1
|
Matter L, Abdullaeva OS, Shaner S, Leal J, Asplund M. Bioelectronic Direct Current Stimulation at the Transition Between Reversible and Irreversible Charge Transfer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306244. [PMID: 38460180 PMCID: PMC11251568 DOI: 10.1002/advs.202306244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/06/2024] [Indexed: 03/11/2024]
Abstract
Many biological processes rely on endogenous electric fields (EFs), including tissue regeneration, cell development, wound healing, and cancer metastasis. Mimicking these biological EFs by applying external direct current stimulation (DCS) is therefore the key to many new therapeutic strategies. During DCS, the charge transfer from electrode to tissue relies on a combination of reversible and irreversible electrochemical processes, which may generate toxic or bio-altering substances, including metal ions and reactive oxygen species (ROS). Poly(3,4-ethylenedioxythiophene) (PEDOT) based electrodes are emerging as suitable candidates for DCS to improve biocompatibility compared to metals. This work addresses whether PEDOT electrodes can be tailored to favor reversible biocompatible charge transfer. To this end, different PEDOT formulations and their respective back electrodes are studied using cyclic voltammetry, chronopotentiometry, and direct measurements of H2O2 and O2. This combination of electrochemical methods sheds light on the time dynamics of reversible and irreversible charge transfer and the relationship between capacitance and ROS generation. The results presented here show that although all electrode materials investigated generate ROS, the onset of ROS can be delayed by increasing the electrode's capacitance via PEDOT coating, which has implications for future bioelectronic devices that allow longer reversibly driven pulse durations during DCS.
Collapse
Affiliation(s)
- Lukas Matter
- Department of Microtechnology and NanoscienceChalmers University of TechnologyGothenburgSE 41296Sweden
- Department of Microsystems EngineeringUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
- Brainlinks‐Braintools CenterUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
- Freiburg Institute for Advanced Studies (FRIAS)University of FreiburgAlbertstraße 1979104FreiburgGermany
| | - Oliya S. Abdullaeva
- Division of Nursing and Medical TechnologyLuleå University of TechnologyLuleåSE 97187Sweden
| | - Sebastian Shaner
- Department of Microsystems EngineeringUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
- Brainlinks‐Braintools CenterUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
| | - José Leal
- Department of Microsystems EngineeringUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
- Brainlinks‐Braintools CenterUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
| | - Maria Asplund
- Department of Microtechnology and NanoscienceChalmers University of TechnologyGothenburgSE 41296Sweden
- Department of Microsystems EngineeringUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
- Brainlinks‐Braintools CenterUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
- Freiburg Institute for Advanced Studies (FRIAS)University of FreiburgAlbertstraße 1979104FreiburgGermany
- Division of Nursing and Medical TechnologyLuleå University of TechnologyLuleåSE 97187Sweden
| |
Collapse
|
2
|
Dadi S, Temur N, Gul OT, Yilmaz V, Ocsoy I. In Situ Synthesis of Horseradish Peroxidase Nanoflower@Carbon Nanotube Hybrid Nanobiocatalysts with Greatly Enhanced Catalytic Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4819-4828. [PMID: 36944167 PMCID: PMC10077815 DOI: 10.1021/acs.langmuir.3c00260] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Organic-inorganic hybrid nanoflowers (NFs) consisting of horseradish peroxidase (HRP) and copper II (Cu2+) are successfully synthesized with the involvement of carbon nanotubes (CNTs) by in situ and post-modification methods. Catalytic activities of in situ synthesized HRP-NF@CNT (HRP-NF@CNT-Is) and post-modification-synthesized HRP-NF@CNTs (HRP-NF@CNT-Pm) are systematically examined. The 30 mg CNTs incorporated HRP-NF@CNT-Is (HRP-NF@CNT-30Is) exhibits greatly increased catalytic activity and stability toward 3,3',5,5'-tetramethylbenzidine (TMB), thanks to the synergistic effect between HRP-NF and CNTs and the peroxidase-like activity of CNTs in the presence of hydrogen peroxide (H2O2). While HRP-NF@CNT-30Is retains almost 85% of its initial activity even after 10 cycles, HRP-NF (without CNTs) loses half of its initial activity at the same experimental conditions. We study how two experimental parameters, the pH values and temperatures, influence the catalytic activity of HRP-NF@CNT-30Is, in addition to the fact that HRP-NF@CNT-30Is is employed to detect the presence of H2O2 and glutathione (GSH) with colorimetric and spectrophotometric readouts. For instance, HRP-NF@CNT-30Is is used to sensitively detect H2O2 in the range of 20 to 300 μM with an LOD of 2.26 μM. The catalytic activity of HRP-NF@CNT-30Is is suppressed in the presence of GSH, and then an obvious color change from blue to nearly colorless is observed. Using this strategy, GSH is also sensitively determined in the range of 20-200 μM with an LOD of 11.2 μM. We expect that HRP-NF@CNTs can be used as a promising and novel nanobiocatalyst for various biomedical and industrial applications in the near future.
Collapse
Affiliation(s)
- Seyma Dadi
- Department
of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
- Department
of Nanotechnology Engineering, Abdullah
Gül University, Kayseri 38080, Turkey
| | - Nimet Temur
- Department
of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - O. Tolga Gul
- Department
of Physics, Polatlı Faculty of Science and Letters, Ankara Hacı Bayram Veli University, Ankara 06900, Turkey
| | - Vedat Yilmaz
- Department
of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Ismail Ocsoy
- Department
of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| |
Collapse
|
3
|
Han DK, Li CA, Song SH, Cho K, Choi JS, Son SE, Seong GH. Electroanalytical biosensor based on GOx/FCA/PEG-modified SWCNT electrode for determination of glucose. J Anal Sci Technol 2023. [DOI: 10.1186/s40543-023-00371-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
AbstractThis paper describes a simple electrochemical sensing platform based on single-walled carbon nanotube (SWCNT) electrodes for glucose detection. The device fabrication using O2-plasma treatment allows precision and uniformity for the construction of three SWCNT electrodes on the flexible plastic substrate. Glucose assay can be simply accomplished by introducing a glucose sample into the fabricated biosensor. The marked electrocatalytic and biocompatible properties of biosensors based on SWCNT electrodes with the incorporation of ferrocenecarboxylic acid and polyethylene glycol enable effective amperometric measurement of glucose at a low oxidation potential (0.3 V) with low interferences from coexisting species. The device shows efficient electroanalytical performances with high sensitivity (5.5 μA·mM−1·cm−2), good reproducibility (CV less than 3%), and long-term stability (over a month). A linear range of response was found from 0 to 10 mM of glucose with a fast response time of 10 s. This attractive electroanalytical device based on GOx/FCA/PEG/SWCNT electrodes offers a promising system to facilitate a new approach for diverse biosensors and electrochemical devices.
