1
|
Wei Q, Wang Y, Huang X, Li D, Zheng Y, Wang P, Sun X, Chai P, Han X, Liu S, Feng B, Zhou W, Zeng X, Zhu M, Zhang Z, Wei L. Performance evaluation of a small-animal PET scanner with 213 mm axis using NEMA NU 4-2008. Med Phys 2025; 52:530-541. [PMID: 39432708 DOI: 10.1002/mp.17469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Long-axis positron emission tomography (PET) has emerged as one of the recent research directions in PET due to its ability to significantly enhance sensitivity and counting performance for low-dose imaging, rapid imaging, and whole-body dynamic imaging. PURPOSE The PET system presented in this study is a long-axis animal PET based on lutetium-yttrium orthosilicate and silicon photomultiplier, designed for whole-body imaging in rats. It features a diameter of 143 mm and an axial length of 213.3 mm. This study evaluated the performance of this PET system in accordance with the National Electrical Manufacturers Association (NEMA) NU 4-2008 standards. METHODS The performance evaluation was conducted according to the NEMA NU 4-2008 standards in terms of spatial resolution, sensitivity, counting rate performance, scatter fraction (SF) and image quality. In addition, a rat imaging study was conducted to assess the imaging capability of this PET system. RESULTS The average energy resolution of the PET system was 12.87%, the average coincidence timing resolution was 751 ps. The FWHM of spatial resolution reconstructed by filtered back projection and 3D-OSEM-PSF algorithm at 5 mm radial offset from the axial center were 1.65 and 0.88 mm. The peak absolute sensitivity measured by a point source at the center of the field of view was evaluated as 6.71% (361-661 keV) and 10.31% (250-750 keV). For the mouse-like phantom, the SF was 11.0% and the peak noise equivalent counting rate (NECR) was 1193 kcps at 94.2 MBq (2.54 mCi). For the rat-like phantom, the SF was 26.8% and the NECR was 682.5 kcps at 78.6 MBq (2.12 mCi). CONCLUSIONS The performance measurement results demonstrate that this PET system exhibits high sensitivity and count rate performance, making it potential for high-quality whole-body dynamic imaging of rats.
Collapse
Affiliation(s)
- Qing Wei
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Yingjie Wang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Xianchao Huang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Daowu Li
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Yushuang Zheng
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Peilin Wang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Xiaoli Sun
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Pei Chai
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Xiaorou Han
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Shuangquan Liu
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Baotong Feng
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Wei Zhou
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Xiangtao Zeng
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Meiling Zhu
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Zhiming Zhang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Long Wei
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| |
Collapse
|
2
|
Zhang D, Wu B, Xi D, Chen R, Xiao P, Xie Q. Feasibility study of photon-counting CT for material identification based on YSO/SiPM detector: A proof of concept. Med Phys 2024; 51:8151-8167. [PMID: 39134042 DOI: 10.1002/mp.17341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Current photon-counting computed tomography (CT) systems utilize semiconductor detectors, such as cadmium telluride (CdTe), cadmium zinc telluride (CZT), and silicon (Si), which convert x-ray photons directly into charge pulses. An alternative approach is indirect detection, which involves Yttrium Orthosilicate (YSO) scintillators coupled with silicon photomultipliers (SiPMs). This presents an attractive and cost-effective option due to its low cost, high detection efficiency, low dark count rate, and high sensor gain. OBJECTIVE This study aims to establish a comprehensive quantitative imaging framework for three-energy-bin proof-of-concept photon-counting CT based on YSO/SiPM detectors developed in our group using multi-voltage threshold (MVT) digitizers and assess the feasibility of this spectral CT for material identification. METHODS We developed a proof-of-concept YSO/SiPM-based benchtop spectral CT system and established a pipeline for three-energy-bin photon-counting CT projection-domain processing. The empirical A-table method was employed for basis material decomposition, and the quantitative imaging performance of the spectral CT system was assessed. This evaluation included the synthesis errors of virtual monoenergetic images, electron density images, effective atomic number images, and linear attenuation coefficient curves. The validity of employing A-table methods for material identification in three-energy-bin spectral CT was confirmed through both simulations and experimental studies. RESULTS In both noise-free and noisy simulations, the thickness estimation experiments and quantitative imaging results demonstrated high accuracy. In the thickness estimation experiment using the practical spectral CT system, the mean absolute error for the estimated thickness of the decomposed Al basis material was 0.014 ± 0.010 mm, with a mean relative error of 0.66% ± 0.42%. Similarly, for the decomposed polymethyl methacrylate (PMMA) basis material, the mean absolute error in thickness estimation was 0.064 ± 0.058 mm, with a mean relative error of 0.70% ± 0.38%. Additionally, employing the equivalent thickness of the basis material allowed for accurate synthesis of 70 keV virtual monoenergetic images (relative error 1.85% ± 1.26%), electron density (relative error 1.81% ± 0.97%), and effective atomic number (relative error 2.64% ± 1.26%) of the tested materials. In addition, the average synthesis error of the linear attenuation coefficient curves in the energy range from 40 to 150 keV was 1.89% ± 1.07%. CONCLUSIONS Both simulation and experimental results demonstrate the accurate generation of 70 keV virtual monoenergetic images, electron density, and effective atomic number images using the A-table method. Quantitative imaging results indicate that the YSO/SiPM-based photon-counting detector is capable of accurately reconstructing virtual monoenergetic images, electron density images, effective atomic number images, and linear attenuation coefficient curves, thereby achieving precise material identification.
