1
|
Alonso-Sarduy L, De Los Rios P, Benedetti F, Vobornik D, Dietler G, Kasas S, Longo G. Real-time monitoring of protein conformational changes using a nano-mechanical sensor. PLoS One 2014; 9:e103674. [PMID: 25077809 PMCID: PMC4117498 DOI: 10.1371/journal.pone.0103674] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/01/2014] [Indexed: 11/24/2022] Open
Abstract
Proteins can switch between different conformations in response to stimuli, such as pH or temperature variations, or to the binding of ligands. Such plasticity and its kinetics can have a crucial functional role, and their characterization has taken center stage in protein research. As an example, Topoisomerases are particularly interesting enzymes capable of managing tangled and supercoiled double-stranded DNA, thus facilitating many physiological processes. In this work, we describe the use of a cantilever-based nanomotion sensor to characterize the dynamics of human topoisomerase II (Topo II) enzymes and their response to different kinds of ligands, such as ATP, which enhance the conformational dynamics. The sensitivity and time resolution of this sensor allow determining quantitatively the correlation between the ATP concentration and the rate of Topo II conformational changes. Furthermore, we show how to rationalize the experimental results in a comprehensive model that takes into account both the physics of the cantilever and the dynamics of the ATPase cycle of the enzyme, shedding light on the kinetics of the process. Finally, we study the effect of aclarubicin, an anticancer drug, demonstrating that it affects directly the Topo II molecule inhibiting its conformational changes. These results pave the way to a new way of studying the intrinsic dynamics of proteins and of protein complexes allowing new applications ranging from fundamental proteomics to drug discovery and development and possibly to clinical practice.
Collapse
Affiliation(s)
- Livan Alonso-Sarduy
- Laboratory of Physics of Living Matter, Institute of Physics of Biological Systems, School of Basic Sciences, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Paolo De Los Rios
- Laboratory of Statistical Biophysics, Institute of Theoretical Physics, School of Basic Sciences, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Fabrizio Benedetti
- Laboratory of Physics of Living Matter, Institute of Physics of Biological Systems, School of Basic Sciences, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Dusan Vobornik
- Laboratory of Physics of Living Matter, Institute of Physics of Biological Systems, School of Basic Sciences, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Giovanni Dietler
- Laboratory of Physics of Living Matter, Institute of Physics of Biological Systems, School of Basic Sciences, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Sandor Kasas
- Laboratory of Physics of Living Matter, Institute of Physics of Biological Systems, School of Basic Sciences, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
- Faculty of Biology and Medicine, Department of Fundamental Neurosciences, Lausanne University, Lausanne, Switzerland
| | - Giovanni Longo
- Laboratory of Physics of Living Matter, Institute of Physics of Biological Systems, School of Basic Sciences, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
- Istituto Superiore di Sanità, Rome, Italy
- * E-mail:
| |
Collapse
|
2
|
Daudén MI, Martín-Benito J, Sánchez-Ferrero JC, Pulido-Cid M, Valpuesta JM, Carrascosa JL. Large terminase conformational change induced by connector binding in bacteriophage T7. J Biol Chem 2013; 288:16998-17007. [PMID: 23632014 DOI: 10.1074/jbc.m112.448951] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During bacteriophage morphogenesis DNA is translocated into a preformed prohead by the complex formed by the portal protein, or connector, plus the terminase, which are located at an especial prohead vertex. The terminase is a powerful motor that converts ATP hydrolysis into mechanical movement of the DNA. Here, we have determined the structure of the T7 large terminase by electron microscopy. The five terminase subunits assemble in a toroid that encloses a channel wide enough to accommodate dsDNA. The structure of the complete connector-terminase complex is also reported, revealing the coupling between the terminase and the connector forming a continuous channel. The structure of the terminase assembled into the complex showed a different conformation when compared with the isolated terminase pentamer. To understand in molecular terms the terminase morphological change, we generated the terminase atomic model based on the crystallographic structure of its phage T4 counterpart. The docking of the threaded model in both terminase conformations showed that the transition between the two states can be achieved by rigid body subunit rotation in the pentameric assembly. The existence of two terminase conformations and its possible relation to the sequential DNA translocation may shed light into the molecular bases of the packaging mechanism of bacteriophage T7.
Collapse
Affiliation(s)
- María I Daudén
- Department of Macromolecular Structure, 28049 Madrid, Spain
| | | | - Juan C Sánchez-Ferrero
- Computational Systems Biology Group, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Mar Pulido-Cid
- Department of Macromolecular Structure, 28049 Madrid, Spain
| | | | | |
Collapse
|
3
|
Calleja M, Kosaka PM, San Paulo Á, Tamayo J. Challenges for nanomechanical sensors in biological detection. NANOSCALE 2012; 4:4925-4938. [PMID: 22810853 DOI: 10.1039/c2nr31102j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Nanomechanical biosensing relies on changes in the movement and deformation of micro- and nanoscale objects when they interact with biomolecules and other biological targets. This field of research has provided ever-increasing records in the sensitivity of label-free detection but it has not yet been established as a practical alternative for biological detection. We analyze here the latest advancements in the field, along with the challenges remaining for nanomechanical biosensors to become a commonly used tool in biology and biochemistry laboratories.
Collapse
Affiliation(s)
- Montserrat Calleja
- Institute of Microelectronics of Madrid, CSIC, Isaac Newton 8 (PTM), Tres Cantos, 28760 Madrid, Spain.
| | | | | | | |
Collapse
|