1
|
Roy T, Guddati MN. Full waveform inversion for arterial viscoelasticity. Phys Med Biol 2023; 68. [PMID: 36753775 PMCID: PMC10124368 DOI: 10.1088/1361-6560/acba7a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 02/08/2023] [Indexed: 02/10/2023]
Abstract
Objective. Arterial viscosity is emerging as an important biomarker, in addition to the widely used arterial elasticity. This paper presents an approach to estimate arterial viscoelasticity using shear wave elastography (SWE).Approach. While dispersion characteristics are often used to estimate elasticity from SWE data, they are not sufficiently sensitive to viscosity. Driven by this, we develop a full waveform inversion (FWI) methodology, based on directly matching predicted and measured wall velocity in space and time, to simultaneously estimate both elasticity and viscosity. Specifically, we propose to minimize an objective function capturing the correlation between measured and predicted responses of the anterior wall of the artery.Results. The objective function is shown to be well-behaving (generally convex), leading us to effectively use gradient optimization to invert for both elasticity and viscosity. The resulting methodology is verified with synthetic data polluted with noise, leading to the conclusion that the proposed FWI is effective in estimating arterial viscoelasticity.Significance. Accurate estimation of arterial viscoelasticity, not just elasticity, provides a more precise characterization of arterial mechanical properties, potentially leading to a better indicator of arterial health.
Collapse
Affiliation(s)
- Tuhin Roy
- North Carolina State University, Raleigh, NC, United States of America
| | - Murthy N Guddati
- North Carolina State University, Raleigh, NC, United States of America
| |
Collapse
|
2
|
Capriotti M, Roy T, Hugenberg NR, Harrigan H, Lee HC, Aquino W, Guddati M, Greenleaf JF, Urban MW. The influence of acoustic radiation force beam shape and location on wave spectral content for arterial dispersion ultrasound vibrometry. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac75a7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/01/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objective. Arterial dispersion ultrasound vibrometry (ADUV) relies on the use of guided waves in arterial geometries for shear wave elastography measurements. Both the generation of waves through the use of acoustic radiation force (ARF) and the techniques employed to infer the speed of the resulting wave motion affect the spectral content and accuracy of the measurement. In particular, the effects of the shape and location of the ARF beam in ADUV have not been widely studied. In this work, we investigated how such variations of the ARF beam affect the induced motion and the measurements in the dispersive modes that are excited. Approach. The study includes an experimental evaluation on an arterial phantom and an in vivo validation of the observed trends, observing the two walls of the waveguide, simultaneously, when subjected to variations in the ARF beam extension (F/N) and focus location. Main results. Relying on the theory of guided waves in cylindrical shells, the shape of the beam controls the selection and nature of the induced modes, while the location affects the measured dispersion curves (i.e. variation of phase velocity with frequency or wavenumber, multiple modes) across the waveguide walls. Significance. This investigation is important to understand the spectral content variations in ADUV measurements and to maximize inversion accuracy by tuning the ARF beam settings in clinical applications.
Collapse
|
3
|
Roy T, Urban M, Xu Y, Greenleaf J, Guddati MN. Multimodal guided wave inversion for arterial stiffness: methodology and validation in phantoms. Phys Med Biol 2021; 66. [PMID: 34061042 DOI: 10.1088/1361-6560/ac01b7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/14/2021] [Indexed: 11/12/2022]
Abstract
Arterial stiffness is an important biomarker for many cardiovascular diseases. Shear wave elastography is a recent technique aimed at estimating local arterial stiffness using guided wave inversion (GWI), i.e. matching the computed and measured wave dispersion. This paper develops and validates a new GWI approach by synthesizing various recent observations and algorithms: (a) refinements to signal processing to obtain more accurate experimental dispersion curves; (b) an efficient forward model to compute theoretical dispersion curves for immersed, incompressible cylindrical waveguides; (c) an optimization framework based on the recent observation that the measured dispersion curve is multimodal, i.e. it matches for not one but two different wave modes in two different frequency ranges. The resulting inversion approach is validated using extensive experimental data from rubber tube phantoms, not only for modulus estimation but also to simultaneously estimate modulus and wall thickness. The observations indicate that the modulus estimates are best performed with the information on wall thickness. The approach, which takes less than half a minute to run, is shown to be accurate, with the modulus estimated with less than 4% error for 70% of the experiments.
