Thermally-nucleated self-assembly of water and alcohol into stable structures at hydrophobic interfaces.
Nat Commun 2016;
7:13064. [PMID:
27713413 PMCID:
PMC5059760 DOI:
10.1038/ncomms13064]
[Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 08/31/2016] [Indexed: 11/17/2022] Open
Abstract
At the interface with solids, the mobility of liquid molecules tends to be reduced compared with bulk, often resulting in increased local order due to interactions with the surface of the solid. At room temperature, liquids such as water and methanol can form solvation structures, but the molecules remain highly mobile, thus preventing the formation of long-lived supramolecular assemblies. Here we show that mixtures of water with methanol can form a novel type of interfaces with hydrophobic solids. Combining in situ atomic force microscopy and multiscale molecular dynamics simulations, we identify solid-like two-dimensional interfacial structures that nucleate thermally, and are held together by an extended network of hydrogen bonds. On graphite, nucleation occurs above ∼35 °C, resulting in robust, multilayered nanoscopic patterns. Our findings could have an impact on many fields where water-alcohol mixtures play an important role such as fuel cells, chemical synthesis, self-assembly, catalysis and surface treatments.
Alcohol-water mixtures are characterized by the existence of segregated clusters, whose dynamics are too fast to be investigated in bulk solution. Here, Voïtchovsky et al. show the formation of stable two-dimensional water-alcohol wire-like structures via H-bonds on graphite surface at room temperature.
Collapse