1
|
Zhang H, Jiao J, Jin H. Degradable poly-L-lysine-modified PLGA cell microcarriers with excellent antibacterial and osteogenic activity. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2391-2404. [PMID: 31184220 DOI: 10.1080/21691401.2019.1623230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The surface modification of polymeric materials has become critical for improving the bone repair capability of materials. In this study, we used a poly-L-lysine (PLL) coating method to prepare functional poly (lactic acid-glycolic acid) (PLGA) cell microcarriers, and bone morphogenetic protein 7 (BMP-7) and ponericin G1 were immobilized on the surface of microcarriers. The scanning electron microscopy (SEM), water contact angle measurement, and energy-dispersive X-ray spectroscopy (EDX) was used to analyse the surface morphology of PLL-modified PLGA microcarriers (PLL@PLGA) and their ability to promote mineralization. At the same time, the growth factor binding efficiency and antimicrobial activity of the microcarriers were studied. The effects of microcarriers on cell behaviors were evaluated by cultivating MC3T3-E1 cells on different microcarriers. The results showed that the hydrophilicity, protein adsorption, and mineralization induction capability of the microcarriers were significantly improved by PLL surface modification. The biological experiments revealed that BMP-7 and ponericin G1 immobilized-PLL modified microcarriers can effectively inhibit the proliferation of pathogenic microorganisms while enhancing the ability of the microcarriers to promote cell proliferation and osteogenesis differentiation. Therefore, we believe that PLL-modified PLGA cell microcarriers loaded with BMP-7 and ponericin G1 (PLL@PLGA/BMP-7/ponericin G1) have great potential in the field of bone repair.
Collapse
Affiliation(s)
- Hanyang Zhang
- a Department of Orthopedic Surgery, The Second Hospital of Jilin University , Changchun , PR China
| | - Jianhang Jiao
- a Department of Orthopedic Surgery, The Second Hospital of Jilin University , Changchun , PR China
| | - Hui Jin
- a Department of Orthopedic Surgery, The Second Hospital of Jilin University , Changchun , PR China
| |
Collapse
|
2
|
Pei B, Wang W, Dunne N, Li X. Applications of Carbon Nanotubes in Bone Tissue Regeneration and Engineering: Superiority, Concerns, Current Advancements, and Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:1501. [PMID: 31652533 PMCID: PMC6835716 DOI: 10.3390/nano9101501] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/10/2019] [Accepted: 10/17/2019] [Indexed: 12/19/2022]
Abstract
With advances in bone tissue regeneration and engineering technology, various biomaterials as artificial bone substitutes have been widely developed and innovated for the treatment of bone defects or diseases. However, there are no available natural and synthetic biomaterials replicating the natural bone structure and properties under physiological conditions. The characteristic properties of carbon nanotubes (CNTs) make them an ideal candidate for developing innovative biomimetic materials in the bone biomedical field. Indeed, CNT-based materials and their composites possess the promising potential to revolutionize the design and integration of bone scaffolds or implants, as well as drug therapeutic systems. This review summarizes the unique physicochemical and biomedical properties of CNTs as structural biomaterials and reinforcing agents for bone repair as well as provides coverage of recent concerns and advancements in CNT-based materials and composites for bone tissue regeneration and engineering. Moreover, this review discusses the research progress in the design and development of novel CNT-based delivery systems in the field of bone tissue engineering.
Collapse
Affiliation(s)
- Baoqing Pei
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China.
| | - Wei Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China.
| | - Nicholas Dunne
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, Dublin 9, Ireland.