Collapse
Affiliation(s)
- Du Zhang
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China
| | - Bin Wu
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Daoming Xi
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Rui Chen
- The Raymeasure Medical Technology Co., Ltd, Suzhou, China
| | - Peng Xiao
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
- Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Qingguo Xie
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
- Wuhan National Laboratory for Optoelectronics, Wuhan, China
| |
Collapse
|
3
|
Bahadorzadeh B, Faghihi R, Sina S, Aghaz A, Rahmim A, Reza Ay M. Design and implementation of continuous bed motion (CBM) in Xtrim preclinical PET scanner for whole-body Imaging: MC simulation and experimental measurements. Phys Med 2024; 123:103395. [PMID: 38843650 DOI: 10.1016/j.ejmp.2024.103395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/09/2024] [Accepted: 06/01/2024] [Indexed: 07/13/2024] Open
Abstract
PURPOSE Preclinical PET scanners often have limited axial field-of-view for whole-body (WB) scanning of the small-animal. Step-and-shoot(S&S) acquisition mode requires multiple bed positions (BPs) to cover the scan length. Alternatively, in Continuous Bed Motion(CBM) mode, data acquisition is performed while the bed is continuously moving. In this study, to reduce acquisition time and enhance image quality, the CBM acquisition protocol was optimized and implemented on the Xtrim-PET preclinical scanner for WB imaging. METHODS The over-scan percentage(OS%) in CBM mode was optimized by Monte Carlo simulation. Bed movement speed was optimized considering ranges from 0.1 to 2.0 mm s-1, and absolute system sensitivities with the optimal OS% were calculated. The performance of the scanner in CBM mode was measured, and compared with S&S mode based on the NEMA-NU4 standard. RESULTS The optimal trade-off between absolute sensitivity and uniformity of sensitivity profile was achieved at OS-50 %. In comparison to S&S mode with maximum ring differences (MRD) of 9 and 23, the calculated equivalent speeds in CBM(OS-50 %) mode were 0.3 and 0.14 mm s-1, respectively. In terms of data acquisition with equal sensitivity in both CBM(OS-50 %) and S&S(MRD-9) modes, the total scan time in CBM mode decreased by 25.9 %, 47.7 %, 54.7 %, and 58.2 % for scan lengths of 1 to 4 BPs, respectively. CONCLUSION The CBM mode enhances WB PET scans for small-animals, offering rapid data acquisition, high system sensitivity, and uniform axial sensitivity, leading to improved image quality. Its efficiency and customizable scan length and bed speed make it a superior alternative.
Collapse
Affiliation(s)
- Bahador Bahadorzadeh
- Nuclear Engineering Department, School of Mechanical Engineering, Shiraz University, Shiraz, Iran; Research Center for Molecular and Cellular Imaging (RCMCI), Advanced Medical Technologies and Equipment Institute (AMTEI), Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Faghihi
- Nuclear Engineering Department, School of Mechanical Engineering, Shiraz University, Shiraz, Iran; Radiation Research Center (RRC), Shiraz University, Shiraz, Iran.
| | - Sedigheh Sina
- Nuclear Engineering Department, School of Mechanical Engineering, Shiraz University, Shiraz, Iran; Radiation Research Center (RRC), Shiraz University, Shiraz, Iran
| | - Ahdiyeh Aghaz
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Arman Rahmim
- Departments of Radiology and Physics Vancouver, The University of British Columbia, Vancouver, Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada
| | - Mohammad Reza Ay
- Research Center for Molecular and Cellular Imaging (RCMCI), Advanced Medical Technologies and Equipment Institute (AMTEI), Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Shi Y, Meng F, Zhou J, Li L, Li J, Zhu S. GPU-Based Real-Time Software Coincidence Processing for Digital PET System. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022. [DOI: 10.1109/trpms.2021.3123875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yu Shi
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, China
| | - Fanzhen Meng
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, China
| | - Jianwei Zhou
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, China
| | - Lei Li
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, China
| | - Juntao Li
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, China
| | - Shouping Zhu
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, China
| |
Collapse
|
5
|
Hu X, Liang X, Antonecchia E, Chiaravallotti A, Chu Q, Han S, Li Z, Wan L, D'Ascenzo N, Schillaci O, Xie Q. 3-D Textural Analysis of 2-[¹⁸F]FDG PET and Ki67 Expression in Nonsmall Cell Lung Cancer. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022. [DOI: 10.1109/trpms.2021.3051376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
6
|
Bebié P, Becker R, Commichau V, Debus J, Dissertori G, Djambazov L, Eleftheriou A, Fischer J, Fischer P, Ito M, Khateri P, Lustermann W, Ritzer C, Ritzert M, Röser U, Tsoumpas C, Warnock G, Weber B, Wyss MT, Zagozdzinska-Bochenek A. SAFIR-I: Design and Performance of a High-Rate Preclinical PET Insert for MRI. SENSORS (BASEL, SWITZERLAND) 2021; 21:7037. [PMID: 34770344 PMCID: PMC8588038 DOI: 10.3390/s21217037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022]
Abstract
(1) Background: Small Animal Fast Insert for MRI detector I (SAFIR-I) is a preclinical Positron Emission Tomography (PET) insert for the Bruker BioSpec 70/30 Ultra Shield Refrigerated (USR) preclinical 7T Magnetic Resonance Imaging (MRI) system. It is designed explicitly for high-rate kinetic studies in mice and rats with injected activities reaching 500MBq, enabling truly simultaneous quantitative PET and Magnetic Resonance (MR) imaging with time frames of a few seconds in length. (2) Methods: SAFIR-I has an axial field of view of 54.2mm and an inner diameter of 114mm. It employs Lutetium Yttrium OxyorthoSilicate (LYSO) crystals and Multi Pixel Photon Counter (MPPC) arrays. The Position-Energy-Timing Application Specific Integrated Circuit, version 6, Single Ended (PETA6SE) digitizes the MPPC signals and provides time stamps and energy information. (3) Results: SAFIR-I is MR-compatible. The system's Coincidence Resolving Time (CRT) and energy resolution are between separate-uncertainty 209.0(3)ps and separate-uncertainty 12.41(02) Full Width at Half Maximum (FWHM) at low activity and separate-uncertainty 326.89(12)ps and separate-uncertainty 20.630(011) FWHM at 550MBq, respectively. The peak sensitivity is ∼1.6. The excellent performance facilitated the successful execution of first in vivo rat studies beyond 300MBq. Based on features visible in the acquired images, we estimate the spatial resolution to be ∼2mm in the center of the Field Of View (FOV). (4) Conclusion: The SAFIR-I PET insert provides excellent performance, permitting simultaneous in vivo small animal PET/MR image acquisitions with time frames of a few seconds in length at activities of up to 500MBq.