Collapse
|
4
|
Alnaimi A, Al-Hamry A, Makableh Y, Adiraju A, Kanoun O. Gold Nanoparticles-MWCNT Based Aptasensor for Early Diagnosis of Prostate Cancer. BIOSENSORS 2022; 12:1130. [PMID: 36551097 PMCID: PMC9776393 DOI: 10.3390/bios12121130] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Prostate cancer is one of the most frequently diagnosed male malignancies and can be detected by prostate-specific antigen (PSA) as a biomarker. To detect PSA, several studies have proposed using antibodies, which are not economical and require a long reaction time. In this study, we propose to use self-assembled thiolated single-strand DNA on electrodes functionalized by multi-walled carbon nanotubes (MWCNT) modified with gold nanoparticles (AuNPs) to realize a low-cost label-free electrochemical biosensor. In this regard, the PSA aptamer was immobilized via electrostatic adsorption on the surface of a screen-printed MWCNT/AuNPs electrode. The immobilization process was enhanced due to the presence of Au nanoparticles on the surface of the electrode. Surface characterization of the electrode at different stages of modification was performed by electrochemical impedance spectroscopy (EIS), atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) and contact angle for surface tension properties. The results showed an increase in surface roughness due to the absorbance of the aptamer on the electrode surfaces. The developed sensor has an extended linear range of 1-100 ng/mL, and a very low limit of detection down to 1 pg/mL. In addition, the reaction has a binding time of only five minutes on the developed electrodes. Investigations of the biosensor selectivity against several substances revealed an efficient selectivity for PSA detection. With this approach, low-cost biosensors with high sensitivity can be realized which have a wide linearity range and a low limit of detection, which are necessary for the early detection of prostate cancer.
Collapse
Affiliation(s)
- Aseel Alnaimi
- Biomedical Engineering Department, Jordan University of Science and Technology, Irbid 22110, Jordan
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany
| | - Ammar Al-Hamry
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany
| | - Yahia Makableh
- Institute of Nanotechnology, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Anurag Adiraju
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany
| | - Olfa Kanoun
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany
| |
Collapse
|
5
|
Ang MCY, Lew TTS. Non-destructive Technologies for Plant Health Diagnosis. FRONTIERS IN PLANT SCIENCE 2022; 13:884454. [PMID: 35712566 PMCID: PMC9197209 DOI: 10.3389/fpls.2022.884454] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/29/2022] [Indexed: 06/01/2023]
Abstract
As global population grows rapidly, global food supply is increasingly under strain. This is exacerbated by climate change and declining soil quality due to years of excessive fertilizer, pesticide and agrichemical usage. Sustainable agricultural practices need to be put in place to minimize destruction to the environment while at the same time, optimize crop growth and productivity. To do so, farmers will need to embrace precision agriculture, using novel sensors and analytical tools to guide their farm management decisions. In recent years, non-destructive or minimally invasive sensors for plant metabolites have emerged as important analytical tools for monitoring of plant signaling pathways and plant response to external conditions that are indicative of overall plant health in real-time. This will allow precise application of fertilizers and synthetic plant growth regulators to maximize growth, as well as timely intervention to minimize yield loss from plant stress. In this mini-review, we highlight in vivo electrochemical sensors and optical nanosensors capable of detecting important endogenous metabolites within the plant, together with sensors that detect surface metabolites by probing the plant surface electrophysiology changes and air-borne volatile metabolites. The advantages and limitations of each kind of sensing tool are discussed with respect to their potential for application in high-tech future farms.
Collapse
Affiliation(s)
- Mervin Chun-Yi Ang
- Disruptive and Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Tedrick Thomas Salim Lew
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
6
|
You Y, Zou J, Li WJ, Chen J, Jiang XY, Yu JG. Novel lanthanum vanadate-based nanocomposite for simultaneously electrochemical detection of dopamine and uric acid in fetal bovine serum. Int J Biol Macromol 2022; 195:346-355. [PMID: 34920056 DOI: 10.1016/j.ijbiomac.2021.12.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 01/01/2023]
Abstract
The abnormal levels of two biological molecules, dopamine (DA) and Uric acid (UA), in human body are symptoms of diseases such as Parkinson's disease and arrhythmia. A novel lanthanum vanadate and multi-walled carbon nanotubes (LaV-MWCNTs) composite modified glassy carbon electrode (GCE) was developed and utilized as an efficient electrochemical sensor for the simultaneous detection of DA and UA. LaV-MWCNTs composite was successfully fabricated by a facile ultrasonic self-assembly method and identified by means of a series of successive measurements including XPS, XRD, FT-IR and FE-SEM. The LaV-MWCNTs modified GCE shows the concentration linear ranges of DA and UA are 2-100 μΜ using DPV. The limits of detection (LODs; signal-to-noise ratio of 3, S/N = 3) of the LaV-MWCNTs modified GCE sensor for DA and UA were calculated to be 0.046 μM and 0.025 μM, respectively. The feasibility of using the LaV-MWCNTs modified GCE sensor to detect DA and UA in a typical biological fluid, fetal bovine serum, was also evaluated by the standard addition method.
Collapse
Affiliation(s)
- Ya You
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Jiao Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Wen-Jie Li
- Xiangya School of Stomatology & Xiangya Stomatological Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jun Chen
- Xiangya School of Stomatology & Xiangya Stomatological Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xin-Yu Jiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Jin-Gang Yu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
7
|
Harahsheh T, Makableh YF, Rawashdeh I, Al-Fandi M. Enhanced aptasensor performance for targeted HER2 breast cancer detection by using screen-printed electrodes modified with Au nanoparticles. Biomed Microdevices 2021; 23:46. [PMID: 34546397 DOI: 10.1007/s10544-021-00586-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2021] [Indexed: 11/25/2022]
Abstract
The development of an Aptamer based biosensor for the selective detection of human epidermal growth factor receptor 2 (HER2) with high sensitivity and specificity was achieved. A screen-printed carbon electrode was used in the scope of this work. The HER2 Aptamer was immobilized via electrostatic adsorption on the surface of a screen-printed electrode, which was modified with Au Nanoparticles (~ 20 nm diameter) to support the Aptamer immobilization. The Aptasensor was extensively investigated using Cyclic voltammetry, Differential pulse voltammetry, Electrochemical impedance spectroscopy, Fourier transform infrared spectroscopy and Atomic force microscopy. The Aptasensor exhibits a fast response with a binding time of only 5 min and shows a log-linear response over a wide concentration range of 0.001-100 ng/mL. Moreover, it has high sensitivity and enhanced detection limit reaching 52.85 μA/ng/mL, and 0.001 ng/mL, respectively, with a relative standard deviation < 5%. The Aptasensor selectivity was studied by using different interfering substances, and the results demonstrate that the Aptasensor is efficient for the detection of HER2 with approximately 8% extent of the interference.
