1
|
Teixeira Polez R, Huynh N, Pridgeon CS, Valle-Delgado JJ, Harjumäki R, Österberg M. Insights into spheroids formation in cellulose nanofibrils and Matrigel hydrogels using AFM-based techniques. Mater Today Bio 2024; 26:101065. [PMID: 38706731 PMCID: PMC11066555 DOI: 10.1016/j.mtbio.2024.101065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/30/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024] Open
Abstract
The recent FDA decision to eliminate animal testing requirements emphasises the role of cell models, such as spheroids, as regulatory test alternatives for investigations of cellular behaviour, drug responses, and disease modelling. The influence of environment on spheroid formation are incompletely understood, leading to uncertainty in matrix selection for scaffold-based 3D culture. This study uses atomic force microscopy-based techniques to quantify cell adhesion to Matrigel and cellulose nanofibrils (CNF), and cell-cell adhesion forces, and their role in spheroid formation of hepatocellular carcinoma (HepG2) and induced pluripotent stem cells (iPS(IMR90)-4). Results showed different cell behaviour in CNF and Matrigel cultures. Both cell lines formed compact spheroids in CNF but loose cell aggregates in Matrigel. Interestingly, the type of cell adhesion protein, and not the bond strength, appeared to be a key factor in the formation of compact spheroids. The gene expression of E- and N-cadherins, proteins on cell membrane responsible for cell-cell interactions, was increased in CNF culture, leading to formation of compact spheroids while Matrigel culture induced integrin-laminin binding and downregulated E-cadherin expression, resulting in looser cell aggregates. These findings enhance our understanding of cell-biomaterial interactions in 3D cultures and offer insights for improved 3D cell models, culture biomaterials, and applications in drug research.
Collapse
Affiliation(s)
- Roberta Teixeira Polez
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790, Helsinki, Finland
| | - Ngoc Huynh
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland
| | - Chris S. Pridgeon
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790, Helsinki, Finland
| | - Juan José Valle-Delgado
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland
| | - Riina Harjumäki
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790, Helsinki, Finland
| | - Monika Österberg
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland
| |
Collapse
|
2
|
Nony L, Clair S, Uehli D, Herrero A, Themlin JM, Campos A, Para F, Pioda A, Loppacher C. Stiffness calibration of qPlus sensors at low temperature through thermal noise measurements. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:580-602. [PMID: 38887532 PMCID: PMC11181211 DOI: 10.3762/bjnano.15.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/25/2024] [Indexed: 06/20/2024]
Abstract
Non-contact atomic force microscopy (nc-AFM) offers a unique experimental framework for topographical imaging of surfaces with atomic and/or sub-molecular resolution. The technique also permits to perform frequency shift spectroscopy to quantitatively evaluate the tip-sample interaction forces and potentials above individual atoms or molecules. The stiffness of the probe, k, is then required to perform the frequency shift-to-force conversion. However, this quantity is generally known with little precision. An accurate stiffness calibration is therefore mandatory if accurate force measurements are targeted. In nc-AFM, the probe may either be a silicon cantilever, a quartz tuning fork (QTF), or a length extensional resonator (LER). When used in ultrahigh vacuum (UHV) and at low temperature, the technique mostly employs QTFs, based on the so-called qPlus design, which actually covers different types of sensors in terms of size and design of the electrodes. They all have in common a QTF featuring a metallic tip glued at the free end of one of its prongs. In this study, we report the stiffness calibration of a particular type of qPlus sensor in UHV and at 9.8 K by means of thermal noise measurements. The stiffness calibration of such high-k sensors, featuring high quality factors (Q) as well, requires to master both the acquisition parameters and the data post-processing. Our approach relies both on numerical simulations and experimental results. A thorough analysis of the thermal noise power spectral density of the qPlus fluctuations leads to an estimated stiffness of the first flexural eigenmode of ≃2000 N/m, with a maximum uncertainty of 10%, whereas the static stiffness of the sensor without tip is expected to be ≃3300 N/m. The former value must not be considered as being representative of a generic value for any qPlus, as our study stresses the influence of the tip on the estimated stiffness and points towards the need for the individual calibration of these probes. Although the framework focuses on a particular kind of sensor, it may be adapted to any high-k, high-Q nc-AFM probe used under similar conditions, such as silicon cantilevers and LERs.