Collapse
Affiliation(s)
- Pascal Bebié
- Institute for Particle Physics and Astrophysics, ETH Zürich, 8093 Zürich, Switzerland; (R.B.); (V.C.); (J.D.); (G.D.); (L.D.); (J.F.); (M.I.); (P.K.); (W.L.); (C.R.); (U.R.); (A.Z.-B.)
| | - Robert Becker
- Institute for Particle Physics and Astrophysics, ETH Zürich, 8093 Zürich, Switzerland; (R.B.); (V.C.); (J.D.); (G.D.); (L.D.); (J.F.); (M.I.); (P.K.); (W.L.); (C.R.); (U.R.); (A.Z.-B.)
| | - Volker Commichau
- Institute for Particle Physics and Astrophysics, ETH Zürich, 8093 Zürich, Switzerland; (R.B.); (V.C.); (J.D.); (G.D.); (L.D.); (J.F.); (M.I.); (P.K.); (W.L.); (C.R.); (U.R.); (A.Z.-B.)
| | - Jan Debus
- Institute for Particle Physics and Astrophysics, ETH Zürich, 8093 Zürich, Switzerland; (R.B.); (V.C.); (J.D.); (G.D.); (L.D.); (J.F.); (M.I.); (P.K.); (W.L.); (C.R.); (U.R.); (A.Z.-B.)
| | - Günther Dissertori
- Institute for Particle Physics and Astrophysics, ETH Zürich, 8093 Zürich, Switzerland; (R.B.); (V.C.); (J.D.); (G.D.); (L.D.); (J.F.); (M.I.); (P.K.); (W.L.); (C.R.); (U.R.); (A.Z.-B.)
| | - Lubomir Djambazov
- Institute for Particle Physics and Astrophysics, ETH Zürich, 8093 Zürich, Switzerland; (R.B.); (V.C.); (J.D.); (G.D.); (L.D.); (J.F.); (M.I.); (P.K.); (W.L.); (C.R.); (U.R.); (A.Z.-B.)
| | - Afroditi Eleftheriou
- Institute of Pharmacology and Toxicology, University of Zürich, 8057 Zürich, Switzerland; (A.E.); (G.W.); (B.W.); (M.T.W.)
| | - Jannis Fischer
- Institute for Particle Physics and Astrophysics, ETH Zürich, 8093 Zürich, Switzerland; (R.B.); (V.C.); (J.D.); (G.D.); (L.D.); (J.F.); (M.I.); (P.K.); (W.L.); (C.R.); (U.R.); (A.Z.-B.)
| | - Peter Fischer
- Institute of Computer Engineering, Heidelberg University, 69120 Heidelberg, Germany; (P.F.); (M.R.)
| | - Mikiko Ito
- Institute for Particle Physics and Astrophysics, ETH Zürich, 8093 Zürich, Switzerland; (R.B.); (V.C.); (J.D.); (G.D.); (L.D.); (J.F.); (M.I.); (P.K.); (W.L.); (C.R.); (U.R.); (A.Z.-B.)
| | - Parisa Khateri
- Institute for Particle Physics and Astrophysics, ETH Zürich, 8093 Zürich, Switzerland; (R.B.); (V.C.); (J.D.); (G.D.); (L.D.); (J.F.); (M.I.); (P.K.); (W.L.); (C.R.); (U.R.); (A.Z.-B.)
| | - Werner Lustermann
- Institute for Particle Physics and Astrophysics, ETH Zürich, 8093 Zürich, Switzerland; (R.B.); (V.C.); (J.D.); (G.D.); (L.D.); (J.F.); (M.I.); (P.K.); (W.L.); (C.R.); (U.R.); (A.Z.-B.)
| | - Christian Ritzer
- Institute for Particle Physics and Astrophysics, ETH Zürich, 8093 Zürich, Switzerland; (R.B.); (V.C.); (J.D.); (G.D.); (L.D.); (J.F.); (M.I.); (P.K.); (W.L.); (C.R.); (U.R.); (A.Z.-B.)
| | - Michael Ritzert
- Institute of Computer Engineering, Heidelberg University, 69120 Heidelberg, Germany; (P.F.); (M.R.)
| | - Ulf Röser
- Institute for Particle Physics and Astrophysics, ETH Zürich, 8093 Zürich, Switzerland; (R.B.); (V.C.); (J.D.); (G.D.); (L.D.); (J.F.); (M.I.); (P.K.); (W.L.); (C.R.); (U.R.); (A.Z.-B.)
| | - Charalampos Tsoumpas
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK;
| | - Geoffrey Warnock
- Institute of Pharmacology and Toxicology, University of Zürich, 8057 Zürich, Switzerland; (A.E.); (G.W.); (B.W.); (M.T.W.)