Collapse
Affiliation(s)
- Tasneem Harahsheh
- Mechanical Engineering Department, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Yahia F Makableh
- Institute of Nanotechnology, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Isra' Rawashdeh
- Institute of Nanotechnology, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mohamed Al-Fandi
- Institute of Nanotechnology, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
8
|
Meena J, Gupta A, Ahuja R, Singh M, Panda AK. Recent advances in nano-engineered approaches used for enzyme immobilization with enhanced activity. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116602] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Huang ZN, Liu GC, Zou J, Jiang XY, Liu YP, Yu JG. A hybrid composite of recycled popcorn-shaped MnO2 microsphere and Ox-MWCNTs as a sensitive non-enzymatic amperometric H2O2 sensor. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Yuan MM, Zou J, Guan JF, Huang ZN, Yu JG. Highly sensitive and selective determination of p-nitrophenol at an interpenetrating networks structure of self-assembled rod-like lanthanum hydroxide-oxidized multi-walled carbon nanotubes nanocomposite. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110862. [PMID: 32559691 DOI: 10.1016/j.ecoenv.2020.110862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
In this study, a novel electrochemical sensor based on self-assembled rod-like lanthanum hydroxide-oxidized multi-walled carbon nanotubes (La(OH)3-OxMWCNTs) nanocomposite was developed for sensitive determination of p-nitrophenol (p-NP). The La(OH)3-OxMWCNTs nanocomposite with an interpenetrating networks structure was characterized by field emission electron microscope (FE-SEM), Fourier transform infrared (FT-IR) spectroscopy, Raman spectra and X-ray photoelectron spectroscopy (XPS). The cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements were performed to study the electrochemical behaviors of La(OH)3-OxMWCNTs modified glassy carbon electrode (La(OH)3-OxMWCNTs/GCE). The La(OH)3-OxMWCNTs/GCE was used for sensitive determination of p-NP by CV and linear sweep voltammetry (LSV). Under the optimum conditions, the peak currents of LSV versus the concentrations of p-NP in the range 1.0-30.0 μmol L-1 showed a good linear relationship (R2=0.9971), and the limit of detection (LOD) was calculated to be 0.27 μmol L-1 (signal-to-noise ratio of 3, S/N=3). The recoveries of p-NP in real samples of industrial wastewater and Xiangjiang water at La(OH)3-OxMWCNTs/GCE were in the range of 95.62-110.75% with relative standard deviation (RSD) in the range of 1.65-3.85%. The intra-day and inter-day precisions were estimated to be less than 2.76% (n= 5), indicating that La(OH)3-OxMWCNTs/GCE possessed highly stability. In addition, La(OH)3-OxMWCNTs/GCE sensor showed good anti-interference ability for determination of p-NP in aqueous mixtures containing high concentrations of inorganic and organic interferents, and a decrease of oxidation peak currents by less than 3.57% relative to the initial levels indicated it possessed excellent selectivity. Therefore, La(OH)3-OxMWCNTs/GCE could be used as a fast, selective and sensitive electrochemical sensor platform for the selective determination and quantification of aqueous p-NP.
Collapse
Affiliation(s)
- Meng-Meng Yuan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Jiao Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Jin-Feng Guan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Zhao-Ning Huang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Jin-Gang Yu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China.
| |
Collapse
|
11
|
Kornii A, Saska V, Lisnyak VV, Tananaiko O. Carbon Nanostructured Screen‐printed Electrodes Modified with CuO/Glucose Oxidase/Maltase/SiO
2
Composite Film for Maltose Determination. ELECTROANAL 2020. [DOI: 10.1002/elan.202000059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Anastasiia Kornii
- Department of analytical chemistryTaras Shevchenko National University of Kyiv 64, Volodymyrska str. Kyiv 01601 Ukraine
| | - Vita Saska
- Department of analytical chemistryTaras Shevchenko National University of Kyiv 64, Volodymyrska str. Kyiv 01601 Ukraine
| | - Vladyslav V. Lisnyak
- Department of analytical chemistryTaras Shevchenko National University of Kyiv 64, Volodymyrska str. Kyiv 01601 Ukraine
| | - Oksana Tananaiko
- Department of analytical chemistryTaras Shevchenko National University of Kyiv 64, Volodymyrska str. Kyiv 01601 Ukraine
| |
Collapse
|
12
|
Moolayadukkam S, Thomas S, Sahoo RC, Lee CH, Lee SU, Matte HSSR. Role of Transition Metals in Layered Double Hydroxides for Differentiating the Oxygen Evolution and Nonenzymatic Glucose Sensing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6193-6204. [PMID: 31916748 DOI: 10.1021/acsami.9b18186] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Layered double hydroxides (LDH) belong to the class of two-dimensional materials having a wide variety of applications ranging from energy storage to catalysis. Often, these materials when used for nonenzymatic electrochemical glucose sensing tend to be interfering with oxygen evolution reaction (OER), resulting in overestimation of the glucose. Herein, to address this, NiFe-based LDH were selected because of their ability to vary the metal ratios. The synthesized LDH have been characterized using various spectroscopic and microscopic techniques. Among the LDH synthesized, Ni4Fe-LDH have been able to differentiate the glucose oxidation potential and the onset potential of OER with minimum interference. The Ni4Fe-LDH sensor shows a sensitivity of 20.43 μA mM-1 cm-2 in the linear range of 0-4 mM concentrations. To further enhance the sensitivity, composites of reduced graphene oxide (rGO) have been synthesized in situ, and the Ni4Fe/rGO5 composites have shown an increased sensitivity of 176.8 μA mM-1 cm-2 attributed to the charge-transfer interactions. To understand the experimental observations, detailed computational studies have been carried out to study the effect of the electronic structure on the metal ratios of the LDH and its role in differentiating glucose sensing and the oxygen evolution reaction. Along with this, theoretical calculations are also carried out on LDH-graphene composites to study the charge-transfer interactions.
Collapse
Affiliation(s)
- Sreejesh Moolayadukkam
- Energy Materials Laboratory , Centre for Nano and Soft Matter Sciences , Bangalore 560013 , India
| | - Siby Thomas
- Department of Mechanical Engineering , Colorado School of Mines , Golden , Colorado 80401 , United States
| | - Ramesh Chandra Sahoo
- Energy Materials Laboratory , Centre for Nano and Soft Matter Sciences , Bangalore 560013 , India
| | - Chi Ho Lee
- Department of Bionano Technology , Hanyang University , Ansan 15588 , Republic of Korea
| | - Sang Uck Lee
- Department of Bionano Technology , Hanyang University , Ansan 15588 , Republic of Korea
- Department of Chemical and Molecular Engineering , Hanyang University , Ansan 15588 , Republic of Korea
| | - H S S Ramakrishna Matte
- Energy Materials Laboratory , Centre for Nano and Soft Matter Sciences , Bangalore 560013 , India
| |
Collapse
|
13
|
Zou J, Yu JG. Chiral recognition of tyrosine enantiomers on a novel bis-aminosaccharides composite modified glassy carbon electrode. Anal Chim Acta 2019; 1088:35-44. [DOI: 10.1016/j.aca.2019.08.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/01/2019] [Accepted: 08/12/2019] [Indexed: 01/20/2023]
|
14
|
Vinoth V, Natarajan LN, Mangalaraja RV, Valdés H, Anandan S. Simultaneous electrochemical determination of dopamine and epinephrine using gold nanocrystals capped with graphene quantum dots in a silica network. Mikrochim Acta 2019; 186:681. [PMID: 31520276 DOI: 10.1007/s00604-019-3779-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 08/21/2019] [Indexed: 01/04/2023]
Abstract
Gold nanocrystals (AuNCs) were synthesized by economical and green strategy in aqueous medium by using N[3(trimethoxysilyl)propyl]ethylenediamine (TMSPED) as both a reducing and stabilizing mediator to avoid the aggregation of gold nanocrystals. Then, the AuNCs were capped with graphene quantum dots (GQDs) using an ultrasonic method. The resulting nanocomposites of GQD-TMSPED-AuNCs were characterized by X-ray photoelectron, X-ray diffraction, Raman, UV-vis and FT-IR spectroscopies. The size and shape of the nanocomposites were confirmed by using transmission electron microscopy and atomic force microscopy. The GQD-TMSPED-AuNCs placed on a glassy carbon electrode enable simultaneous determination of dopamine (DA) and epinephrine (EP) with peak potentials at 0.21 and 0.30 V (vs. Ag/AgCl). The response is linear in the 5 nM - 2.1 μM (DA) and 10 nM - 4.0 μM (EP) concentration ranges, with detection limits of 5 and 10 nM, respectively. The sensor shows good selectivity toward DP and EP in the presence of other molecules, facilitating its rapid detection in practical applications. Graphical abstract Schematic representation of gold nanocrystals capped with graphene quantum dots in the modified electrodes for simultaneous detection of dopamine and epinephrine.
