1
|
Alekseeva P, Makarov V, Efendiev K, Shiryaev A, Reshetov I, Loschenov V. Devices and Methods for Dosimetry of Personalized Photodynamic Therapy of Tumors: A Review on Recent Trends. Cancers (Basel) 2024; 16:2484. [PMID: 39001546 PMCID: PMC11240380 DOI: 10.3390/cancers16132484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Significance: Despite the widespread use of photodynamic therapy in clinical practice, there is a lack of personalized methods for assessing the sufficiency of photodynamic exposure on tumors, depending on tissue parameters that change during light irradiation. This can lead to different treatment results. Aim: The objective of this article was to conduct a comprehensive review of devices and methods employed for the implicit dosimetric monitoring of personalized photodynamic therapy for tumors. Methods: The review included 88 peer-reviewed research articles published between January 2010 and April 2024 that employed implicit monitoring methods, such as fluorescence imaging and diffuse reflectance spectroscopy. Additionally, it encompassed computer modeling methods that are most often and successfully used in preclinical and clinical practice to predict treatment outcomes. The Internet search engine Google Scholar and the Scopus database were used to search the literature for relevant articles. Results: The review analyzed and compared the results of 88 peer-reviewed research articles presenting various methods of implicit dosimetry during photodynamic therapy. The most prominent wavelengths for PDT are in the visible and near-infrared spectral range such as 405, 630, 660, and 690 nm. Conclusions: The problem of developing an accurate, reliable, and easily implemented dosimetry method for photodynamic therapy remains a current problem, since determining the effective light dose for a specific tumor is a decisive factor in achieving a positive treatment outcome.
Collapse
Affiliation(s)
- Polina Alekseeva
- Prokhorov General Physics Institute, Russian Academy of Sciences, 119991 Moscow, Russia; (V.M.)
| | - Vladimir Makarov
- Prokhorov General Physics Institute, Russian Academy of Sciences, 119991 Moscow, Russia; (V.M.)
- Department of Laser Micro-Nano and Biotechnologies, Institute of Engineering Physics for Biomedicine, National Research Nuclear University MEPhI, 115409 Moscow, Russia
| | - Kanamat Efendiev
- Prokhorov General Physics Institute, Russian Academy of Sciences, 119991 Moscow, Russia; (V.M.)
- Department of Laser Micro-Nano and Biotechnologies, Institute of Engineering Physics for Biomedicine, National Research Nuclear University MEPhI, 115409 Moscow, Russia
| | - Artem Shiryaev
- Department of Oncology and Radiotherapy, Levshin Institute of Cluster Oncology, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Igor Reshetov
- Department of Oncology and Radiotherapy, Levshin Institute of Cluster Oncology, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Victor Loschenov
- Prokhorov General Physics Institute, Russian Academy of Sciences, 119991 Moscow, Russia; (V.M.)
- Department of Laser Micro-Nano and Biotechnologies, Institute of Engineering Physics for Biomedicine, National Research Nuclear University MEPhI, 115409 Moscow, Russia
| |
Collapse
|
2
|
Zerakni F, Dib ASA, Attili A. Enhancing tumor's skin photothermal therapy using Gold nanoparticles : a Monte Carlo simulation. Lasers Med Sci 2024; 39:130. [PMID: 38750285 DOI: 10.1007/s10103-024-04072-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/29/2024] [Indexed: 02/01/2025]
Abstract
The aim of this study is to investigate how the introduction of Gold nanoparticles GNPs into a skin tumor affects the ability to absorb laser light during multicolor laser exposure. The Monte Carlo Geant4 technique was used to construct a cubic geometry simulating human skin, and a 5 mm tumor spheroid was implanted at an adjustable depth x. Our findings show that injecting a very low concentration of 0.01% GNPs into a tumor located 1 cm below the skin's surface causes significant laser absorption of up to 25%, particularly in the 900 nm to 1200 nm range, resulting in a temperature increase of approximately 20%. It is an effective way to raise a tumor's temperature and cause cell death while preserving healthy cells. The addition of GNPs to a tumor during polychromatic laser exposure with a wavelength ranging from 900 nm to 1200 nm increases laser absorption and thus temperature while preserving areas without GNPs.