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zürich, 8057 Zürich, Switzerland; (A.E.); (G.W.); (B.W.); (M.T.W.)
| | - Matthias T. Wyss
- Institute of Pharmacology and Toxicology, University of Zürich, 8057 Zürich, Switzerland; (A.E.); (G.W.); (B.W.); (M.T.W.)
| | - Agnieszka Zagozdzinska-Bochenek
- Institute for Particle Physics and Astrophysics, ETH Zürich, 8093 Zürich, Switzerland; (R.B.); (V.C.); (J.D.); (G.D.); (L.D.); (J.F.); (M.I.); (P.K.); (W.L.); (C.R.); (U.R.); (A.Z.-B.)
| |
Collapse
|
7
|
Gaudin É, Thibaudeau C, Arpin L, Leroux JD, Toussaint M, Beaudoin JF, Cadorette J, Paillé M, Pepin CM, Koua K, Bouchard J, Viscogliosi N, Paulin C, Fontaine R, Lecomte R. Performance evaluation of the mouse version of the LabPET II PET scanner. Phys Med Biol 2021; 66:065019. [PMID: 33412542 DOI: 10.1088/1361-6560/abd952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The LabPET II is a new positron emission tomography technology platform designed to achieve submillimetric spatial resolution imaging using fully pixelated avalanche photodiodes-based detectors and highly integrated parallel front-end processing electronics. The detector was designed as a generic building block to develop devices for preclinical imaging of small to mid-sized animals and for clinical imaging of the human brain. The aim of this work is to assess the physical characteristics and imaging performance of the mouse version of LabPET II scanner following the NEMA NU4-2008 standard and using high resolution phantoms and in vivo imaging applications. A reconstructed spatial resolution of 0.78 mm (0.5 μ l) is measured close to the center of the radial field of view. With an energy window of 350 650 keV, the system absolute sensitivity is 1.2% and its maximum noise equivalent count rate reaches 61.1 kcps at 117 MBq. Submillimetric spatial resolution is achieved in a hot spot phantom and tiny bone structures were resolved with unprecedented contrast in the mouse. These results provide convincing evidence of the capabilities of the LabPET II technology for biomolecular imaging in preclinical research.
Collapse
Affiliation(s)
- Émilie Gaudin
- Sherbrooke Molecular Imaging Center and Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Yoshida E, Akamatsu G, Tashima H, Kamada K, Yoshikawa A, Yamaya T. First imaging demonstration of a crosshair light-sharing PET detector. Phys Med Biol 2021; 66:065013. [PMID: 33607635 DOI: 10.1088/1361-6560/abe839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The crosshair light-sharing (CLS) PET detector is our original depth-of-interaction (DOI) detector, which is based on a single-ended readout scheme with quadrisected crystals comparable in size to a photo-sensor. In this work, we developed 32 CLS PET detectors, each of which consisted of a multi-pixel photon counter (MPPC) array and gadolinium fine aluminum garnet (GFAG) crystals, and we developed a benchtop prototype of a small animal size PET. Each GFAG crystal was 1.45 × 1.45 × 15 mm3. The MPPC had a surface area of 3.0 × 3.0 mm2. The benchtop prototype had two detector rings of 16 detector blocks. The ring diameter and axial field-of-view were 14.2 cm and 4.9 cm, respectively. The data acquisition system used was the PETsys silicon photomultiplier readout system. The continuous DOI information was binned into three DOI layers by applying a look-up-table to a 2D position histogram. Also, energy and timing information was corrected using DOI information. After the calibration procedure, the energy resolution and the coincidence time resolution were 14.6% and 531 ps, respectively. Imaging test results of a small rod phantom obtained by an iterative reconstruction method showed clear separation of 1.6 mm rods with the help of DOI information.