Collapse
Affiliation(s)
- Victor Vinoth
- Nanomaterials and Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620 015, India.,Laboratorio de Tecnologías Limpias, Facultad de Ingeniería, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Lakshmi Nochur Natarajan
- Nanomaterials and Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620 015, India
| | | | - Héctor Valdés
- Laboratorio de Tecnologías Limpias, Facultad de Ingeniería, Universidad Católica de la Santísima Concepción, Concepción, Chile.
| | - Sambandam Anandan
- Nanomaterials and Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620 015, India.
| |
Collapse
|
15
|
Bilal S, Akbar A, Shah AUHA. Highly Selective and Reproducible Electrochemical Sensing of Ascorbic Acid Through a Conductive Polymer Coated Electrode. Polymers (Basel) 2019; 11:polym11081346. [PMID: 31412644 PMCID: PMC6724005 DOI: 10.3390/polym11081346] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 11/17/2022] Open
Abstract
The surface of an Au-disc electrode was modified through electro polymerization of aniline, in the presence of dodecyl benzene sulphonic acid (DBSA) and sulphuric acid (H2SO4) solution. The polymerization conditions were pre-optimized so that micelle formation and solution coagulation could be minimized and surfactant doped polyaniline film could be obtained through a quick, simple and one step polymerization route. The synthesized material was characterized via Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and cyclic voltammetry (CV). The effective surface area of the Au-disc, calculated through cyclic voltammetry, was immensely increased through a polyaniline (PANI) coating (0.04 and 0.11 cm2 for bare and PANI coated gold respectively). The modified electrode was utilized for ascorbic acid (AA) sensing. The changing pH of electrolyte and scan rate influenced the PANI electrode response towards AA. The modified electrode was highly selective towards AA oxidation and showed a very low limit of detection i.e. 0.0267 μmol·L–1. Moreover, the PANI coating greatly reduced the sensing potential for AA by a value of around 140 mV when compared to that on a bare gold electrode.
Collapse
Affiliation(s)
- Salma Bilal
- National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan.
- TU Braunschweig Institute of Energy and Process Systems Engineering,Franz-Liszt-Straße 35, 38106 Braunschweig, Germany.
| | - Ayesha Akbar
- National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| | | |
Collapse
|
16
|
Zou J, Yuan MM, Huang ZN, Chen XQ, Jiang XY, Jiao FP, Zhou N, Zhou Z, Yu JG. Highly-sensitive and selective determination of bisphenol A in milk samples based on self-assembled graphene nanoplatelets-multiwalled carbon nanotube-chitosan nanostructure. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109848. [PMID: 31349437 DOI: 10.1016/j.msec.2019.109848] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/13/2019] [Accepted: 05/31/2019] [Indexed: 01/08/2023]
Abstract
Graphene nanoplatelets (GNPs), multiwalled carbon nanotube (MWCNTs) and chitosan (CS) were self-assembled by a facile one-step hydrothermal reaction to obtain novel MWCNTs-CS enfolded GNPs (GNPs-MWCNTs-CS) composite. Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), UV-visible (UV-vis) absorption spectroscopy and zeta potential analysis were employed to characterize the morphology, surface composition, interaction, surface charge and stability of the GNPs-MWCNTs-CS composite. The electrochemical behaviors of GNPs-MWCNTs-CS composite modified glassy carbon electrode (GNPs-MWCNTs-CS/GCE) were investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The GNPs-MWCNTs-CS/GCE was used for fast and high sensitive determination of bisphenol A (BPA) by differential pulse voltammetry (DPV). Under the optimum conditions, the calibration curve obtained is linear for the current versus the BPA concentration in the range 0.1-100 μM with a detection limit of 0.05 nM (signal-to-noise ratio of 3, S/N = 3). The between-sensor reproducibility was 1.29% (n = 6) for 0.04 mM BPA. The proposed GNPs-MWCNTs-CS/GCE based sensor showed high resistance to interference, good repeatability and excellent reproducibility. Trace BPA in milk samples could also be reliably determined.
Collapse
Affiliation(s)
- Jiao Zou
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, Hunan 410083, China
| | - Meng-Meng Yuan
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, Hunan 410083, China
| | - Zhao-Ning Huang
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, Hunan 410083, China
| | - Xiao-Qing Chen
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, Hunan 410083, China
| | - Xin-Yu Jiang
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, Hunan 410083, China
| | - Fei-Peng Jiao
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, Hunan 410083, China
| | - Nan Zhou
- College of Science, Hunan Agricultural University, Changsha 410128, China
| | - Zhi Zhou
- College of Science, Hunan Agricultural University, Changsha 410128, China
| | - Jin-Gang Yu
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
17
|
Quantum dot modified interface for electrochemical immunosensing of procalcitonin for the detection of urinary tract infection. Anal Chim Acta 2019; 1056:26-33. [DOI: 10.1016/j.aca.2018.12.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/20/2018] [Accepted: 12/24/2018] [Indexed: 01/21/2023]
|
18
|
Ismail NAB, Abd-Wahab F, Ramli NI, Bader MM, Wan Salim WWA. Electrochemical Methods to Characterize Nanomaterial-Based Transducers for the Development of Noninvasive Glucose Sensors. NANOTECHNOLOGY: APPLICATIONS IN ENERGY, DRUG AND FOOD 2019:423-439. [DOI: 10.1007/978-3-319-99602-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
19
|
Batrisya Ismail NA, Abd-Wahab F, Amani Wan Salim WW. Cyclic Voltammetry and Electrochemical Impedance Spectroscopy of Partially Reduced Graphene Oxide - PEDOT:PSS Transducer for Biochemical Sensing. 2018 IEEE-EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES) 2018. [DOI: 10.1109/iecbes.2018.8626618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
20
|
Brownlee BJ, Bahari M, Harb JN, Claussen JC, Iverson BD. Electrochemical Glucose Sensors Enhanced by Methyl Viologen and Vertically Aligned Carbon Nanotube Channels. ACS APPLIED MATERIALS & INTERFACES 2018; 10:28351-28360. [PMID: 30067019 DOI: 10.1021/acsami.8b08997] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Freestanding, vertically aligned carbon nanotubes (VACNTs) were patterned into 16 μm diameter microchannel arrays for flow-through electrochemical glucose sensing. Non-enzymatic sensing of glucose was achieved by the chemical reaction of glucose with methyl viologen (MV) at an elevated temperature and pH (0.1 M NaOH), followed by the electrochemical reaction of reduced-MV with the VACNT surface. The MV sensor required no functionalization (including no metal) and was able to produce on average 3.4 electrons per glucose molecule. The current density of the MV sensor was linear with both flow rate and glucose concentration. Challenges with interference chemicals were mitigated by operating at a low potential of -0.2 V vs Ag/AgCl. As a comparison, enzymatic VACNT sensors with platinum nano-urchins were functionalized with glucose oxidase by covalent binding (1-ethyl-3-(-3-dimethylaminopropyl)carbodiimide/ N-hydroxysuccinimide) or by polymer entrapment [poly(3,4-ethylene-dioxythiophene)] and operated in phosphate buffered saline. With normalization by the overall cross-sectional area of the flow (0.713 cm2), the sensitivity of the MV, enzyme-in-solution, and covalent sensors were 45.93, 18.77, and 1.815 mA cm-2 mM-1, respectively. Corresponding limits of detection were 100, 194, and 311 nM glucose. The linear sensing ranges for the sensors were 250 nM to 200 μM glucose for the MV sensor, 500 nM to 200 μM glucose for the enzyme-in-solution sensor, and 1 μM to 6 mM glucose for the covalent sensor. The flow cell and sensor cross-sectional area were scaled down (0.020 cm2) to enable detection from 200 μL of glucose with MV by flow injection analysis. The sensitivity of the small MV sensor was 5.002 mA cm-2 mM-1, with a limit of detection of 360 nM glucose and a linear range up to at least 150 μM glucose. The small MV sensor has the potential to measure glucose levels found in 200 μL of saliva.
