Affiliation(s)
- X Wang
- University of Wisconsin-Madison, Madison, WI 53706 USA, phone: 608-772-8929; fax: 608-262-2413
| | - D.C. Jackson
- University of Wisconsin-Madison, Madison, WI 53706 USA, phone: 608-772-8929; fax: 608-262-2413
| | - C.C. Mitchell
- Department of Biomedical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201 USA
| | - T. Varghese
- University of Wisconsin-Madison, Madison, WI 53706 USA, phone: 608-772-8929; fax: 608-262-2413
| | - B.P. Hermann
- University of Wisconsin-Madison, Madison, WI 53706 USA, phone: 608-772-8929; fax: 608-262-2413
| | - M.A. Kliewer
- University of Wisconsin-Madison, Madison, WI 53706 USA, phone: 608-772-8929; fax: 608-262-2413
| | - R. J. Dempsey
- University of Wisconsin-Madison, Madison, WI 53706 USA, phone: 608-772-8929; fax: 608-262-2413
| |
Collapse
|
46
|
Gastounioti A, Golemati S, Stoitsis JS, Nikita KS. Carotid artery wall motion analysis from B-mode ultrasound using adaptive block matching: in silico evaluation and in vivo application. Phys Med Biol 2013; 58:8647-61. [PMID: 24256708 DOI: 10.1088/0031-9155/58/24/8647] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Valid risk stratification for carotid atherosclerotic plaques represents a crucial public health issue toward preventing fatal cerebrovascular events. Although motion analysis (MA) provides useful information about arterial wall dynamics, the identification of motion-based risk markers remains a significant challenge. Considering that the ability of a motion estimator (ME) to handle changes in the appearance of motion targets has a major effect on accuracy in MA, we investigated the potential of adaptive block matching (ABM) MEs, which consider changes in image intensities over time. To assure the validity in MA, we optimized and evaluated the ABM MEs in the context of a specially designed in silico framework. ABM(FIRF2), which takes advantage of the periodicity characterizing the arterial wall motion, was the most effective ABM algorithm, yielding a 47% accuracy increase with respect to the conventional block matching. The in vivo application of ABM(FIRF2) revealed five potential risk markers: low movement amplitude of the normal part of the wall adjacent to the plaques in the radial (RMA(PWL)) and longitudinal (LMA(PWL)) directions, high radial motion amplitude of the plaque top surface (RMA(PTS)), and high relative movement, expressed in terms of radial strain (RSI(PL)) and longitudinal shear strain (LSSI(PL)), between plaque top and bottom surfaces. The in vivo results were reproduced by OF(LK(WLS)) and ABM(KF-K2), MEs previously proposed by the authors and with remarkable in silico performances, thereby reinforcing the clinical values of the markers and the potential of those MEs. Future in vivo studies will elucidate with confidence the full potential of the markers.
Collapse
Affiliation(s)
- A Gastounioti
- Biomedical Simulations and Imaging Laboratory, National Technical University of Athens, Greece
| | | | | | | |
Collapse
|
47
|
Dutta D, Lee KW, Allen RA, Wang Y, Brigham JC, Kim K. Non-invasive assessment of elastic modulus of arterial constructs during cell culture using ultrasound elasticity imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:2103-2115. [PMID: 23932282 PMCID: PMC3786060 DOI: 10.1016/j.ultrasmedbio.2013.04.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 04/25/2013] [Accepted: 04/28/2013] [Indexed: 05/30/2023]
Abstract
Mechanical strength is a key design factor in tissue engineering of arteries. Most existing techniques assess the mechanical property of arterial constructs destructively, leading to sacrifice of a large number of animals. We propose an ultrasound-based non-invasive technique for the assessment of the mechanical strength of engineered arterial constructs. Tubular scaffolds made from a biodegradable elastomer and seeded with vascular fibroblasts and smooth muscle cells were cultured in a pulsatile-flow bioreactor. Scaffold distension was computed from ultrasound radiofrequency signals of the pulsating scaffold via 2-D phase-sensitive speckle tracking. Young's modulus was then calculated by solving the inverse problem from the distension and the recorded pulse pressure. The stiffness thus computed from ultrasound correlated well with direct mechanical testing results. As the scaffolds matured in culture, ultrasound measurements indicated an increase in Young's modulus, and histology confirmed the growth of cells and collagen fibrils in the constructs. The results indicate that ultrasound elastography can be used to assess and monitor non-invasively the mechanical properties of arterial constructs.