Collapse
Affiliation(s)
- Eiji Yoshida
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Gao Q, Khan S, Zhang L. Brain activity and transcriptional profiling in mice under chronic jet lag. Sci Data 2020; 7:361. [PMID: 33087702 PMCID: PMC7578042 DOI: 10.1038/s41597-020-00709-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022] Open
Abstract
Shift work is known to be associated with an increased risk of neurological and psychiatric diseases, but how it contributes to the development of these diseases remains unclear. Chronic jet lag (CJL) induced by shifting light-dark cycles repeatedly is a commonly used protocol to mimic the environmental light/dark changes encountered by shift workers. Here we subjected wildtype mice to CJL and performed positron emission tomography imaging of glucose metabolism to monitor brain activities. We also conducted RNA sequencing using prefrontal cortex and nucleus accumbens tissues from these animals, which are brain regions strongly implicated in the pathology of various neurological and psychiatric conditions. Our results reveal the alterations of brain activities and systematic reprogramming of gene expression in brain tissues under CJL, building hypothesis for how CJL increases the susceptibility to neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Qian Gao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Suliman Khan
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450014, China
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
- Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| |
Collapse
|
10
|
Liang X, Li J, Antonecchia E, Ling Y, Li Z, Xiao W, Chu Q, Wan L, Hu X, Han S, Teuho J, Wan L, Xiao P, Kao CM, Knuuti J, D'Ascenzo N, Xie Q. NEMA-2008 and In-Vivo Animal and Plant Imaging Performance of the Large FOV Preclinical Digital PET/CT System Discoverist 180. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020. [DOI: 10.1109/trpms.2020.2983221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Abstract
In the light of ever-increasing demands for PET scanner with better resolvability, higher sensitivity and wide accessibility for noninvasive screening of small structures and physiological processes in laboratory rodents, several dedicated PET scanners were developed and evaluated. Understanding conceptual design constraints pros and cons of different configurations and impact of the major components will be helpful to further establish the crucial role of these miniaturized systems in a broad spectrum of modern research. Hence, a comprehensive review of preclinical PET scanners developed till early 2020 with particular emphasis on innovations in instrumentation and geometrical designs is provided.
Collapse
Affiliation(s)
- Mahsa Amirrashedi
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva CH-1211, Switzerland; Geneva University Neurocenter, Geneva University, Geneva CH-1205, Switzerland; Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, Netherlands; Department of Nuclear Medicine, University of Southern Denmark, Odense 500, Denmark
| | - Mohammad Reza Ay
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
|
13
|
Xu H, Wang H, Xu F, Cheng R, Zhang B, Fang L, Xie Q, Xiao P. Neural-Network-Based Energy Calculation for Multivoltage Threshold Sampling. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020. [DOI: 10.1109/trpms.2019.2960129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Miyaoka RS, Lehnert A. Small animal PET: a review of what we have done and where we are going. Phys Med Biol 2020; 65. [PMID: 32357344 DOI: 10.1088/1361-6560/ab8f71] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 05/01/2020] [Indexed: 02/07/2023]
Abstract
Small animal research is an essential tool in studying both pharmaceutical biodistributions and disease progression over time. Furthermore, through the rapid development of in vivo imaging technology over the last few decades, small animal imaging (also referred to as preclinical imaging) has become a mainstay for all fields of biologic research and a center point for most preclinical cancer research. Preclinical imaging modalities include optical, MRI and MRS, microCT, small animal PET, ultrasound, and photoacoustic, each with their individual strengths. The strong points of small animal PET are its translatability to the clinic; its quantitative imaging capabilities; its whole-body imaging ability to dynamically trace functional/biochemical processes; its ability to provide useful images with only nano- to pico‑ molar concentrations of administered compounds; and its ability to study animals serially over time. This review paper gives an overview of the development and evolution of small animal PET imaging. It provides an overview of detector designs; system configurations; multimodality PET imaging systems; image reconstruction and analysis tools; and an overview of research and commercially available small animal PET systems. It concludes with a look toward developing technologies/methodologies that will further enhance the impact of small animal PET imaging on medical research in the future.
Collapse
Affiliation(s)
- Robert S Miyaoka
- Radiology, University of Washington, Seattle, Washington, UNITED STATES
| | - Adrienne Lehnert
- Radiology, University of Washington, Seattle, Washington, UNITED STATES
| |
Collapse
|
15
|
Meng F, Zhu S, Cheng J, Cao X, Qin W, Liang J. System Response Matrix Calculation Based on Distance-Driven Model and Solid Angle Model for Dual-Head PET System. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020. [DOI: 10.1109/trpms.2019.2926580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Amirrashedi M, Sarkar S, Ghafarian P, Hashemi Shahraki R, Geramifar P, Zaidi H, Ay MR. NEMA NU-4 2008 performance evaluation of Xtrim-PET: A prototype SiPM-based preclinical scanner. Med Phys 2019; 46:4816-4825. [PMID: 31448421 DOI: 10.1002/mp.13785] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Xtrim-PET is a newly designed Silicon Photomultipliers (SiPMs)-based prototype PET scanner dedicated for small laboratory animal imaging. We present the performance evaluation of the Xtrim-PET scanner following NEMA NU-4 2008 standards to help optimizing scanning protocols which can be achieved through standard and reliable system performance characterization. METHODS The performance assessment was conducted according to the National Electrical Manufacturers Association (NEMA) NU-4 2008 standards in terms of spatial resolution, sensitivity, counting rate performance, scatter fraction and image quality. The in vivo imaging capability of the scanner is also showcased through scanning a normal mouse injected with 18 F-FDG. Furthermore, the performance characteristics of the developed scanner are compared with commercially available systems and current prototypes. RESULTS The volumetric spatial resolution at 5 mm radial offset from the central axis of the scanner is 6.81 µl, whereas a peak absolute sensitivity of 2.99% was achieved using a 250-650 keV energy window and a 10 ns timing window. The peak noise-equivalent count rate (NECR) using a mouse-like phantom is 113.18 kcps at 0.34 KBq/cc with 12.5% scatter fraction, whereas the NECR peaked at 82.76 kcps for an activity concentration level of 0.048 KBq/cc with a scatter fraction of 25.8% for rat-like phantom. An excellent uniformity (3.8%) was obtained using NEMA image quality phantom. Recovery coefficients of 90%, 86%, 68%, 40% and 12% were calculated for rod diameters of 5, 4, 3, 2 and 1 mm, respectively. Spill-over ratios for air-filled and water-filled chambers were 35% and 25% without applying any correction for attenuation and Compton scattering effects. CONCLUSION Our findings revealed that beyond compactness, lightweight, easy installation and good energy resolution, the Xtrim-PET prototype presents a reasonable performance making it suitable for preclinical molecular imaging-based research.