Collapse
Affiliation(s)
- Laurent Nony
- Aix Marseille University, CNRS, IM2NP, UMR 7334, 13397 Marseille, France
| | - Sylvain Clair
- Aix Marseille University, CNRS, IM2NP, UMR 7334, 13397 Marseille, France
| | - Daniel Uehli
- SPECS Zürich GmbH, Technoparkstrasse 1, 8005 Zürich, Switzerland
| | - Aitziber Herrero
- SPECS Zürich GmbH, Technoparkstrasse 1, 8005 Zürich, Switzerland
| | - Jean-Marc Themlin
- Aix Marseille University, CNRS, IM2NP, UMR 7334, 13397 Marseille, France
| | - Andrea Campos
- Aix Marseille University, CNRS, Centrale Marseille, FSCM (FR1739), CP2M, 13397 Marseille, France
| | - Franck Para
- Aix Marseille University, CNRS, IM2NP, UMR 7334, 13397 Marseille, France
| | - Alessandro Pioda
- SPECS Zürich GmbH, Technoparkstrasse 1, 8005 Zürich, Switzerland
| | | |
Collapse
|
3
|
Holuigue H, Nacci L, Di Chiaro P, Chighizola M, Locatelli I, Schulte C, Alfano M, Diaferia GR, Podestà A. Native extracellular matrix probes to target patient- and tissue-specific cell-microenvironment interactions by force spectroscopy. NANOSCALE 2023; 15:15382-15395. [PMID: 37700706 DOI: 10.1039/d3nr01568h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Atomic Force Microscopy (AFM) is successfully used for the quantitative investigation of the cellular mechanosensing of the microenvironment. To this purpose, several force spectroscopy approaches aim at measuring the adhesive forces between two living cells and also between a cell and an appropriate reproduction of the extracellular matrix (ECM), typically exploiting tips suitably functionalised with single components (e.g. collagen, fibronectin) of the ECM. However, these probes only poorly reproduce the complexity of the native cellular microenvironment and consequently of the biological interactions. We developed a novel approach to produce AFM probes that faithfully retain the structural and biochemical complexity of the ECM; this was achieved by attaching to an AFM cantilever a micrometric slice of native decellularised ECM, which was cut by laser microdissection. We demonstrate that these probes preserve the morphological, mechanical, and chemical heterogeneity of the ECM. Native ECM probes can be used in force spectroscopy experiments aimed at targeting cell-microenvironment interactions. Here, we demonstrate the feasibility of dissecting mechanotransductive cell-ECM interactions in the 10 pN range. As proof-of-principle, we tested a rat bladder ECM probe against the AY-27 rat bladder cancer cell line. On the one hand, we obtained reproducible results using different probes derived from the same ECM regions; on the other hand, we detected differences in the adhesion patterns of distinct bladder ECM regions (submucosa, detrusor, and adventitia), in line with the disparities in composition and biophysical properties of these ECM regions. Our results demonstrate that native ECM probes, produced from patient-specific regions of organs and tissues, can be used to investigate cell-microenvironment interactions and early mechanotransductive processes by force spectroscopy. This opens new possibilities in the field of personalised medicine.
Collapse
Affiliation(s)
- H Holuigue
- CIMAINA and Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, Milano, Italy.
| | - L Nacci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy.
| | - P Di Chiaro
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy.
| | - M Chighizola
- CIMAINA and Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, Milano, Italy.
| | - I Locatelli
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS San Raffaele Hospital, Milan, Italy.
| | - C Schulte
- CIMAINA and Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, Milano, Italy.