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
3
|
Hasan MT, Campbell E, Sizova O, Lyle V, Akkaraju G, Kirkpatrick DL, Naumov AV. Multi-Drug/Gene NASH Therapy Delivery and Selective Hyperspectral NIR Imaging Using Chirality-Sorted Single-Walled Carbon Nanotubes. Cancers (Basel) 2019; 11:E1175. [PMID: 31416250 PMCID: PMC6721580 DOI: 10.3390/cancers11081175] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/10/2019] [Accepted: 08/11/2019] [Indexed: 01/21/2023] Open
Abstract
Single-walled carbon nanotubes (SWCNTs) can serve as drug delivery/biological imaging agents, as they exhibit intrinsic fluorescence in the near-infrared, allowing for deeper tissue imaging while providing therapeutic transport. In this work, CoMoCAT (Cobalt Molybdenum Catalyst) SWCNTs, chirality-sorted by aqueous two-phase extraction, are utilized for the first time to deliver a drug/gene combination therapy and image each therapeutic component separately via chirality-specific SWCNT fluorescence. Each of (7,5) and (7,6) sorted SWCNTs were non-covalently loaded with their specific payload: the PI3 kinase inhibitor targeting liver fibrosis or CCR5 siRNA targeting inflammatory pathways with the goal of addressing these processes in nonalcoholic steatohepatitis (NASH), ultimately to prevent its progression to hepatocellular carcinoma. PX-866-(7,5) SWCNTs and siRNA-(7,6) SWCNTs were each imaged via characteristic SWCNT emission at 1024/1120 nm in HepG2 and HeLa cells by hyperspectral fluorescence microscopy. Wavelength-resolved imaging verified the intracellular transport of each SWCNT chirality and drug release. The therapeutic efficacy of each formulation was further demonstrated by the dose-dependent cytotoxicity of SWCNT-bound PX-866 and >90% knockdown of CCR5 expression with SWCNT/siRNA transfection. This study verifies the feasibility of utilizing chirality-sorted SWCNTs for the delivery and component-specific imaging of combination therapies, also suggesting a novel nanotherapeutic approach for addressing the progressions of NASH to hepatocellular carcinoma.
Collapse
Affiliation(s)
- Md Tanvir Hasan
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129, USA
| | - Elizabeth Campbell
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129, USA
| | - Olga Sizova
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Veronica Lyle
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129, USA
| | - Giridhar Akkaraju
- Department of Biology, Texas Christian University, 2955 South University Drive, Fort Worth, TX 76129, USA
| | | | - Anton V Naumov
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129, USA.
| |
Collapse
|
4
|
Yeasmin S, Datta HK, Chaudhuri S, Malik D, Bandyopadhyay A. In-vitro anti-cancer activity of shape controlled silver nanoparticles (AgNPs) in various organ specific cell lines. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.06.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Hirschfeld J, Akinoglu EM, Wirtz DC, Hoerauf A, Bekeredjian-Ding I, Jepsen S, Haddouti EM, Limmer A, Giersig M. Long-term release of antibiotics by carbon nanotube-coated titanium alloy surfaces diminish biofilm formation by Staphylococcus epidermidis. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1587-1593. [PMID: 28115247 DOI: 10.1016/j.nano.2017.01.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 11/02/2016] [Accepted: 01/06/2017] [Indexed: 01/12/2023]
Abstract
Bacterial biofilms cause a considerable amount of prosthetic joint infections every year, resulting in morbidity and expensive revision surgery. To address this problem, surface modifications of implant materials such as carbon nanotube (CNT) coatings have been investigated in the past years. CNTs are biologically compatible and can be utilized as drug delivery systems. In this study, multi-walled carbon nanotube (MWCNT) coated TiAl6V4 titanium alloy discs were fabricated and impregnated with Rifampicin, and tested for their ability to prevent biofilm formation over a period of ten days. Agar plate-based assays were employed to assess the antimicrobial activity of these surfaces against Staphylococcus epidermidis. It was shown that vertically aligned MWCNTs were more stable against attrition on rough surfaces than on polished TiAl6V4 surfaces. Discs with coated surfaces caused a significant inhibition of biofilm formation for up to five days. Therefore, MWCNT-modified surfaces may be effective against pathogenic biofilm formation on endoprostheses.
Collapse
Affiliation(s)
- Josefine Hirschfeld
- Department of Periodontology, Center of Dental and Oral Medicine, University Hospital, Bonn, Germany.
| | - Eser M Akinoglu
- Department of Physics, Freie Universität Berlin, Berlin, Germany; Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
| | - Dieter C Wirtz
- Department of Orthopedics, University Hospital Bonn, Bonn, Germany.