Collapse
Affiliation(s)
- Mahsa Amirrashedi
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Sarkar
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Pardis Ghafarian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,PET/CT and Cyclotron Center, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Hashemi Shahraki
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Parham Geramifar
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, CH-1211, Switzerland.,Geneva University Neurocenter, Geneva University, CH-1205, Geneva, Switzerland.,Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, Netherlands.,Department of Nuclear Medicine, University of Southern Denmark, 500, Odense, Denmark
| | - Mohammad Reza Ay
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Teuho J, Han C, Riehakainen L, Honkaniemi A, Tirri M, Liljenbäck H, Virta J, Gu S, Liu S, Wan L, Teräs M, Roivainen A, Xie Q, Knuuti J. NEMA NU 4-2008 and in vivo imaging performance of RAYCAN trans-PET/CT X5 small animal imaging system. ACTA ACUST UNITED AC 2019; 64:115014. [DOI: 10.1088/1361-6560/ab1856] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Pei C, Baotong F, Zhiming Z, Haohui T, Shuangquan L, Xiaoli S, Peilin W, Xiaoming W, Xudong Z, Long W. NEMA NU-4 performance evaluation of a non-human primate animal PET. Phys Med Biol 2019; 64:105018. [PMID: 30947155 DOI: 10.1088/1361-6560/ab1614] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Eplus-260 primate PET is an animal PET imaging system developed by the Institute of High Energy Physics, Chinese Academy of Sciences, which is designed to image non-human primates, especially the brain of large non-human primates. The system consists of 48 block detectors arranged in two 24-sided rings with a ring diameter of 263 mm and an axial extent of 64 mm. Each block detector is composed of a 16 × 16 cerium-doped lutetium-yttrium orthosilicate crystal array with a pixel size of 1.9 × 1.9 × 10 mm3. This article presents a performance evaluation of the PET scanner according to the National Electrical Manufacturers Association NU-4 2008 standards. All measurements were made for an energy window of 360-660 keV and a coincidence timing window of 2 ns. In terms of the FWHM, the FBP reconstructed spatial resolution results in all three directions at the radial position of 5 mm were better than or approached to 2 mm, and remained below 3.0 mm within the central 5 cm diameter of the FOV. The peak absolute sensitivity of the scanner was measured 1.80%. For a monkey-sized phantom, the scatter fraction was 34.2% and the peak noise equivalent count rate (NECR) was 26.5 kcps at 64.3 kBq/cc. The overall imaging capabilities of the scanner were also assessed using in vivo imaging study of a rhesus macaque. The performance measurements demonstrate that the Eplus-260 primate PET scanner has the potential ability to obtain good quality and high-contrast images for non-human primates, especially the brain of large non-human primates and could be considered as one technologically advanced dedicated non-human primate PET scanner available today.
Collapse
Affiliation(s)
- Chai Pei
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kim KB, Choi Y, Jung J, Lee S, Choe HJ, Leem HT. Analog and digital signal processing method using multi-time-over-threshold and FPGA for PET. Med Phys 2018; 45:4104-4111. [PMID: 30043982 DOI: 10.1002/mp.13101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 07/13/2018] [Accepted: 07/13/2018] [Indexed: 11/12/2022] Open
Abstract
PURPOSE The goal of this study was to develop an analog and digital signal processing method using multi-time-over-threshold (MTOT) and field programmable gate arrays (FPGAs) to extract PET event information by using the internal clock of FPGA (~350 MHz), without ADC and TDC. METHODS The PET detector modules were composed of a 4 × 4 matrix of 3 × 3 × 20 mm3 LYSO and 4 × 4 SiPM array. Output charge signals of PET detector modules were amplified and fed into four comparators to generate trigger signals. The energy of the detected gamma ray was calculated by integrating the digitized pulse and the arrival time was determined from the time stamp of the lowest trigger signal by FPGA. The data packet containing energy, time, and position information was stored in list mode on the host computer. RESULTS The performance of analog and digital signal processing circuits using MTOT method and FPGA was evaluated by measuring energy and time resolution of the proposed method and the values were 19% and 900 ps, respectively. CONCLUSION This study demonstrated that the proposed MTOT method consisting of only FPGA without ADC and TDC could provide a simple and cost-effective analog and digital signal processing system for PET.
