1
|
Xi D, Cui M, Zhou X, Zhuge X, Ge Y, Wang Y, Zhang S. Nanopore-Based Single-Molecule Investigation of DNA Sequences with Potential to Form i-Motif Structures. ACS Sens 2021; 6:2691-2699. [PMID: 34237940 DOI: 10.1021/acssensors.1c00712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
i-Motifs are DNA secondary structures present in cytosine-rich sequences. These structures are formed in regulatory regions of the human genome and play key regulatory roles. The investigation of sequences capable of forming i-motif structures at the single-molecule level is highly important. In this study, we used α-hemolysin nanopores to systematically study a series of DNA sequences at the nanometer scale by providing structure-dependent signature current signals to gain in-sights into the i-motif DNA sequence and structural stability. Increasing the length of the cytosine tract in a range of 3-10 nucleobases resulted in a longer translocation time through the pore, indicating improved stability. Changing the loop sequence and length in the sequences did not affect the formation of the i-motif structure but changed its stability. Importantly, the application of all-atom molecular dynamics simulations revealed the structural morphology of all sequences. Based on these results, we postulated a folding rule for i-motif formation, suggesting that thousands of cytosine-rich sequences in the human genome might fold into i-motif structures. Many of these were found in locations where structure formation is likely to play regulatory roles. These findings provide insights into the application of nanopores as a powerful tool for discovering potential i-motif-forming sequences and lay a foundation for future studies exploring the biological roles of i-motifs.
Collapse
Affiliation(s)
- Dongmei Xi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Life Sciences, Linyi University, Linyi 276005, P. R. China
| | - Mengjie Cui
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Xin Zhou
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Xiao Zhuge
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Yaxian Ge
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Ying Wang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Life Sciences, Linyi University, Linyi 276005, P. R. China
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| |
Collapse
|
2
|
Nanopore Enzymology to Study Protein Kinases and Their Inhibition by Small Molecules. Methods Mol Biol 2020. [PMID: 32918732 DOI: 10.1007/978-1-0716-0806-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Nanopore enzymology is a powerful single-molecule technique for the label-free study of enzymes using engineered protein nanopore sensors. The technique has been applied to protein kinases, where it has enabled the full repertoire of kinase function to be observed, including: kinetics of substrate binding and dissociation, product binding and dissociation, nucleotide binding, and reversible phosphorylation. Further, minor modifications enable the screening of type I kinase inhibitors and the determination of inhibition constants in a facile and label-free manner. Here, we describe the design and production of suitably engineered protein nanopores and their use for the determination of key mechanistic parameters of kinases. We also provide procedures for the determination of inhibition constants of protein kinase inhibitors.
Collapse
|
3
|
Pham B, Eron SJ, Hill ME, Li X, Fahie MA, Hardy JA, Chen M. A Nanopore Approach for Analysis of Caspase-7 Activity in Cell Lysates. Biophys J 2019; 117:844-855. [PMID: 31427065 PMCID: PMC6731459 DOI: 10.1016/j.bpj.2019.07.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 07/02/2019] [Accepted: 07/24/2019] [Indexed: 12/21/2022] Open
Abstract
Caspases are an important protease family that coordinate inflammation and programmed cell death. Two closely related caspases, caspase-3 and caspase-7, exhibit largely overlapping substrate specificities. Assessing their proteolytic activities individually has therefore proven extremely challenging. Here, we constructed an outer membrane protein G (OmpG) nanopore with a caspase substrate sequence DEVDG grafted into one of the OmpG loops. Cleavage of the substrate sequence in the nanopore by caspase-7 generated a characteristic signal in the current recording of the OmpG nanopore that allowed the determination of the activity of caspase-7 in Escherichia coli cell lysates. Our approach may provide a framework for the activity-based profiling of proteases that share highly similar substrate specificity spectrums.