Collapse
Affiliation(s)
| | | | | | - Jonathan C Claussen
- Department of Mechanical Engineering , Iowa State University , Ames , Iowa 50011 , United States
| | | |
Collapse
|
21
|
Enhanced direct electron transfer of redox protein based on multiporous SnO2 nanofiber-carbon nanotube nanocomposite and its application in biosensing. Int J Biol Macromol 2018; 114:1071-1076. [DOI: 10.1016/j.ijbiomac.2018.03.184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/30/2018] [Accepted: 03/31/2018] [Indexed: 11/18/2022]
|
22
|
Benoudjit A, Bader MM, Wan Salim WWA. Study of electropolymerized PEDOT:PSS transducers for application as electrochemical sensors in aqueous media. SENSING AND BIO-SENSING RESEARCH 2018. [DOI: 10.1016/j.sbsr.2018.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
23
|
Ramli NI, Abd-Wahab MF, Salim WWAW. Characterization of enzymatic glucose biosensor in buffer solution, in artificial saliva, and in potassium ferricyanide by linear sweep voltammetry. AIP CONFERENCE PROCEEDINGS 2018. [DOI: 10.1063/1.5066993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
24
|
Physical and Electrochemical Properties of Iron Oxide Nanoparticles-modified Electrode for Amperometric Glucose Detection. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.07.097] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Wayu MB, DiPasquale LT, Schwarzmann MA, Gillespie SD, Leopold MC. Electropolymerization of β-cyclodextrin onto multi-walled carbon nanotube composite films for enhanced selective detection of uric acid. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.11.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
26
|
Leaf Extract from Lithocarpus polystachyus Rehd. Promote Glycogen Synthesis in T2DM Mice. PLoS One 2016; 11:e0166557. [PMID: 27893760 PMCID: PMC5125604 DOI: 10.1371/journal.pone.0166557] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 10/31/2016] [Indexed: 12/14/2022] Open
Abstract
The purpose of this study was to investigate the effects of leaf extract from Lithocarpus polystachyus Rehd. on type II diabetes mellitus (T2DM) and the active ingredients of this effect. In addition, this study determined, for the first time, the underlying molecular and pharmacological mechanisms of the extracts on hyperglycemia using long-term double high diet-fed and streptozotocin (STZ) induced type II diabetic mice. In the present study, leaf extract, phloridzin and trilobatin were assessed in vivo (gavage) and in vitro (non-invasive micro-test technique, NMT) in experimental T2DM mice. The biochemical parameters were measured including blood glucose and blood lipid level, liver biochemical indexes, and hepatic glycogen. The relative expression of glycometabolism-related genes was detected. The effect of leaf extracts on physiological glucose flux in liver tissue from control and T2DM mice was also investigated. Body weight of experimental T2DM mice increased significantly after the first week, but stabilized over the subsequent three weeks; body weight of all other groups did not change during the four weeks’ study. After four weeks, all treatment groups decreased blood glucose, and treatment with leaf extract had numerous positive effects: a) promoted in glucose uptake in liver, b) increased synthesis of liver glycogen, c) reduced oxidative stress, d) up-regulation of glucokinase (GK), glucose transporter 2 (GLUT2), insulin receptor (IR) and insulin receptor substrate (IRS) expression in liver, e) down-regulation of glucose-6-phosphatase (G-6-P) expression, and f) ameliorated blood lipid levels. Both treatment with trilobatin or phloridzin accelerated liver glycogen synthesis, decreased oxidative stress and increased expression of GK. IRS and phosphoenolpyruvate carboxykinase (PEPCK) were both up-regulated after treatment with trilobatin. Expression of GLUT2, PEPCK and G-6-P were also increased in liver tissue after treatment with phloridzin. Our data indicate that leaf extract from L. polystachyus Rehd. has a preferable hypoglycemic effects than trilobatin or phloridzin alone. Leaf extract significantly increased glucose uptake and hepatic glycogen synthesis while also inducing a decline of hepatic gluconeogenesis and oxidative stress in T2DM mice. From this study, we draw conclusions that L. polystachyus promoted glycogen synthesis in T2DM mice, and that the active compounds were not only the trilobatin or phloridzin.
Collapse
|
27
|
Wayu MB, Pannell MJ, Leopold MC. Layered Xerogel Films Incorporating Monolayer‐Protected Cluster Networks on Platinum‐Black‐Modified Electrodes for Enhanced Sensitivity in First‐Generation Uric Acid Biosensing. ChemElectroChem 2016. [DOI: 10.1002/celc.201600164] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mulugeta B. Wayu
- Department of Chemistry, Gottwald Center for the Sciences University of Richmond Richmond VA 23173 USA), Fax: (804) 28-71-89-7
| | - Michael J. Pannell
- Department of Chemistry, Gottwald Center for the Sciences University of Richmond Richmond VA 23173 USA), Fax: (804) 28-71-89-7
| | - Michael C. Leopold
- Department of Chemistry, Gottwald Center for the Sciences University of Richmond Richmond VA 23173 USA), Fax: (804) 28-71-89-7
| |
Collapse
|
28
|
Li SJ, Hou LL, Yuan BQ, Chang MZ, Ma Y, Du JM. Enzyme-free glucose sensor using a glassy carbon electrode modified with reduced graphene oxide decorated with mixed copper and cobalt oxides. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1817-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Cheng L, House MW, Weiss WJ, Banks MK. Monitoring sulfide-oxidizing biofilm activity on cement surfaces using non-invasive self-referencing microsensors. WATER RESEARCH 2016; 89:321-329. [PMID: 26707733 DOI: 10.1016/j.watres.2015.11.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/15/2015] [Accepted: 11/28/2015] [Indexed: 06/05/2023]
Abstract
Microbially influenced corrosion (MIC) in concrete results in significant cost for infrastructure maintenance. Prior studies have employed molecular techniques to identify microbial community species in corroded concrete, but failed to explore bacterial activity and functionality during deterioration. In this study, biofilms of different sulfur-oxidizing bacteria compositions were developed on the surface of cement paste samples to simulate the natural ecological succession of microbial communities during MIC processes. Noninvasive, self-referencing (SR) microsensors were used to quantify real time changes of oxygen, hydrogen ion and calcium ion flux for the biofilm to provide more information about bacterial behavior during deterioration. Results showed higher transport rates in oxygen consumption, and hydrogen ion at 4 weeks than 2 weeks, indicating increased bacterial activity over time. Samples with five species biofilm had the highest hydrogen ion and calcium ion transport rates, confirming attribution of acidophilic sulfur-oxidizing microorganisms (ASOM). Differences in transport rates between three species samples and two species samples confirmed the diversity between Thiomonas intermedia and Starkeya novella. The limitations of SR sensors in corrosion application could be improved in future studies when combined with molecular techniques to identify the roles of major bacterial species in the deterioration process.