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany.
| | | | - Søren Jepsen
- Department of Periodontology, Center of Dental and Oral Medicine, University Hospital, Bonn, Germany.
| | | | - Andreas Limmer
- Department of Orthopedics, University Hospital Bonn, Bonn, Germany.
| | - Michael Giersig
- Department of Physics, Freie Universität Berlin, Berlin, Germany; Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute of Nanoarchitectures for Energy Conversion, Berlin, Germany.
| |
Collapse
|
6
|
Liu Q, Duan B, Xu X, Zhang L. Progress in rigid polysaccharide-based nanocomposites with therapeutic functions. J Mater Chem B 2017; 5:5690-5713. [DOI: 10.1039/c7tb01065f] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nanocomposites engineered by incorporating versatile nanoparticles into different bioactive β-glucan matrices display effective therapeutic functions.
Collapse
Affiliation(s)
- Qingye Liu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
- College of Chemical and Environmental Engineering
| | - Bingchao Duan
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Lina Zhang
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| |
Collapse
|
7
|
Xing J, Liu Z, Huang Y, Qin T, Bo R, Zheng S, Luo L, Huang Y, Niu Y, Wang D. Lentinan-Modified Carbon Nanotubes as an Antigen Delivery System Modulate Immune Response in Vitro and in Vivo. ACS APPLIED MATERIALS & INTERFACES 2016; 8:19276-19283. [PMID: 27411887 DOI: 10.1021/acsami.6b04591] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Adjuvants enhance immunogenicity and sustain long-term immune responses. As vital components of vaccines, efficient adjuvants are highly desirable. Recent evidence regarding the potential of carbon nanotubes (CNTs) to act as a support material has suggested that certain properties, such as their unique hollow structure, high specific surface area, and chemical stability, make CNTs desirable for a variety of antigen-delivery applications. Lentinan, a β-1,3-glucohexaose with β-1,6-branches that is extracted from the mushroom Lentinus edodes, is an effective immunostimulatory drug that has been clinically used in Japan and China, and recent studies have proved that specific beta-glucans can bind to various immune receptors. In this research, we covalently attached lentinan to multiwalled carbon nanotubes (MWCNTs) and tested their ability to enhance immune responses as a vaccine delivery system. In vitro study results showed that the nanotube constructs could rapidly enter dendritic cells and carry large amounts of antigen. Moreover, maturation markers were significantly upregulated versus the control. Thus, lentinan-modified multiwalled carbon nanotubes (L-MWCNTs) were regarded as an effective intracellular antigen depot and a catalyzer that could induce phenotypic and functional maturation of dendritic cells. Furthermore, compared with L-MWCNTs (35 μg/mL), a corresponding concentration of carboxylic carbon nanotubes (C-MWCNTs, 31.8 μg/mL) and an equivalent concentration of lentinan (3.2 μg/mL) did not remarkably influence the immune reaction in vitro or in vivo. Hence, we can hypothesize that the capability of L-MWCNTs was a consequence of the increased intracellular quantity of lentinan grafted onto the nanotubes. Overall, our studies demonstrated that L-MWCNTs significantly increased antigen accumulation in the cells and potentiated cellular and humoral immunity. In conclusion, L-MWCNTs constitute a potential vaccine delivery system to enhance immunogenicity for therapeutic purposes.