Collapse
Affiliation(s)
- Debaditya Dutta
- Center for Ultrasound Molecular Imaging and Therapeutics – Department of Medicine and Heart and Vascular Institute, University of Pittsburgh and UPMC, Pittsburgh, Pennsylvania 15261, USA
| | - Kee-Won Lee
- Department of Bioengineering, University of Pittsburgh and UPMC, Pittsburgh, Pennsylvania 15261, USA
| | - Robert A. Allen
- Department of Bioengineering, University of Pittsburgh and UPMC, Pittsburgh, Pennsylvania 15261, USA
| | - Yadong Wang
- Department of Bioengineering, University of Pittsburgh and UPMC, Pittsburgh, Pennsylvania 15261, USA
- Department of Surgery, University of Pittsburgh and UPMC, Pittsburgh, Pennsylvania 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh and UPMC, Pittsburgh, Pennsylvania 15261, USA
| | - John C. Brigham
- Department of Bioengineering, University of Pittsburgh and UPMC, Pittsburgh, Pennsylvania 15261, USA
- Department of Civil and Environmental Engineering, University of Pittsburgh and UPMC, Pittsburgh, Pennsylvania 15261, USA
| | - Kang Kim
- Center for Ultrasound Molecular Imaging and Therapeutics – Department of Medicine and Heart and Vascular Institute, University of Pittsburgh and UPMC, Pittsburgh, Pennsylvania 15261, USA
- Department of Bioengineering, University of Pittsburgh and UPMC, Pittsburgh, Pennsylvania 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh and UPMC, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
48
|
Dutta D, Mahmoud AM, Leers SA, Kim K. Motion Artifact Reduction in Ultrasound Based Thermal Strain Imaging of Atherosclerotic Plaques Using Time Series Analysis. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2013; 60:1660-1668. [PMID: 24808628 PMCID: PMC4010158 DOI: 10.1109/tuffc.2013.2748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Large lipid pools in vulnerable plaques, in principle, can be detected using US based thermal strain imaging (US-TSI). One practical challenge for in vivo cardiovascular application of US-TSI is that the thermal strain is masked by the mechanical strain caused by cardiac pulsation. ECG gating is a widely adopted method for cardiac motion compensation, but it is often susceptible to electrical and physiological noise. In this paper, we present an alternative time series analysis approach to separate thermal strain from the mechanical strain without using ECG. The performance and feasibility of the time-series analysis technique was tested via numerical simulation as well as in vitro water tank experiments using a vessel mimicking phantom and an excised human atherosclerotic artery where the cardiac pulsation is simulated by a pulsatile pump.
Collapse
Affiliation(s)
- Debaditya Dutta
- Center for Ultrasound Molecular Imaging and Therapeutics – Department of Medicine, University of Pittsburgh and UPMC, Pittsburgh, PA, USA
- Heart and Vascular Institute, University of Pittsburgh and UPMC, Pittsburgh, PA, USA
| | - Ahmed M. Mahmoud
- Center for Ultrasound Molecular Imaging and Therapeutics – Department of Medicine, University of Pittsburgh and UPMC, Pittsburgh, PA, USA
- Heart and Vascular Institute, University of Pittsburgh and UPMC, Pittsburgh, PA, USA
- Department of Biomedical Engineering and Systems, Cairo University, Giza, Egypt
| | - Steven A. Leers
- Heart and Vascular Institute, University of Pittsburgh and UPMC, Pittsburgh, PA, USA
| | - Kang Kim
- Center for Ultrasound Molecular Imaging and Therapeutics – Department of Medicine, University of Pittsburgh and UPMC, Pittsburgh, PA, USA
- Heart and Vascular Institute, University of Pittsburgh and UPMC, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh and UPMC, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh and UPMC, Pittsburgh, PA, USA
| |
Collapse
|
49
|
Hansen HH, Richards MS, Doyley MM, de Korte CL. Noninvasive vascular displacement estimation for relative elastic modulus reconstruction in transversal imaging planes. SENSORS 2013; 13:3341-57. [PMID: 23478602 PMCID: PMC3658750 DOI: 10.3390/s130303341] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/07/2013] [Accepted: 03/08/2013] [Indexed: 12/03/2022]
Abstract
Atherosclerotic plaque rupture can initiate stroke or myocardial infarction. Lipid-rich plaques with thin fibrous caps have a higher risk to rupture than fibrotic plaques. Elastic moduli differ for lipid-rich and fibrous tissue and can be reconstructed using tissue displacements estimated from intravascular ultrasound radiofrequency (RF) data acquisitions. This study investigated if modulus reconstruction is possible for noninvasive RF acquisitions of vessels in transverse imaging planes using an iterative 2D cross-correlation based displacement estimation algorithm. Furthermore, since it is known that displacements can be improved by compounding of displacements estimated at various beam steering angles, we compared the performance of the modulus reconstruction with and without compounding. For the comparison, simulated and experimental RF data were generated of various vessel-mimicking phantoms. Reconstruction errors were less than 10%, which seems adequate for distinguishing lipid-rich from fibrous tissue. Compounding outperformed single-angle reconstruction: the interquartile range of the reconstructed moduli for the various homogeneous phantom layers was approximately two times smaller. Additionally, the estimated lateral displacements were a factor of 2–3 better matched to the displacements corresponding to the reconstructed modulus distribution. Thus, noninvasive elastic modulus reconstruction is possible for transverse vessel cross sections using this cross-correlation method and is more accurate with compounding.
Collapse
Affiliation(s)
- Hendrik H.G. Hansen
- Medical UltraSound Imaging Center (MUSIC), Department of Radiology, Radboud University Nijmegen Medical Center, P.O. Box 9101, Nijmegen 6500 HB, The Netherlands; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +31-2436-14730; Fax: +31-2436-14427
| | - Michael S. Richards
- Department of Electrical and Computer Engineering, Hajim School of Engineering and Applied Sciences, University of Rochester, Hopeman Engineering Building, P.O. Box 270126, Rochester, NY 14627, USA; E-Mails: (M.S.R.); (M.M.D.)
| | - Marvin M. Doyley
- Department of Electrical and Computer Engineering, Hajim School of Engineering and Applied Sciences, University of Rochester, Hopeman Engineering Building, P.O. Box 270126, Rochester, NY 14627, USA; E-Mails: (M.S.R.); (M.M.D.)
| | - Chris L. de Korte
- Medical UltraSound Imaging Center (MUSIC), Department of Radiology, Radboud University Nijmegen Medical Center, P.O. Box 9101, Nijmegen 6500 HB, The Netherlands; E-Mail:
| |
Collapse
|
50
|
Golemati S, Gastounioti A, Nikita KS. Toward Novel Noninvasive and Low-Cost Markers for Predicting Strokes in Asymptomatic Carotid Atherosclerosis: The Role of Ultrasound Image Analysis. IEEE Trans Biomed Eng 2013; 60:652-8. [DOI: 10.1109/tbme.2013.2244601] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|