Collapse
Affiliation(s)
- Bach Pham
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Scott J Eron
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Maureen E Hill
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Xin Li
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Monifa A Fahie
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Jeanne A Hardy
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts; Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Min Chen
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts; Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts.
| |
Collapse
|
4
|
Altintoprak K, Farajollahi F, Seidenstücker A, Ullrich T, Wenz NL, Krolla P, Plettl A, Ziemann P, Marti O, Walther P, Exner D, Schwaiger R, Gliemann H, Wege C. Improved manufacture of hybrid membranes with bionanopore adapters capable of self-luting. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2019. [DOI: 10.1680/jbibn.18.00008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Klara Altintoprak
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Farid Farajollahi
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | | | - Timo Ullrich
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Nana L Wenz
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Peter Krolla
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Alfred Plettl
- Institute of Solid State Physics, University of Ulm, Ulm, Germany
| | - Paul Ziemann
- Institute of Solid State Physics, University of Ulm, Ulm, Germany
| | - Othmar Marti
- Institute of Experimental Physics, University of Ulm, Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, University of Ulm, Ulm, Germany
| | - Daniela Exner
- Institute for Applied Materials – Materials and Biomechanics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany; Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Ruth Schwaiger
- Institute for Applied Materials – Materials and Biomechanics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany; Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Hartmut Gliemann
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Christina Wege
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
5
|
Harrington L, Alexander LT, Knapp S, Bayley H. Single-Molecule Protein Phosphorylation and Dephosphorylation by Nanopore Enzymology. ACS NANO 2019; 13:633-641. [PMID: 30588793 DOI: 10.1021/acsnano.8b07697] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Reversible protein phosphorylation plays a crucial and ubiquitous role in the control of almost all cellular processes. The interplay of protein kinases and phosphatases acting in opposition ensures tight dynamic control of protein phosphorylation states within the cell. Previously, engineered α-hemolysin pores bearing kinase substrate peptides have been developed as single-molecule stochastic sensors for protein kinases. Here, we have used these pores to observe, label-free, the phosphorylation and dephosphorylation of a single substrate molecule. Further, we investigated the effect of Mg2+ and Mn2+ upon substrate and product binding and found that Mn2+ relaxes active-site specificity toward nucleotides and enhances product binding. In doing so, we demonstrate the power and versatility of nanopore enzymology to scrutinize a critical post-translational modification.
Collapse
Affiliation(s)
- Leon Harrington
- Department of Chemistry , University of Oxford , 12 Mansfield Road , Oxford OX1 3TA , United Kingdom
| | - Leila T Alexander
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium and Target Discovery Institute , University of Oxford , Oxford OX3 7DQ , United Kingdom
| | - Stefan Knapp
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium and Target Discovery Institute , University of Oxford , Oxford OX3 7DQ , United Kingdom
| | - Hagan Bayley
- Department of Chemistry , University of Oxford , 12 Mansfield Road , Oxford OX1 3TA , United Kingdom
| |
Collapse
|
6
|
Robertson JWF, Reiner JE. The Utility of Nanopore Technology for Protein and Peptide Sensing. Proteomics 2018; 18:e1800026. [PMID: 29952121 PMCID: PMC10935609 DOI: 10.1002/pmic.201800026] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/13/2018] [Indexed: 04/29/2024]
Abstract
Resistive pulse nanopore sensing enables label-free single-molecule analysis of a wide range of analytes. An increasing number of studies have demonstrated the feasibility and usefulness of nanopore sensing for protein and peptide characterization. Nanopores offer the potential to study a variety of protein-related phenomena that includes unfolding kinetics, differences in unfolding pathways, protein structure stability, and free-energy profiles of DNA-protein and RNA-protein binding. In addition to providing a tool for fundamental protein characterization, nanopores have also been used as highly selective protein detectors in various solution mixtures and conditions. This review highlights these and other developments in the area of nanopore-based protein and peptide detection.
Collapse
Affiliation(s)
- Joseph W F Robertson
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Joseph E Reiner
- Department of Physics, Virginia Commonwealth University, Richmond, VA, 23284, USA
| |
Collapse
|
7
|
ZHOU S, TANG P, WANG YJ, WANG L, WANG DQ. Applications of Nanopore Sensing in Detection of Toxic Molecules. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(18)61089-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
8
|
Identification of single amino acid differences in uniformly charged homopolymeric peptides with aerolysin nanopore. Nat Commun 2018; 9:966. [PMID: 29511176 PMCID: PMC5840376 DOI: 10.1038/s41467-018-03418-2] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 02/09/2018] [Indexed: 12/31/2022] Open
Abstract
There are still unmet needs in finding new technologies for biomedical diagnostic and industrial applications. A technology allowing the analysis of size and sequence of short peptide molecules of only few molecular copies is still challenging. The fast, low-cost and label-free single-molecule nanopore technology could be an alternative for addressing these critical issues. Here, we demonstrate that the wild-type aerolysin nanopore enables the size-discrimination of several short uniformly charged homopeptides, mixed in solution, with a single amino acid resolution. Our system is very sensitive, allowing detecting and characterizing a few dozens of peptide impurities in a high purity commercial peptide sample, while conventional analysis techniques fail to do so.