Collapse
Affiliation(s)
- Tuhin Roy
- Department of Civil Engineering, North Carolina State University, Raleigh, NC, United States of America
| | - Matthew Urban
- Department of Radiology, Mayo Clinic, Rochester, MN, United States of America.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States of America
| | - Yingzheng Xu
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, United States of America
| | - James Greenleaf
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States of America
| | - Murthy N Guddati
- Department of Civil Engineering, North Carolina State University, Raleigh, NC, United States of America
| |
Collapse
|
4
|
Braz GA, Baggio AL, Agnollitto PM, Grillo FW, Pavan TZ, Paula FJA, Nogueira-Barbosa MH, Cardoso GC, Carneiro AAO. Tissue Characterization by Low-Frequency Acoustic Waves Generated by a Single High-Frequency Focused Ultrasound Beam. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:334-344. [PMID: 33131928 DOI: 10.1016/j.ultrasmedbio.2020.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/07/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
The mechanical properties of biological tissues are fingerprints of certain pathologic processes. Ultrasound systems have been used as a non-invasive technique to both induce kilohertz-frequency mechanical vibrations and detect waves resulting from interactions with biological structures. However, existing methodologies to produce kilohertz-frequency mechanical vibrations using ultrasound require the use of variable-frequency, dual-frequency and high-power systems. Here, we propose and demonstrate the use of bursts of megahertz- frequency acoustic radiation to observe kilohertz-frequency mechanical responses in biological tissues. Femoral bones were obtained from 10 healthy mice and 10 mice in which osteoporosis had been induced. The bones' porosity, trabecular number, trabecular spacing, connectivity and connectivity density were determined using micro-computed tomography (μCT). The samples were irradiated with short, focused acoustic radiation pulses (f = 3.1 MHz, t = 15 μs), and the low-frequency acoustic response (1-100 kHz) was acquired using a dedicated hydrophone. A strong correlation between the spectral maps of the acquired signals and the μCT data was found. In a subsequent evaluation, soft tissue stiffness measurements were performed with a gel wax-based tissue-mimicking phantom containing three spherical inclusions of the same type of gel but different densities and Young's moduli, yet with approximately the same echogenicity. Conventional B-mode ultrasound was unable to image the inclusions, while the novel technique proposed here showed good image contrast.
Collapse
Affiliation(s)
- Guilherme A Braz
- Department of Physics, Faculty of Philosophy, Sciences and Letters, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Andre L Baggio
- Physics Institute, Federal University of Alagoas, Maceio, Brazil
| | - Paulo M Agnollitto
- Department of Medical Imaging, Hematology and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Felipe W Grillo
- Department of Physics, Faculty of Philosophy, Sciences and Letters, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Theo Z Pavan
- Department of Physics, Faculty of Philosophy, Sciences and Letters, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Francisco J A Paula
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Marcello H Nogueira-Barbosa
- Department of Medical Imaging, Hematology and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - George C Cardoso
- Department of Physics, Faculty of Philosophy, Sciences and Letters, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Antonio A O Carneiro
- Department of Physics, Faculty of Philosophy, Sciences and Letters, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
5
|
Bernal M, Sen I, Urban MW. Evaluation of materials used for vascular anastomoses using shear wave elastography. ACTA ACUST UNITED AC 2019; 64:075001. [DOI: 10.1088/1361-6560/ab055c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Lee WN, Chang EJH, Guo Y, Wang Y. Experimental Investigation of Guided Wave Imaging in Thin Soft Media under Various Coupling Conditions. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:2821-2837. [PMID: 30241727 DOI: 10.1016/j.ultrasmedbio.2018.07.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 06/30/2018] [Accepted: 07/28/2018] [Indexed: 06/08/2023]
Abstract