Collapse
Affiliation(s)
- Liqiu Cheng
- Zachry Department of Civil Engineering, Texas A&M University, 3136 TAMU, College Station, TX 77843-3136, USA.
| | - Mitch W House
- Lyles School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907-2051, USA
| | - W Jason Weiss
- Lyles School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907-2051, USA; Bindley Bioscience Center, Physiological Sensing Facility, Discovery Park, Purdue University, 1203 W. State Street, West Lafayette, IN 47907-2057, USA
| | - M Katherine Banks
- Zachry Department of Civil Engineering, Texas A&M University, 3136 TAMU, College Station, TX 77843-3136, USA
| |
Collapse
|
30
|
Vrutika P, Datta M. Lipase from Solvent-Tolerant Pseudomonas sp. DMVR46 Strain Adsorb on Multiwalled Carbon Nanotubes: Application for Enzymatic Biotransformation in Organic Solvents. Appl Biochem Biotechnol 2015; 177:1313-26. [DOI: 10.1007/s12010-015-1816-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/17/2015] [Indexed: 12/22/2022]
|
31
|
Zhu X, Niu X, Zhao H, Tang J, Lan M. Immobilization of superoxide dismutase on Pt–Pd/MWCNTs hybrid modified electrode surface for superoxide anion detection. Biosens Bioelectron 2015; 67:79-85. [DOI: 10.1016/j.bios.2014.07.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/03/2014] [Accepted: 07/03/2014] [Indexed: 12/21/2022]
|
32
|
Rationally designing aptamer sequences with reduced affinity for controlled sensor performance. SENSORS 2015; 15:7754-67. [PMID: 25835184 PMCID: PMC4431182 DOI: 10.3390/s150407754] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 12/30/2022]
Abstract
The relative ease of predicting the secondary structure of nucleic acid sequences lends itself to the design of sequences to perform desired functions. Here, we combine the utility of nucleic acid aptamers with predictable control over the secondary structure to rationally design sequences with controlled affinity towards a target analyte when employed as the recognition element in an electrochemical sensor. Specifically, we present a method to modify an existing high-gain aptamer sequence to create sequences that, when employed in an electrochemical, aptamer-based sensor, exhibit reduced affinity towards a small molecule analyte tobramycin. Sensors fabricated with the high-gain parent sequence saturate at concentrations much below the therapeutic window for tobramycin (7–18 µM). Accordingly, the rationale behind modifying this high-gain sequence to reduce binding affinity was to tune sensor performance for optimal sensitivity in the therapeutic window. Using secondary structure predictions and analysis of the NMR structure of an aminoglycoside RNA aptamer bound to tobramycin, we are able to successfully modify the aptamer sequence to tune the dissociation constants of electrochemical aptamer-based sensors between 0.17 and 3 µM. The guidelines we present represent a general strategy to lessening binding affinity of sensors employing aptamer-modified electrodes.
Collapse
|
33
|
Derkus B, Emregul E, Emregul KC. Copper–zinc alloy nanoparticle based enzyme-free superoxide radical sensing on a screen-printed electrode. Talanta 2015; 134:206-214. [DOI: 10.1016/j.talanta.2014.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/29/2014] [Accepted: 11/02/2014] [Indexed: 01/23/2023]
|
34
|
Sun LJ, Feng QM, Yan YF, Pan ZQ, Li XH, Song FM, Yang H, Xu JJ, Bao N, Gu HY. Paper-based electroanalytical devices for in situ determination of salicylic acid in living tomato leaves. Biosens Bioelectron 2014; 60:154-60. [DOI: 10.1016/j.bios.2014.04.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/05/2014] [Accepted: 04/12/2014] [Indexed: 11/28/2022]
|
35
|
Chaturvedi P, Vanegas D, Taguchi M, Burrs S, Sharma P, McLamore E. A nanoceria–platinum–graphene nanocomposite for electrochemical biosensing. Biosens Bioelectron 2014; 58:179-85. [DOI: 10.1016/j.bios.2014.02.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/25/2014] [Accepted: 02/10/2014] [Indexed: 11/15/2022]
|
36
|
Highly selective detection of Epinephrine at oxidized Single-Wall Carbon Nanohorns modified Screen Printed Electrodes (SPEs). Biosens Bioelectron 2014; 59:94-8. [PMID: 24704763 DOI: 10.1016/j.bios.2014.02.065] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/07/2014] [Accepted: 02/25/2014] [Indexed: 01/30/2023]
Abstract
Oxidized Single-Wall Carbon Nanohorns (o-SWCNHs) were used, for the first time, to assemble chemically modified Screen Printed Electrodes (SPEs) selective towards the electrochemical detection of Epinephrine (Ep), in the presence of Serotonine-5-HT (S-5HT), Dopamine (DA), Nor-Epineprhine (Nor-Ep), Ascorbic Acid (AA), Acetaminophen (Ac) and Uric Acid (UA). The Ep neurotransmitter was detected by using Differential Pulse Voltammetry (DPV), in a wide linear range of concentration (2-2500 μM) with high sensitivity (55.77 A M(-1) cm(-2)), very good reproducibility (RSD% ranging from 2 to 10 for different SPEs), short response time for each measurement (only 2s) and low detection of limit (LOD=0.1 μM). o-SWCNHs resulted in higher analytical performances when compared with other nanomaterials used in literature for electrochemical sensors assembly.
Collapse
|
37
|
Gholivand M, Shamsipur M, Amini N. Nonenzymatic L-lysine amino acid detection using titanium oxide nanoparticles/multi wall carbon nanotube composite electrodes. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.12.190] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Taguchi M, Ptitsyn A, McLamore ES, Claussen JC. Nanomaterial-mediated Biosensors for Monitoring Glucose. J Diabetes Sci Technol 2014; 8:403-411. [PMID: 24876594 PMCID: PMC4455391 DOI: 10.1177/1932296814522799] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Real-time monitoring of physiological glucose transport is crucial for gaining new understanding of diabetes. Many techniques and equipment currently exist for measuring glucose, but these techniques are limited by complexity of the measurement, requirement of bulky equipment, and low temporal/spatial resolution. The development of various types of biosensors (eg, electrochemical, optical sensors) for laboratory and/or clinical applications will provide new insights into the cause(s) and possible treatments of diabetes. State-of-the-art biosensors are improved by incorporating catalytic nanomaterials such as carbon nanotubes, graphene, electrospun nanofibers, and quantum dots. These nanomaterials greatly enhance biosensor performance, namely sensitivity, response time, and limit of detection. A wide range of new biosensors that incorporate nanomaterials such as lab-on-chip and nanosensor devices are currently being developed for in vivo and in vitro glucose sensing. These real-time monitoring tools represent a powerful diagnostic and monitoring tool for measuring glucose in diabetes research and point of care diagnostics. However, concerns over the possible toxicity of some nanomaterials limit the application of these devices for in vivo sensing. This review provides a general overview of the state of the art in nanomaterial-mediated biosensors for in vivo and in vitro glucose sensing, and discusses some of the challenges associated with nanomaterial toxicity.