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli Studi di Milano, Milano, Italy
| | - M Alfano
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS San Raffaele Hospital, Milan, Italy.
| | - G R Diaferia
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy.
| | - A Podestà
- CIMAINA and Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
4
|
Martinez-Vidal L, Chighizola M, Berardi M, Alchera E, Locatelli I, Pederzoli F, Venegoni C, Lucianò R, Milani P, Bielawski K, Salonia A, Podestà A, Alfano M. Micro-mechanical fingerprints of the rat bladder change in actinic cystitis and tumor presence. Commun Biol 2023; 6:217. [PMID: 36823431 PMCID: PMC9950451 DOI: 10.1038/s42003-023-04572-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Tissue mechanics determines tissue homeostasis, disease development and progression. Bladder strongly relies on its mechanical properties to perform its physiological function, but these are poorly unveiled under normal and pathological conditions. Here we characterize the mechanical fingerprints at the micro-scale level of the three tissue layers which compose the healthy bladder wall, and identify modifications associated with the onset and progression of pathological conditions (i.e., actinic cystitis and bladder cancer). We use two indentation-based instruments (an Atomic Force Microscope and a nanoindenter) and compare the micromechanical maps with a comprehensive histological analysis. We find that the healthy bladder wall is a mechanically inhomogeneous tissue, with a gradient of increasing stiffness from the urothelium to the lamina propria, which gradually decreases when reaching the muscle outer layer. Stiffening in fibrotic tissues correlate with increased deposition of dense extracellular matrix in the lamina propria. An increase in tissue compliance is observed before the onset and invasion of the tumor. By providing high resolution micromechanical investigation of each tissue layer of the bladder, we depict the intrinsic mechanical heterogeneity of the layers of a healthy bladder as compared with the mechanical properties alterations associated with either actinic cystitis or bladder tumor.
Collapse
Affiliation(s)
- Laura Martinez-Vidal
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, Milan, 20132, Italy
- Università Vita-Salute San Raffaele, Via Olgettina, 60, Milan, 20132, Italy
| | - M Chighizola
- C.I.Ma.I.Na and Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, Milan, 20133, Italy
| | - M Berardi
- Optics11, Amsterdam, The Netherlands
- LaserLab, Department of Physics and Astronomy, VU University, Amsterdam, The Netherlands
| | - E Alchera
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, Milan, 20132, Italy
| | - I Locatelli
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, Milan, 20132, Italy
| | - F Pederzoli
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, Milan, 20132, Italy
- Università Vita-Salute San Raffaele, Via Olgettina, 60, Milan, 20132, Italy
| | - C Venegoni
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, Milan, 20132, Italy
| | - R Lucianò
- Pathology Unit, IRCCS Ospedale San Raffaele, Milan, 20132, Italy
| | - P Milani
- C.I.Ma.I.Na and Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, Milan, 20133, Italy
| | | | - A Salonia
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, Milan, 20132, Italy
- Università Vita-Salute San Raffaele, Via Olgettina, 60, Milan, 20132, Italy
| | - A Podestà
- C.I.Ma.I.Na and Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, Milan, 20133, Italy.
| | - M Alfano
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, Milan, 20132, Italy.
| |
Collapse
|
5
|
Eskhan A, Johnson D. Microscale characterization of abiotic surfaces and prediction of their biofouling/anti-biofouling potential using the AFM colloidal probe technique. Adv Colloid Interface Sci 2022; 310:102796. [DOI: 10.1016/j.cis.2022.102796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022]
|
6
|
Chighizola M, Dini T, Marcotti S, D'Urso M, Piazzoni C, Borghi F, Previdi A, Ceriani L, Folliero C, Stramer B, Lenardi C, Milani P, Podestà A, Schulte C. The glycocalyx affects the mechanotransductive perception of the topographical microenvironment. J Nanobiotechnology 2022; 20:418. [PMID: 36123687 PMCID: PMC9484177 DOI: 10.1186/s12951-022-01585-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
The cell/microenvironment interface is the starting point of integrin-mediated mechanotransduction, but many details of mechanotransductive signal integration remain elusive due to the complexity of the involved (extra)cellular structures, such as the glycocalyx. We used nano-bio-interfaces reproducing the complex nanotopographical features of the extracellular matrix to analyse the glycocalyx impact on PC12 cell mechanosensing at the nanoscale (e.g., by force spectroscopy with functionalised probes). Our data demonstrates that the glycocalyx configuration affects spatio-temporal nanotopography-sensitive mechanotransductive events at the cell/microenvironment interface. Opposing effects of major glycocalyx removal were observed, when comparing flat and specific nanotopographical conditions. The excessive retrograde actin flow speed and force loading are strongly reduced on certain nanotopographies upon strong reduction of the native glycocalyx, while on the flat substrate we observe the opposite trend. Our results highlight the importance of the glycocalyx configuration in a molecular clutch force loading-dependent cellular mechanism for mechanosensing of microenvironmental nanotopographical features.