Guided wave imaging for the artery remains in its infancy in clinical practice mainly because of complex arterial microstructure, hemodynamics and boundary conditions. Despite the theoretically known potential effect of the surrounding medium on guided wave propagation in thin media in non-destructive testing, experimental evidence pertaining to thin soft materials, such as the artery, is relatively scarce in the relevant literature. Therefore, this study first evaluated the propagating guided wave generated by acoustic radiation force in polyvinyl alcohol-based hydrogel plates differing in thickness and stiffness under various material coupling conditions (water and polyvinyl alcohol bulk). A thin-walled polyvinyl alcohol hollow cylindrical phantom coupled by softer gelatin-agar phantoms and an excised porcine aorta surrounded by water and pork belly were further examined. Guided waves in the thin structure and shear waves in the bulk media were captured by ultrafast ultrasound imaging, and guided wave dispersion as a function of the frequency-thickness product was analyzed using the zero-order anti-symmetric Lamb wave model to estimate the shear modulus of each thin medium studied. Results confirmed the deviated shear modulus estimates from the ground truth for thin plates, the thin-walled hollow cylindrical phantom and the porcine aorta bounded by stiffness-unmatched bulk medium. The findings indicated the need for (i) careful interpretation of estimated shear moduli of thin structure bounded by bulk media and (ii) a generalized guided wave model that takes into account the effect of coupling medium.
Collapse
Affiliation(s)
- Wei-Ning Lee
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong; Medical Engineering Programme, The University of Hong Kong, Hong Kong.
| | - Enoch Jing-Han Chang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong; Medical Engineering Programme, The University of Hong Kong, Hong Kong
| | - Yuexin Guo
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong
| | - Yahua Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong
| |
Collapse
|
7
|
Urban M. Current and Future Clinical Applications of Elasticity Imaging Techniques. ULTRASOUND ELASTOGRAPHY FOR BIOMEDICAL APPLICATIONS AND MEDICINE 2018:471-491. [DOI: 10.1002/9781119021520.ch30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
8
|
Xu K, Laugier P, Minonzio JG. Dispersive Radon transform. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:2729. [PMID: 29857728 DOI: 10.1121/1.5036726] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dispersion results in the spreading and overlapping of the wave-packets, which often limits the capability of signal interpretation; on the other hand, such a phenomenon can also be used for structure or media evaluation. In this study, the authors propose an original dispersive Radon transform (DRT), which is formulated as integration transform along a set of dispersion curves. Multichannel dispersive signals of each individual mode can be concentrated to a well localized region in the DRT domain. The proposed DRT establishes the sparse projection of the dispersive components and provides an efficient solution for mode separation, noise filtering, and missing data reconstruction. Particularly the DRT method allows projecting the temporal signals of dispersive waves on the space of parameters of interest, which can be used to solve the inverse problem for waveguide or media property estimation. The least-square procedure and sparse scheme of the DRT are introduced. A high-resolution DRT is designed based on an iterative reweighting inversion scheme, which resembles the infinite-aperture velocity gather. The proposed method is applied by analyzing ultrasonic guided waves in plate-like structures and in a human radius specimen. The results suggest that the DRT method can significantly enhance the interpretation of dispersive signals.
Collapse
Affiliation(s)
- Kailiang Xu
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale (LIB), 15 rue de l'école de médecine, 75006, Paris, France
| | - Pascal Laugier
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale (LIB), 15 rue de l'école de médecine, 75006, Paris, France
| | - Jean-Gabriel Minonzio
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale (LIB), 15 rue de l'école de médecine, 75006, Paris, France
| |
Collapse
|
9
|
Astaneh AV, Urban MW, Aquino W, Greenleaf JF, Guddati MN. Arterial waveguide model for shear wave elastography: implementation andin vitrovalidation. Phys Med Biol 2017; 62:5473-5494. [DOI: 10.1088/1361-6560/aa6ee3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|