Collapse
Affiliation(s)
- Kyu Bom Kim
- Department of Electronic Engineering, Sogang University, 1 Shinsu-Dong, Mapo-Gu, Seoul, 121-742, South Korea
| | - Yong Choi
- Department of Electronic Engineering, Sogang University, 1 Shinsu-Dong, Mapo-Gu, Seoul, 121-742, South Korea
| | - Jiwoong Jung
- Department of Electronic Engineering, Sogang University, 1 Shinsu-Dong, Mapo-Gu, Seoul, 121-742, South Korea
| | - Sangwon Lee
- Department of Electronic Engineering, Sogang University, 1 Shinsu-Dong, Mapo-Gu, Seoul, 121-742, South Korea
| | - Hyeok-Jun Choe
- Department of Electronic Engineering, Sogang University, 1 Shinsu-Dong, Mapo-Gu, Seoul, 121-742, South Korea
| | - Hyun Tae Leem
- Department of Electronic Engineering, Sogang University, 1 Shinsu-Dong, Mapo-Gu, Seoul, 121-742, South Korea
| |
Collapse
|
20
|
Omidvari N, Cabello J, Topping G, Schneider FR, Paul S, Schwaiger M, Ziegler SI. PET performance evaluation of MADPET4: a small animal PET insert for a 7 T MRI scanner. Phys Med Biol 2017; 62:8671-8692. [PMID: 28976912 DOI: 10.1088/1361-6560/aa910d] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
MADPET4 is the first small animal PET insert with two layers of individually read out crystals in combination with silicon photomultiplier technology. It has a novel detector arrangement, in which all crystals face the center of field of view transaxially. In this work, the PET performance of MADPET4 was evaluated and compared to other preclinical PET scanners using the NEMA NU 4 measurements, followed by imaging a mouse-size hot-rod resolution phantom and two in vivo simultaneous PET/MRI scans in a 7 T MRI scanner. The insert had a peak sensitivity of 0.49%, using an energy threshold of 350 keV. A uniform transaxial resolution was obtained up to 15 mm radial offset from the axial center, using filtered back-projection with single-slice rebinning. The measured average radial and tangential resolutions (FWHM) were 1.38 mm and 1.39 mm, respectively. The 1.2 mm rods were separable in the hot-rod phantom using an iterative image reconstruction algorithm. The scatter fraction was 7.3% and peak noise equivalent count rate was 15.5 kcps at 65.1 MBq of activity. The FDG uptake in a mouse heart and brain were visible in the two in vivo simultaneous PET/MRI scans without applying image corrections. In conclusion, the insert demonstrated a good overall performance and can be used for small animal multi-modal research applications.
Collapse
Affiliation(s)
- Negar Omidvari
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Sodium selenate activated Wnt/β-catenin signaling and repressed amyloid-β formation in a triple transgenic mouse model of Alzheimer's disease. Exp Neurol 2017; 297:36-49. [PMID: 28711506 DOI: 10.1016/j.expneurol.2017.07.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 05/21/2017] [Accepted: 07/11/2017] [Indexed: 02/07/2023]
Abstract
Accumulating evidences show that selenium dietary intake is inversely associated with the mortality of Alzheimer's disease (AD). Sodium selenate has been reported to reduce neurofibrillary tangles (NFT) in the tauopathic mouse models, but its effects on the Wnt/β-catenin signaling pathway and APP processing remain unknown during AD formation. In this paper, triple transgenic AD mice (3×Tg-AD) had been treated with sodium selenate in drinking water for 10month before the detection of hippocampal pathology. Increased Aβ generation, tau hyperphosphorylation and neuronal apoptosis were found in the hippocampus of AD model mouse. Down-regulation of Wnt/β-catenin signaling is closely associated with the alteration of AD pathology. Treatment with sodium selenate significantly promoted the activity of protein phosphatases of type 2A (PP2A) and repressed the hallmarks of AD. Activation of PP2A by sodium selenate could increase active β-catenin level and inhibit GSK3β activity in the hippocampal tissue and primarily cultured neurons of AD model mouse, leading to activation of Wnt/β-catenin signaling and transactivation of target genes, including positively-regulated genes c-myc, survivin, TXNRD2 and negatively-regulated gene BACE1. Meanwhile, APP phosphorylation was also reduced on the Thr668 residue after selenate treatment, causing the decreases of APP cleavage and Aβ generation. These findings reveal that the Wnt/β-catenin signaling is a potential target for prevention of AD and sodium selenate may be developed as a new drug for AD treatment.
Collapse
|
22
|
Chu X, Zhou Y, Hu Z, Lou J, Song W, Li J, Liang X, Chen C, Wang S, Yang B, Chen L, Zhang X, Song J, Dong Y, Chen S, He L, Xie Q, Chen X, Li W. 24-hour-restraint stress induces long-term depressive-like phenotypes in mice. Sci Rep 2016; 6:32935. [PMID: 27609090 PMCID: PMC5016966 DOI: 10.1038/srep32935] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/17/2016] [Indexed: 12/17/2022] Open
Abstract
There is an increasing risk of mental disorders, such as acute stress disorder (ASD), post-traumatic stress disorder (PTSD) and depression among survivors who were trapped in rubble during earthquake. Such long-term impaction of a single acute restraint stress has not been extensively explored. In this study, we subjected mice to 24-hour-restraint to simulate the trapping episode, and investigated the acute (2 days after the restraint) and long-term (35 days after the restraint) impacts. Surprisingly, we found that the mice displayed depression-like behaviors, decreased glucose uptake in brain and reduced adult hippocampal neurogenesis 35 days after the restraint. Differential expression profiling based on microarrays suggested that genes and pathways related to depression and other mental disorders were differentially expressed in both PFC and hippocampus. Furthermore, the depression-like phenotypes induced by 24-hour-restraint could be reversed by fluoxetine, a type of antidepressant drug. These findings demonstrated that a single severe stressful event could produce long-term depressive-like phenotypes. Moreover, the 24-hour-restraint stress mice could also be used for further studies on mood disorders.