Collapse
Affiliation(s)
- F Zerakni
- Laboratory of Analysis and Application of Radiation, University of Sciences and Technology of Oran Mohamed Boudiaf, USTO-MB, BP 1505, El MNaouar, Oran, 31000, Algeria
| | - A S A Dib
- Laboratory of Analysis and Application of Radiation, University of Sciences and Technology of Oran Mohamed Boudiaf, USTO-MB, BP 1505, El MNaouar, Oran, 31000, Algeria.
| | - A Attili
- INFN (Istituto Nazionale di Fisica Nucleare), sez. di Roma Tre, Via della Vasca Navale 84, Roma, 00146, Italy
| |
Collapse
|
3
|
Alanazi RS, Laref A. Monte Carlo simulations of photodynamic therapy in human blood model. Lasers Med Sci 2021; 37:1515-1529. [PMID: 34453656 DOI: 10.1007/s10103-021-03383-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/19/2021] [Indexed: 11/26/2022]
Abstract
This study aims to simulate a therapeutic plan for a normal human blood model under various patho-physiological conditions, such as the development of leukemia/blood diseases, by means of Monte Carlo multilayered simulation. The photosensitizing compound selectively accumulates in the target cells. A superficial treatment of a blood sample was performed at different ratios of oxygen saturation ([Formula: see text]) under the concentration ([Formula: see text] = 30 µM) effect of merocyanine 540 (MC540) in the blood irradiation. This was done under the application of visible light of wavelength ~ [Formula: see text] at an exposure time ~ 60 s. The dose of photodynamic therapy (PDT) was evaluated for the biological damage, leading to necrosis and blood damage during the treatment. In addition, the effect of PDT treatment response in the blood is related to hemoglobin oxygen saturation, resulting in an excellent relationship between the changes caused by the treatment in the blood at a peculiar oxygen saturation rate (for the highest response: [Formula: see text] 50%) and a light dose (LD) of 3.83 [Formula: see text] above the minimal toxicity of normal tissues. The photodynamic dose is related to the depth of necrosis and the time of treatment for the achievement of the LD delivery at the PDT of blood.
Collapse
Affiliation(s)
- R S Alanazi
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
- Department of Biomedical Technology, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, Saudi Arabia
| | - A Laref
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
4
|
Eadie E, O'Mahoney P, Finlayson L, Barnard IRM, Ibbotson SH, Wood K. Computer Modeling Indicates Dramatically Less DNA Damage from Far-UVC Krypton Chloride Lamps (222 nm) than from Sunlight Exposure. Photochem Photobiol 2021; 97:1150-1154. [PMID: 34161614 DOI: 10.1111/php.13477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 01/06/2023]
Abstract
This study aims to investigate, with computer modeling, the DNA damage (assessed by cyclobutane pyrimidine dimer (CPD) formation) from far-ultraviolet C (far-UVC) in comparison with sunlight exposure in both a temperate (Harwell, England) and Mediterranean (Thessaloniki, Greece) climate. The research utilizes the published results from Barnard et al. [Barnard, I.R.M (2020) Photodermatol. Photoimmunol. Photomed. 36, 476-477] to determine the relative CPD yield of unfiltered and filtered far-UVC and sunlight exposure. Under current American Conference of Governmental Industrial Hygienists (ACGIH) exposure limits, 10 min of sunlight at an ultraviolet (UV) Index of 4-typical throughout the day in a temperate climate from Spring to Autumn-produces equivalent numbers of CPD as 700 h of unfiltered far-UVC or more than 30 000 h of filtered far-UVC at the basal layer. At the top of the epidermis, these values are reduced to 30 and 300 h, respectively. In terms of DNA damage induction, as assessed by CPD formation, the risk from sunlight exposure greatly exceeds the risk from far-UVC. However, the photochemistry that will occur in the stratum corneum from absorption of the vast majority of the high-energy far-UVC photons is unknown, as are the consequences.