Collapse
Affiliation(s)
- Masashige Taguchi
- Agricultural and Biological Engineering Department, University of Florida, Gainesville, FL, USA
| | - Andre Ptitsyn
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, USA
| | - Eric S McLamore
- Agricultural and Biological Engineering Department, University of Florida, Gainesville, FL, USA
| | - Jonathan C Claussen
- US Naval Research Laboratory, Center for Bio-Molecular Science and Engineering, Washington, DC, USA College of Science, George Mason University, Fairfax, VA, USA
| |
Collapse
|
39
|
Singh J, Roychoudhury A, Srivastava M, Solanki PR, Lee DW, Lee SH, Malhotra BD. A dual enzyme functionalized nanostructured thulium oxide based interface for biomedical application. NANOSCALE 2014; 6:1195-1208. [PMID: 24301799 DOI: 10.1039/c3nr05043b] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this paper, we present results of the studies related to fabrication of a rare earth metal oxide based efficient biosensor using an interface based on hydrothermally prepared nanostructured thulium oxide (n-Tm2O3). A colloidal solution of prepared nanorods has been electrophoretically deposited (EPD) onto an indium-tin-oxide (ITO) glass substrate. The n-Tm2O3 nanorods are found to provide improved sensing characteristics to the electrode interface in terms of electroactive surface area, diffusion coefficient, charge transfer rate constant and electron transfer kinetics. The structural and morphological studies of n-Tm2O3 nanorods have been carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopic techniques. This interfacial platform has been used for fabrication of a total cholesterol biosensor by immobilizing cholesterol esterase (ChEt) and cholesterol oxidase (ChOx) onto a Tm2O3 nanostructured surface. The results of response studies of the fabricated ChEt-ChOx/n-Tm2O3/ITO bioelectrode show a broad linear range of 8-400 mg dL(-1), detection limit of 19.78 mg (dL cm(-2))(-1), and high sensitivity of 0.9245 μA (mg per dL cm(-2))(-1) with a response time of 40 s. Further, this bioelectrode has been utilized for estimation of total cholesterol with negligible interference (3%) from analytes present in human serum samples. The utilization of this n-Tm2O3 modified electrode for enzyme-based biosensor analysis offers an efficient strategy and a novel interface for application of the rare earth metal oxide materials in the field of electrochemical sensors and bioelectronic devices.
Collapse
Affiliation(s)
- Jay Singh
- Department of BIN Fusion Technology, Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonju, Jeonbuk 561-756, Korea.
| | | | | | | | | | | | | |
Collapse
|
40
|
Vanegas DC, Taguchi M, Chaturvedi P, Burrs S, Tan M, Yamaguchi H, McLamore ES. A comparative study of carbon–platinum hybrid nanostructure architecture for amperometric biosensing. Analyst 2014; 139:660-7. [DOI: 10.1039/c3an01718d] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This facile graph-onto methodology is highly efficient and competes with relatively complex graph-from synthesis of carbon–metal hybrid nanocomposites.
Collapse
Affiliation(s)
- Diana C. Vanegas
- Department of Agricultural & Biological Engineering
- University of Florida
- Gainesville, USA
- Department of Food Engineering
- Universidad del Valle
| | - Masashige Taguchi
- Department of Agricultural & Biological Engineering
- University of Florida
- Gainesville, USA
| | - Prachee Chaturvedi
- Department of Agricultural & Biological Engineering
- University of Florida
- Gainesville, USA
| | - Stephanie Burrs
- Department of Agricultural & Biological Engineering
- University of Florida
- Gainesville, USA
| | - Michael Tan
- Department of Mechanical and Aerospace Engineering
- University of Florida
- Gainesville, USA
| | - Hitomi Yamaguchi
- Department of Mechanical and Aerospace Engineering
- University of Florida
- Gainesville, USA
| | - Eric S. McLamore
- Department of Agricultural & Biological Engineering
- University of Florida
- Gainesville, USA
| |
Collapse
|
41
|
Ocaña C, del Valle M. Signal amplification for thrombin impedimetric aptasensor: sandwich protocol and use of gold-streptavidin nanoparticles. Biosens Bioelectron 2013; 54:408-14. [PMID: 24296061 DOI: 10.1016/j.bios.2013.10.068] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/04/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
Abstract
In this work, we report a highly specific amplification strategy demonstrated for the ultrasensitive biosensing of thrombin with the use of gold-streptavidin nanoparticles (strep-AuNPs) and silver reduction enhancement. The biotinylated aptamer of thrombin was immobilized onto an avidin-graphite epoxy composite (AvGEC) electrode surface by affinity interaction between biotin and avidin; electrochemical impedance measurements were performed in a solution containing the redox marker ferrocyanide/ferricyanide. The change in interfacial charge transfer resistance (Rct) experimented by the redox marker, was recorded to confirm aptamer complex formation with target protein, thrombin (Thr), in a label-free first stage. A biotinylated second thrombin aptamer, with complementary recognition properties was then used in a sandwich approach. The addition of strep-AuNPs and silver enhancement treatment led to a further increment of Rct thus obtaining significant signal amplification. The AptThrBio1-Thr-AptThrBio2 sandwich formation was inspected by confocal microcopy after incubation with streptavidin quantum dots. In order to visualize the presence of gold nanoparticles, the same silver enhancement treatment was applied to electrodes already modified with the nanoparticle-sandwich conjugate, allowing direct observation by scanning electron microscopy (SEM). Results showed high sensitivity and selectivity for thrombin detection, with an improvement from ca. 4.7 pM in a simple assay to 0.3 pM in the amplified reported scheme.
Collapse
Affiliation(s)
- Cristina Ocaña
- Sensors and Biosensors Group, Department of Chemistry, Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain
| | - Manel del Valle
- Sensors and Biosensors Group, Department of Chemistry, Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
42
|
Alkaline lipase from Pseudomonas fluorescens non-covalently immobilised on pristine versus oxidised multi-wall carbon nanotubes as efficient and recyclable catalytic systems in the synthesis of Solketal esters. Enzyme Microb Technol 2013; 53:263-70. [DOI: 10.1016/j.enzmictec.2013.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/15/2013] [Accepted: 05/09/2013] [Indexed: 11/18/2022]
|
43
|
Sharma A, Sumana G, Sapra S, Malhotra BD. Quantum dots self assembly based interface for blood cancer detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:8753-62. [PMID: 23721517 DOI: 10.1021/la401431q] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Results of the studies related to fabrication of sensitive electrochemical biosensor using an interface based on quantum dots (QDs) self-assembly is reported. The QDs assembly is sought to provide improved fundamental characteristics to the electrode interface in terms of electroactive surface area, diffusion coefficient, and electron transfer kinetics. This QDs modified electrode has been utilized to serve as a transducer surface for covalent immobilization of chronic myelogenous leukemia (CML) specific probe oligonucleotide, designed from the BCR-ABL fusion gene. The electrochemical characteristics of this biosensor toward various designed synthetic oligonucleotides reveal a significant enhancement in its mismatch discrimination capability compared to the biosensing assay without QDs under similar experimental conditions. The sensing characteristics of this biosensor offer a potential for detection of target oligonucleotide at a concentration as low as 1.0 pM. Furthermore, the PCR-amplified CML-positive patient samples with various BCR-ABL transcript ratios can be electrochemically distinguished from healthy samples, indicating promising application of the QDs based biosensor for clinical investigations.