Collapse
|
9
|
Chavis AE, Brady KT, Hatmaker GA, Angevine CE, Kothalawala N, Dass A, Robertson JWF, Reiner JE. Single Molecule Nanopore Spectrometry for Peptide Detection. ACS Sens 2017; 2:1319-1328. [PMID: 28812356 PMCID: PMC11274829 DOI: 10.1021/acssensors.7b00362] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Sensing and characterization of water-soluble peptides is of critical importance in a wide variety of bioapplications. Single molecule nanopore spectrometry (SMNS) is based on the idea that one can use biological protein nanopores to resolve different sized molecules down to limits set by the blockade duration and noise. Previous work has shown that this enables discrimination between polyethylene glycol (PEG) molecules that differ by a single monomer unit. This paper describes efforts to extend SMNS to a variety of biologically relevant, water-soluble peptides. We describe the use of Au25(SG)18 clusters, previously shown to improve PEG detection, to increase the on- and off-rate of peptides to the pore. In addition, we study the role that fluctuations play in the single molecule nanopore spectrometry (SMNS) methodology and show that modifying solution conditions to increase peptide flexibility (via pH or chaotropic salt) leads to a nearly 2-fold reduction in the current blockade fluctuations and a corresponding narrowing of the peaks in the blockade distributions. Finally, a model is presented that connects the current blockade depths to the mass of the peptides, which shows that our enhanced SMNS detection improves the mass resolution of the nanopore sensor more than 2-fold for the largest cationic peptides studied.
Collapse
Affiliation(s)
- Amy E. Chavis
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Kyle T. Brady
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Grace A. Hatmaker
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Christopher E. Angevine
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Nuwan Kothalawala
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Amala Dass
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Joseph W. F. Robertson
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8120, United States
| | - Joseph E. Reiner
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
10
|
Zhou S, Wang L, Chen X, Guan X. Label-free nanopore single-molecule measurement of trypsin activity. ACS Sens 2016; 1:607-613. [PMID: 29130069 DOI: 10.1021/acssensors.6b00043] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Trypsin is the most important digestive enzyme produced in the pancreas, and is a useful biomarker for pancreatitis. In this work, a rapid and sensitive method for the quantitative determination of trypsin activity is developed by using a biological alpha-hemolysin protein nanopore. Due to its much larger molecular diameter than the narrow pore constriction, trypsin itself cannot transport through the alpha-hemolysin channel. Hence, an indirect trypsin detection method is developed by monitoring its proteolytic cleavage of a lysine-containing peptide substrate. Based on the current modulations produced by the translocation of the substrate degradation products in the nanopore, the activity levels of trypsin could be determined. The method is rapid and highly sensitive, with picomolar concentrations of trypsin detected in minutes. In addition, the effects of cation and temperature on the sensor sensitivity, trypsin inhibition, and serum sample analysis are also investigated.
Collapse
Affiliation(s)
- Shuo Zhou
- Department of Chemistry, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, Illinois 60616, United States
| | - Liang Wang
- Department of Chemistry, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, Illinois 60616, United States
| | - Xiaohan Chen
- Department of Chemistry, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, Illinois 60616, United States
| | - Xiyun Guan
- Department of Chemistry, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, Illinois 60616, United States
| |
Collapse
|
11
|
Kasianowicz JJ, Balijepalli AK, Ettedgui J, Forstater JH, Wang H, Zhang H, Robertson JWF. Analytical applications for pore-forming proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:593-606. [PMID: 26431785 DOI: 10.1016/j.bbamem.2015.09.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/28/2015] [Accepted: 09/25/2015] [Indexed: 01/13/2023]
Abstract
Proteinaceous nanometer-scale pores are ubiquitous in biology. The canonical ionic channels (e.g., those that transport Na(+), K(+), Ca(2+), and Cl(-) across cell membranes) play key roles in many cellular processes, including nerve and muscle activity. Another class of channels includes bacterial pore-forming toxins, which disrupt cell function, and can lead to cell death. We describe here the recent development of these toxins for a wide range of biological sensing applications. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.