Collapse
Affiliation(s)
- Ewan Eadie
- NHS Tayside, Photobiology Unit, Ninewells Hospital and Medical School, Dundee, UK
| | - Paul O'Mahoney
- Photobiology Unit, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Louise Finlayson
- School of Physics and Astronomy, SUPA, University of St Andrews, St Andrews, UK
| | | | - Sally Helen Ibbotson
- Photobiology Unit, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Kenneth Wood
- School of Physics and Astronomy, SUPA, University of St Andrews, St Andrews, UK
| |
Collapse
|
5
|
Willis JA, Cheburkanov V, Kassab G, Soares JM, Blanco KC, Bagnato VS, Yakovlev VV. Photodynamic viral inactivation: Recent advances and potential applications. APPLIED PHYSICS REVIEWS 2021; 8:021315. [PMID: 34084253 PMCID: PMC8132927 DOI: 10.1063/5.0044713] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/13/2021] [Indexed: 05/04/2023]
Abstract
Antibiotic-resistant bacteria, which are growing at a frightening rate worldwide, has put the world on a long-standing alert. The COVID-19 health crisis reinforced the pressing need to address a fast-developing pandemic. To mitigate these health emergencies and prevent economic collapse, cheap, practical, and easily applicable infection control techniques are essential worldwide. Application of light in the form of photodynamic action on microorganisms and viruses has been growing and is now successfully applied in several areas. The efficacy of this approach has been demonstrated in the fight against viruses, prompting additional efforts to advance the technique, including safety use protocols. In particular, its application to suppress respiratory tract infections and to provide decontamination of fluids, such as blood plasma and others, can become an inexpensive alternative strategy in the fight against viral and bacterial infections. Diverse early treatment methods based on photodynamic action enable an accelerated response to emerging threats prior to the availability of preventative drugs. In this review, we evaluate a vast number of photodynamic demonstrations and first-principle proofs carried out on viral control, revealing its potential and encouraging its rapid development toward safe clinical practice. This review highlights the main research trends and, as a futuristic exercise, anticipates potential situations where photodynamic treatment can provide a readily available solution.
Collapse
Affiliation(s)
- Jace A. Willis
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Vsevolod Cheburkanov
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Giulia Kassab
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Jennifer M. Soares
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Kate C. Blanco
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
| | | | - Vladislav V. Yakovlev
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
6
|
Monte Carlo Simulations of Heat Deposition During Photothermal Skin Cancer Therapy Using Nanoparticles. Biomolecules 2019; 9:biom9080343. [PMID: 31387293 PMCID: PMC6723333 DOI: 10.3390/biom9080343] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/22/2019] [Accepted: 07/31/2019] [Indexed: 12/20/2022] Open
Abstract
Photothermal therapy using nanoparticles is a promising new approach for the treatment of cancer. The principle is to utilise plasmonic nanoparticle light interaction for efficient heat conversion. However, there are many hurdles to overcome before it can be accepted in clinical practice. One issue is a current poor characterization of the thermal dose that is distributed over the tumour region and the surrounding normal tissue. Here, we use Monte Carlo simulations of photon radiative transfer through tissue and subsequent heat diffusion calculations, to model the spatial thermal dose in a skin cancer model. We validate our heat rise simulations against experimental data from the literature and estimate the concentration of nanorods in the tumor that are associated with the heat rise. We use the cumulative equivalent minutes at 43 °C (CEM43) metric to analyse the percentage cell kill across the tumour and the surrounding normal tissue. Overall, we show that computer simulations of photothermal therapy are an invaluable tool to fully characterize thermal dose within tumour and normal tissue.