Collapse
Affiliation(s)
- Jie Xing
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, PR China
| | - Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, PR China
| | - Yifan Huang
- College of Animal Science and Veterinary Medicine, Fujian Agriculture and Forestry University , Fuzhou 350002, PR China
| | - Tao Qin
- College of Animal Science and Veterinary Medicine, Fujian Agriculture and Forestry University , Fuzhou 350002, PR China
| | - Ruonan Bo
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, PR China
| | - Sisi Zheng
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, PR China
| | - Li Luo
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, PR China
| | - Yee Huang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, PR China
| | - Yale Niu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing 210095, PR China
- College of Animal Science and Veterinary Medicine, Fujian Agriculture and Forestry University , Fuzhou 350002, PR China
| |
Collapse
|
8
|
Jabbari E. Nanoparticles for Stem‐Cell Engineering. STEM‐CELL NANOENGINEERING 2015:143-169. [DOI: 10.1002/9781118540640.ch9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
de Faria PCB, dos Santos LI, Coelho JP, Ribeiro HB, Pimenta MA, Ladeira LO, Gomes DA, Furtado CA, Gazzinelli RT. Oxidized multiwalled carbon nanotubes as antigen delivery system to promote superior CD8(+) T cell response and protection against cancer. NANO LETTERS 2014; 14:5458-70. [PMID: 25115645 DOI: 10.1021/nl502911a] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Properties like high interfacial area with cellular membranes, unique ability to incorporate multiple functionalization, as well as compatibility and transport in biological fluids make carbon nanotubes (CNTs) useful for a variety of therapeutic and drug-delivery applications. Here we used a totally synthetic hybrid supramolecule as an anticancer vaccine formulation. This complex structure comprises CNTs as delivery system for the Cancer Testis Antigen named NY-ESO-1, allied to a synthetic Toll-Like Receptor agonist. The CNT constructs were rapidly internalized into dendritic cells, both in vitro and in vivo, and served as an intracellular antigen depot. This property favored the induction of strong CD4(+) T as well as CD8(+) T cell-mediated immune responses against the NY-ESO-1. Importantly, the vaccination significantly delayed the tumor development and prolonged the mice survival, highlighting the potential application of CNTs as a vaccine delivery system to provide superior immunogenicity and strong protection against cancer.
Collapse
|
10
|
Mu Q, Jiang G, Chen L, Zhou H, Fourches D, Tropsha A, Yan B. Chemical basis of interactions between engineered nanoparticles and biological systems. Chem Rev 2014; 114:7740-81. [PMID: 24927254 PMCID: PMC4578874 DOI: 10.1021/cr400295a] [Citation(s) in RCA: 370] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Qingxin Mu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China, 250100
- Present address: Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, Kansas, 66047
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Lingxin Chen
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Hongyu Zhou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China, 250100
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, 30322, U.S.A
| | | | - Alexander Tropsha
- Laboratory for Molecular Modeling, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Bing Yan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China, 250100
| |
Collapse
|
11
|
Ferrand A, Eap S, Richert L, Lemoine S, Kalaskar D, Demoustier-Champagne S, Atmani H, Mély Y, Fioretti F, Schlatter G, Kuhn L, Ladam G, Benkirane-Jessel N. Osteogenetic properties of electrospun nanofibrous PCL scaffolds equipped with chitosan-based nanoreservoirs of growth factors. Macromol Biosci 2013; 14:45-55. [PMID: 23956214 DOI: 10.1002/mabi.201300283] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/11/2013] [Indexed: 01/27/2023]
Abstract
Bioactive implants intended for rapid, robust, and durable bone tissue regeneration are presented. The implants are based on nanofibrous 3D-scaffolds of bioresorbable poly-ϵ-caprolactone mimicking the fibrillar architecture of bone matrix. Layer-by-layer nanoimmobilization of the growth factor BMP-2 in association with chitosan (CHI) or poly-L-lysine over the nanofibers is described. The osteogenetic potential of the scaffolds coated with layers of CHI and BMP-2 is demonstrated in vitro, and in vivo in mouse calvaria, through enhanced osteopontin gene expression and calcium phosphate biomineralization. The therapeutic strategy described here contributes to the field of regenerative medicine, as it proposes a route toward efficient repair of bone defects at reduced risk and cost level.
Collapse
Affiliation(s)
- Alice Ferrand
- INSERM UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine, 11 rue Humann, 67085, Strasbourg Cedex, France; Institut de Chimie et Procédés pour l'Énergie, l'Environnement et la Santé, ICPEES-UMR 7515, Université de Strasbourg, CNRS, Institut Carnot MICA, École Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg, cedex 2, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Jun Han Z, Rider AE, Ishaq M, Kumar S, Kondyurin A, Bilek MMM, Levchenko I, Ostrikov K(K. Carbon nanostructures for hard tissue engineering. RSC Adv 2013. [DOI: 10.1039/c2ra23306a] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
13
|
King WJ, Krebsbach PH. Growth factor delivery: how surface interactions modulate release in vitro and in vivo. Adv Drug Deliv Rev 2012; 64:1239-56. [PMID: 22433783 PMCID: PMC3586795 DOI: 10.1016/j.addr.2012.03.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 02/24/2012] [Accepted: 03/05/2012] [Indexed: 02/06/2023]
Abstract
Biomaterial scaffolds have been extensively used to deliver growth factors to induce new bone formation. The pharmacokinetics of growth factor delivery has been a critical regulator of their clinical success. This review will focus on the surface interactions that control the non-covalent incorporation of growth factors into scaffolds and the mechanisms that control growth factor release from clinically relevant biomaterials. We will focus on the delivery of recombinant human bone morphogenetic protein-2 from materials currently used in the clinical practice, but also suggest how general mechanisms that control growth factor incorporation and release delineated with this growth factor could extend to other systems. A better understanding of the changing mechanisms that control growth factor release during the different stages of preclinical development could instruct the development of future scaffolds for currently untreatable injuries and diseases.