Collapse
Affiliation(s)
- John J Kasianowicz
- NIST, Physical Measurement Laboratory, Gaithersburg, MD 20899, United States.
| | | | - Jessica Ettedgui
- NIST, Physical Measurement Laboratory, Gaithersburg, MD 20899, United States
| | - Jacob H Forstater
- NIST, Physical Measurement Laboratory, Gaithersburg, MD 20899, United States
| | - Haiyan Wang
- NIST, Physical Measurement Laboratory, Gaithersburg, MD 20899, United States
| | - Huisheng Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Dept. of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | | |
Collapse
|
12
|
Movileanu L. Watching single proteins using engineered nanopores. Protein Pept Lett 2014; 21:235-46. [PMID: 24370252 PMCID: PMC3924890 DOI: 10.2174/09298665113209990078] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 11/03/2012] [Accepted: 11/10/2012] [Indexed: 12/22/2022]
Abstract
Recent studies in the area of single-molecule detection of proteins with nanopores show a great promise in fundamental science, bionanotechnology and proteomics. In this mini-review, I discuss a comprehensive array of examinations of protein detection and characterization using protein and solid-state nanopores. These investigations demonstrate the power of the single-molecule nanopore measurements to reveal a broad range of functional, structural, biochemical and biophysical features of proteins, such as their backbone flexibility, enzymatic activity, binding affinity as well as their concentration, size and folding state. Engineered nanopores in organic materials and in inorganic membranes coupled with surface modification and protein engineering might provide a new generation of sensing devices for molecular biomedical diagnostics.
Collapse
Affiliation(s)
- Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA.
| |
Collapse
|
13
|
Krasniqi B, Lee JS. RNase A does not translocate the alpha-hemolysin pore. PLoS One 2014; 9:e88004. [PMID: 24505349 PMCID: PMC3913706 DOI: 10.1371/journal.pone.0088004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 01/02/2014] [Indexed: 11/24/2022] Open
Abstract
The application of nanopore sensing utilizing the α-hemolysin pore to probe proteins at single-molecule resolution has expanded rapidly. In some studies protein translocation through the α-hemolysin has been reported. However, there is no direct evidence, as yet, that proteins can translocate the α-hemolysin pore. The biggest challenge to obtaining direct evidence is the lack of a highly sensitive assay to detect very low numbers of protein molecules. Furthermore, if an activity based assay is applied then the proteins translocating by unfolding should refold back to an active confirmation for the assay technique to work. To overcome these challenges we selected a model enzyme, ribonuclease A, that readily refolds to an active conformation even after unfolding it with denaturants. In addition we have developed a highly sensitive reverse transcription polymerase chain reaction based activity assay for ribonuclease A. Initially, ribonuclease A, a protein with a positive net charge and dimensions larger than the smallest diameter of the pore, was subjected to nanopore analysis under different experimental conditions. Surprisingly, although the protein was added to the cis chamber (grounded) and a positive potential was applied, the interaction of ribonuclease A with α-hemolysin pore induced small and large blockade events in the presence and the absence of a reducing and/or denaturing agent. Upon measuring the zeta potential, it was found that the protein undergoes a charge reversal under the experimental conditions used for nanopore sensing. From the investigation of the effect of voltage on the interaction of ribonuclease A with the α-hemolysin pore, it was impossible to conclude if the events observed were translocations. However, upon testing for ribonuclease A activity on the trans chamber it was found that ribonuclease A does not translocate the α-hemolysin pore.
Collapse
Affiliation(s)
- Besnik Krasniqi
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jeremy S. Lee
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada
- * E-mail:
| |
Collapse
|
14
|
Ali M, Nasir S, Ahmed I, Fruk L, Ensinger W. Tuning nanopore surface polarity and rectification properties through enzymatic hydrolysis inside nanoconfined geometries. Chem Commun (Camb) 2013; 49:8770-2. [DOI: 10.1039/c3cc45318a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|