Collapse
|
7
|
Periyasamy V, Pramanik M. Advances in Monte Carlo Simulation for Light Propagation in Tissue. IEEE Rev Biomed Eng 2017; 10:122-135. [PMID: 28816674 DOI: 10.1109/rbme.2017.2739801] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Monte Carlo (MC) simulation for light propagation in tissue is the gold standard for studying the light propagation in biological tissue and has been used for years. Interaction of photons with a medium is simulated based on its optical properties. New simulation geometries, tissue-light interaction methods, and recording techniques recently have been designed. Applications, such as whole mouse body simulations for fluorescence imaging, eye modeling for blood vessel imaging, skin modeling for terahertz imaging, and human head modeling for sinus imaging, have emerged. Here, we review the technical advances and recent applications of MC simulation.
Collapse
|
8
|
Robinson MB, Butcher RJ, Wilson MA, Ericson MN, Coté GL. In-silico and in-vitro investigation of a photonic monitor for intestinal perfusion and oxygenation. BIOMEDICAL OPTICS EXPRESS 2017; 8:3714-3734. [PMID: 28856045 PMCID: PMC5560836 DOI: 10.1364/boe.8.003714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/02/2017] [Accepted: 07/12/2017] [Indexed: 05/14/2023]
Abstract
The quantification of visceral organ oxygenation after trauma-related systemic hypovolemia and shock is critical to enable effective resuscitation. In this work, a photoplethysmography-based (PPG) sensor was specifically designed for probing the perfusion and oxygenation condition of intestinal tissue with the ultimate goal to monitor patients post trauma to guide resuscitation. Through Monte Carlo modeling, suitable optofluidic phantoms were determined, the wavelength and separation distance for the sensor was optimized, and sensor performance for the quantification of tissue perfusion and oxygenation was tested on the in-vitro phantom. In particular, the Monte Carlo simulated both a standard block three-layer model and a more realistic model including villi. Measurements were collected on the designed three layer optofluidic phantom and the results taken with the small form factor PPG device showed a marked improvement when using shorter visible wavelengths over the more conventional longer visible wavelengths. Overall, in this work a Monte Carlo model was developed, an optofluidic phantom was built, and a small form factor PPG sensor was developed and characterized using the phantom for perfusion and oxygenation over the visible wavelength range. The results show promise that this small form factor PPG sensor could be used as a future guide to shock-related resuscitation.
Collapse
Affiliation(s)
- Mitchell B Robinson
- Texas A&M University, Optical Biosensing Lab, Biomedical Engineering, 5045 Emerging Technologies Building 3120 TAMU, College Station 77843, USA
| | - Ryan J Butcher
- Texas A&M University, Optical Biosensing Lab, Biomedical Engineering, 5045 Emerging Technologies Building 3120 TAMU, College Station 77843, USA
| | - Mark A Wilson
- University of Pittsburgh, Department of Surgery, 200 Lothrop Street, Pittsburgh, Pennsylvania 15213, USA
- VA Pittsburgh Healthcare System, University Drive C-112, Pittsburgh, Pennsylvania 15240, USA
| | | | - Gerard L Coté
- Texas A&M University, Optical Biosensing Lab, Biomedical Engineering, 5045 Emerging Technologies Building 3120 TAMU, College Station 77843, USA
- TEES Center for Remote Health Technologies and Systems, TEES Headquarters 3470 TAMU, College Station, 77843, USA
| |
Collapse
|
9
|
Campbell CL, Brown CTA, Wood K, Salvio AG, Inada NM, Bagnato VS, Moseley H. A quantitative study of in vivo protoporphyrin IX fluorescence build up during occlusive treatment phases. Photodiagnosis Photodyn Ther 2017; 18:204-207. [DOI: 10.1016/j.pdpdt.2017.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 01/02/2017] [Accepted: 02/06/2017] [Indexed: 01/06/2023]
|