Collapse
Affiliation(s)
- Aditya Sharma
- Department of Science & Technology Centre on Biomolecular Electronics, Biomedical Instrumentation Section, CSIR-National Physical Laboratory, New Delhi 110012, India
| | | | | | | |
Collapse
|
44
|
Burmeister JJ, Davis VA, Quintero JE, Pomerleau F, Huettl P, Gerhardt GA. Glutaraldehyde cross-linked glutamate oxidase coated microelectrode arrays: selectivity and resting levels of glutamate in the CNS. ACS Chem Neurosci 2013; 4:721-8. [PMID: 23650904 DOI: 10.1021/cn4000555] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Glutaraldehyde is widely used as a cross-linking agent for enzyme immobilization onto microelectrodes. Recent studies and prior reports indicate changes in enzyme activity and selectivity with certain glutaraldehyde cross-linking procedures that may jeopardize the performance of microelectrode recordings and lead to falsely elevated responses in biological systems. In this study, the sensitivity of glutaraldehyde cross-linked glutamate oxidase-based microelectrode arrays to 22 amino acids was tested and compared to glutamate. As expected, responses to electroactive amino acids (Cys, Tyr, Trp) were detected at both nonenzyme-coated and enzyme-coated microelectrodes sites, while the remaining amino acids yielded no detectable responses. Electroactive amino acids were effectively blocked with a m-phenylene diamine (mPD) layer and, subsequently, no responses were detected. Preliminary results on the use of poly(ethylene glycol) diglycidyl ether (PEGDE) as a potentially more reliable cross-linking agent for the immobilization of glutamate oxidase onto ceramic-based microelectrode arrays are reported and show no significant advantages over glutaraldehyde as we observe comparable selectivities and responses. These results support that glutaraldehyde-cross-linked glutamate oxidase retains sufficient enzyme specificity for accurate in vivo brain measures of tonic and phasic glutamate levels when immobilized using specific "wet" coating procedures.
Collapse
Affiliation(s)
- Jason J. Burmeister
- Department
of Anatomy and Neurobiology, Parkinson’s Disease Translational
Research Center of Excellence, ‡Center for Microelectrode Technology, University of Kentucky, Lexington, Kentucky 40536-0098, United States
| | - Verda A. Davis
- Department
of Anatomy and Neurobiology, Parkinson’s Disease Translational
Research Center of Excellence, ‡Center for Microelectrode Technology, University of Kentucky, Lexington, Kentucky 40536-0098, United States
| | - Jorge E. Quintero
- Department
of Anatomy and Neurobiology, Parkinson’s Disease Translational
Research Center of Excellence, ‡Center for Microelectrode Technology, University of Kentucky, Lexington, Kentucky 40536-0098, United States
| | - Francois Pomerleau
- Department
of Anatomy and Neurobiology, Parkinson’s Disease Translational
Research Center of Excellence, ‡Center for Microelectrode Technology, University of Kentucky, Lexington, Kentucky 40536-0098, United States
| | - Peter Huettl
- Department
of Anatomy and Neurobiology, Parkinson’s Disease Translational
Research Center of Excellence, ‡Center for Microelectrode Technology, University of Kentucky, Lexington, Kentucky 40536-0098, United States
| | - Greg A. Gerhardt
- Department
of Anatomy and Neurobiology, Parkinson’s Disease Translational
Research Center of Excellence, ‡Center for Microelectrode Technology, University of Kentucky, Lexington, Kentucky 40536-0098, United States
| |
Collapse
|
45
|
Pandey CM, Sharma A, Sumana G, Tiwari I, Malhotra BD. Cationic poly(lactic-co-glycolic acid) iron oxide microspheres for nucleic acid detection. NANOSCALE 2013; 5:3800-3807. [PMID: 23515585 DOI: 10.1039/c3nr34355c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Herein, we envisage the possibility of preparing stable cationic poly(lactic-co-glycolic acid) (PLGA) microspheres encapsulating the iron oxide nanoparticles (IONPs; 8-12 nm). The IONPs are incorporated into PLGA in organic phase followed by microsphere formation and chitosan coating in aqueous medium via nano-emulsion technique. The average size of the microspheres, as determined by dynamic light scattering are about 310 nm, while the zeta potential for the composite remains near 35 mV at pH 4.0. These microspheres are electrophoretically deposited onto indium tin oxide (ITO)-coated glass substrate used as cathode and parallel platinum plate as the counter electrode. This platform is utilized to fabricate a DNA biosensor, by immobilizing a probe sequence specific to Escherichia coli. The bioelectrode shows a surface-controlled electrode reaction with the electron transfer coefficient (α) of 0.64 and charge transfer rate constant (k(s)) of 61.73 s(-1). Under the optimal conditions, this biosensor shows a detection limit of 8.7 × 10(-14) M and is found to retain about 81% of the initial activity after 9 cycles of use.
Collapse
Affiliation(s)
- Chandra Mouli Pandey
- Biomedical Instrumentation Section, National Physical Laboratory (Council of Scientific & Industrial Research), New Delhi-110012, India
| | | | | | | | | |
Collapse
|
46
|
Shi J, McLamore ES, Marshall Porterfield D. Nanomaterial based self-referencing microbiosensors for cell and tissue physiology research. Biosens Bioelectron 2013; 40:127-34. [PMID: 22889647 PMCID: PMC3604890 DOI: 10.1016/j.bios.2012.06.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/23/2012] [Accepted: 06/25/2012] [Indexed: 12/11/2022]
Abstract
Physiological studies require sensitive tools to directly quantify transport kinetics in the cell/tissue spatial domain under physiological conditions. Although biosensors are capable of measuring concentration, their applications in physiological studies are limited due to the relatively low sensitivity, excessive drift/noise, and inability to quantify analyte transport. Nanomaterials significantly improve the electrochemical transduction of microelectrodes, and make the construction of highly sensitive microbiosensors possible. Furthermore, a novel biosensor modality, self-referencing (SR), enables direct measurement of real-time flux and drift/noise subtraction. SR microbiosensors based on nanomaterials have been used to measure the real-time analyte transport in several cell/tissue studies coupled with various stimulators/inhibitors. These studies include: glucose uptake in pancreatic β cells, cancer cells, muscle tissues, intestinal tissues and P. Aeruginosa biofilms; glutamate flux near neuronal cells; and endogenous indole-3-acetic acid flux near the surface of Zea mays roots. Results from the SR studies provide important insights into cancer, diabetes, nutrition, neurophysiology, environmental and plant physiology studies under dynamic physiological conditions, demonstrating that the SR microbiosensors are an extremely valuable tool for physiology research.
Collapse
Affiliation(s)
- Jin Shi
- Birck-Bindley Physiological Sensing Facility, Purdue University, USA
| | | | | |
Collapse
|
47
|
Eng AYS, Poh HL, Luxa J, Sofer Z, Pumera M. Potassium assisted reduction and doping of graphene oxides: towards faster electron transfer kinetics. RSC Adv 2013. [DOI: 10.1039/c3ra40758f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
48
|
Si P, Huang Y, Wang T, Ma J. Nanomaterials for electrochemical non-enzymatic glucose biosensors. RSC Adv 2013. [DOI: 10.1039/c2ra22360k] [Citation(s) in RCA: 265] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
49
|
Han M, Guo P, Wang X, Tu W, Bao J, Dai Z. Mesoporous SiO2–(l)-lysine hybrid nanodisks: direct electron transfer of superoxide dismutase, sensitive detection of superoxide anions and its application in living cell monitoring. RSC Adv 2013. [DOI: 10.1039/c3ra42403k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
50
|
Singh J, Srivastava M, Kalita P, Malhotra BD. A novel ternary NiFe2O4/CuO/FeO-chitosan nanocomposite as a cholesterol biosensor. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.08.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|