Collapse
Affiliation(s)
- William J. King
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 N. University Ave., Ann Arbor, MI 48109, USA
| | - Paul H. Krebsbach
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 N. University Ave., Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, 2200 Bonisteel, Blvd., Ann Arbor, MI 48109, USA
| |
Collapse
|
14
|
Carbon Nanotubes: Solution for the Therapeutic Delivery of siRNA? MATERIALS 2012; 5:278-301. [PMID: 28817045 PMCID: PMC5448908 DOI: 10.3390/ma5020278] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/02/2012] [Accepted: 02/06/2012] [Indexed: 11/17/2022]
Abstract
Carbon nanotubes have many unique physical and chemical properties that are being widely explored for potential applications in biomedicine especially as transporters of drugs, proteins, DNA and RNA into cells. Specifically, single-walled carbon nanotubes (SWCNT) have been shown to deliver siRNA to tumors in vivo. The low toxicity, the excellent membrane penetration ability, the protection afforded against blood breakdown of the siRNA payload and the good biological activity seen in vivo suggests that SWCNT may become universal transfection vehicles for siRNA and other RNAs for therapeutic applications. This paper will introduce a short review of a number of therapeutic applications for carbon nanotubes and provide recent data suggesting SWCNT are an excellent option for the delivery of siRNA clinically.
Collapse
|
15
|
Chen S, Shi X, Morita H, Li J, Ogawa N, Ikoma T, Hayakawa S, Shirosaki Y, Osaka A, Hanagata N. BMP-2-loaded silica nanotube fibrous meshes for bone generation. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2011; 12:065003. [PMID: 27877463 PMCID: PMC5090678 DOI: 10.1088/1468-6996/12/6/065003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 12/16/2011] [Accepted: 10/04/2011] [Indexed: 06/04/2023]
Abstract
Silica nanotube fibrous meshes were fabricated as multiple functional matrices for both delivering bone morphological protein-2 (BMP-2) and supporting osteoblast attachment and proliferation. The meshes were fabricated via a collagen-templated sol-gel route and consisted of tubular silica with open ends. BMP-2 was loaded to the meshes by soaking in BMP-2 solution. The meshes effectively enabled the attachment and proliferation of osteoblast MC3T3-E1 cells and delivered bioactive BMP-2 to stimulate cell differentiation. These results demonstrate the potential use of the meshes in bone generation applications.
Collapse
Affiliation(s)
- Song Chen
- Biomaterials Unit, National Institute for Materials Science, Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Xuetao Shi
- WPI Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aobaku, Sendai, Miyagi 980-8577, Japan
| | - Hiromi Morita
- Nanotechnology Innovation Station, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Jie Li
- Nanotechnology Innovation Station, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Nobuhiro Ogawa
- Biomaterials Unit, National Institute for Materials Science, Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Toshiyuki Ikoma
- Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Satoshi Hayakawa
- Graduate School of Natural Science and Technology, Okayama University, Tsushima, Kita-ku, Okayama 700-8530, Japan
| | - Yuki Shirosaki
- Graduate School of Natural Science and Technology, Okayama University, Tsushima, Kita-ku, Okayama 700-8530, Japan
| | - Akiyoshi Osaka
- Graduate School of Natural Science and Technology, Okayama University, Tsushima, Kita-ku, Okayama 700-8530, Japan
| | - Nobutaka Hanagata
- Biomaterials Unit, National Institute for Materials Science, Sengen, Tsukuba, Ibaraki 305-0047, Japan
- Nanotechnology Innovation Station, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| |
Collapse
|