Collapse
Affiliation(s)
- Xixia Chu
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ying Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhiqiang Hu
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jingyu Lou
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wei Song
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jing Li
- Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei, China
| | - Xiao Liang
- Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei, China
| | - Chen Chen
- Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei, China
| | - Shuai Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Beimeng Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lei Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xu Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jinjing Song
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yujie Dong
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shiqing Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qingguo Xie
- Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei, China
| | - Xiaoping Chen
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing 100094, China
| | - Weidong Li
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.,Wuxi Mental Health Center, 156 Qianrong Road, Wuxi 214151, Jiangsu, China
| |
Collapse
|
23
|
Sato K, Shidahara M, Watabe H, Watanuki S, Ishikawa Y, Arakawa Y, Nai YH, Furumoto S, Tashiro M, Shoji T, Yanai K, Gonda K. Performance evaluation of the small-animal PET scanner ClairvivoPET using NEMA NU 4-2008 Standards. Phys Med Biol 2015; 61:696-711. [PMID: 26716872 DOI: 10.1088/0031-9155/61/2/696] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of this study was to evaluate the performance of ClairvivoPET using NEMA NU4 standards. The ClairvivoPET incorporates a LYSO dual depth-of-interaction detector system with 151 mm axial field of view (FOV). Spatial resolution, sensitivity, counting rate capabilities, and image quality were evaluated using NEMA NU4-2008 standards. Normal mouse imaging was also performed for 10 min after intravenous injection of (18)F(-)-NaF. Data were compared with 19 other preclinical PET scanners. Spatial resolution measured using full width at half maximum on FBP-ramp reconstructed images was 2.16 mm at radial offset 5 mm of the axial centre FOV. The maximum absolute sensitivity for a point source at the FOV centre was 8.72%. Peak noise equivalent counting rate (NECR) was 415 kcps at 14.6 MBq ml(-1). The uniformity with the image-quality phantom was 4.62%. Spillover ratios in the images of air and water filled chambers were 0.19 and 0.06, respectively. Our results were comparable with the 19 other preclinical PET scanners based on NEMA NU4 standards, with excellent sensitivity because of the large FOV. The ClairvivoPET with iterative reconstruction algorithm also provided sufficient visualization of the mouse spine. The high sensitivity and resolution of the ClairvivoPET scanner provided high quality images for preclinical studies.
Collapse
Affiliation(s)
- K Sato
- Department of Medical Physics, Tohoku University Graduate School of Medicine, Sendai, Japan. Department of Radiology, Hachinohe National Hospital, Hachinohe, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Feng H, Xia X, Li C, Song Y, Qin C, Liu Q, Zhang Y, Lan X. Imaging malignant melanoma with (18)F-5-FPN. Eur J Nucl Med Mol Imaging 2015; 43:113-122. [PMID: 26260649 DOI: 10.1007/s00259-015-3134-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/07/2015] [Indexed: 12/20/2022]
Abstract
PURPOSE Radiolabelled benzamides are attractive candidates for targeting melanoma because they bind to melanin and exhibit high tumour uptake and retention. (18)F-5-Fluoro-N-(2-[diethylamino]ethyl)picolinamide ((18)F-5-FPN), a benzamide analogue, was prepared and its pharmacokinetics and binding affinity evaluated both in vitro and in vivo to assess its clinical potential in the diagnosis and staging of melanoma. METHODS (18)F-5-FPN was prepared and purified. Its binding specificity was measured in vitro in two different melanoma cell lines, one pigmented (B16F10 cells) and one nonpigmented (A375m cells), and in vivo in mice xenografted with the same cell lines. Dynamic and static PET images using (18)F-5-FPN were obtained in the tumour-bearing mice, and the static images were also compared with those acquired with (18)F-FDG. PET imaging with (18)F-5-FPN was also performed in B16F10 tumour-bearing mice with lung metastases. RESULTS (18)F-5-FPN was successfully prepared with radiochemical yields of 5 - 10 %. Binding of (18)F-5-FPN to B16F10 cells was much higher than to A375m cells. On dynamic PET imaging B16F10 tumours were visible about 1 min after injection of the tracer, and the uptake gradually increased over time. (18)F-5-FPN was rapidly excreted via the kidneys. B16F10 tumours were clearly visible on static images acquired 1 and 2 h after injection, with high uptake values of 24.34 ± 6.32 %ID/g and 16.63 ± 5.41 %ID/g, respectively, in the biodistribution study (five mice). However, there was no visible uptake by A375m tumours. (18)F-5-FPN and (18)F-FDG PET imaging were compared in B16F10 tumour xenografts, and the tumour-to-background ratio of (18)F-5-FPN was ten times higher than that of (18)F-FDG (35.22 ± 7.02 vs. 3.29 ± 0.53, five mice). (18)F-5-FPN PET imaging also detected simulated lung metastases measuring 1 - 2 mm. CONCLUSION (18)F-5-FPN specifically targeted melanin in vitro and in vivo with high retention and affinity and favourable pharmacokinetics. (18)F-5-FPN may be an ideal molecular probe for melanoma diagnosis and staging.
Collapse
Affiliation(s)
- Hongyan Feng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, China
| | - Xiaotian Xia
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, China
| | - Chongjiao Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, China
| | - Yiling Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, China
| | - Chunxia Qin
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, China
| | - Qingyao Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, China
| | - Yongxue Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, China.
| |
Collapse
|