Collapse
Affiliation(s)
- Matteo Chighizola
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics "Aldo Pontremoli", University of Milan, Milan, Italy
| | - Tania Dini
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics "Aldo Pontremoli", University of Milan, Milan, Italy.,The FIRC Institute of Molecular Oncology (IFOM), Milan, Italy
| | - Stefania Marcotti
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Mirko D'Urso
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics "Aldo Pontremoli", University of Milan, Milan, Italy.,Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Claudio Piazzoni
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics "Aldo Pontremoli", University of Milan, Milan, Italy
| | - Francesca Borghi
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics "Aldo Pontremoli", University of Milan, Milan, Italy
| | - Anita Previdi
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics "Aldo Pontremoli", University of Milan, Milan, Italy
| | - Laura Ceriani
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics "Aldo Pontremoli", University of Milan, Milan, Italy
| | - Claudia Folliero
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics "Aldo Pontremoli", University of Milan, Milan, Italy.,The FIRC Institute of Molecular Oncology (IFOM), Milan, Italy
| | - Brian Stramer
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Cristina Lenardi
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics "Aldo Pontremoli", University of Milan, Milan, Italy
| | - Paolo Milani
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics "Aldo Pontremoli", University of Milan, Milan, Italy
| | - Alessandro Podestà
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics "Aldo Pontremoli", University of Milan, Milan, Italy.
| | - Carsten Schulte
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics "Aldo Pontremoli", University of Milan, Milan, Italy.
| |
Collapse
|
7
|
Holuigue H, Lorenc E, Chighizola M, Schulte C, Varinelli L, Deraco M, Guaglio M, Gariboldi M, Podestà A. Force Sensing on Cells and Tissues by Atomic Force Microscopy. SENSORS (BASEL, SWITZERLAND) 2022; 22:2197. [PMID: 35336366 PMCID: PMC8955449 DOI: 10.3390/s22062197] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023]
Abstract
Biosensors are aimed at detecting tiny physical and chemical stimuli in biological systems. Physical forces are ubiquitous, being implied in all cellular processes, including cell adhesion, migration, and differentiation. Given the strong interplay between cells and their microenvironment, the extracellular matrix (ECM) and the structural and mechanical properties of the ECM play an important role in the transmission of external stimuli to single cells within the tissue. Vice versa, cells themselves also use self-generated forces to probe the biophysical properties of the ECM. ECM mechanics influence cell fate, regulate tissue development, and show peculiar features in health and disease conditions of living organisms. Force sensing in biological systems is therefore crucial to dissecting and understanding complex biological processes, such as mechanotransduction. Atomic Force Microscopy (AFM), which can both sense and apply forces at the nanoscale, with sub-nanonewton sensitivity, represents an enabling technology and a crucial experimental tool in biophysics and mechanobiology. In this work, we report on the application of AFM to the study of biomechanical fingerprints of different components of biological systems, such as the ECM, the whole cell, and cellular components, such as the nucleus, lamellipodia and the glycocalyx. We show that physical observables such as the (spatially resolved) Young's Modulus (YM) of elasticity of ECMs or cells, and the effective thickness and stiffness of the glycocalyx, can be quantitatively characterized by AFM. Their modification can be correlated to changes in the microenvironment, physio-pathological conditions, or gene regulation.
Collapse
Affiliation(s)
- Hatice Holuigue
- CIMAINA and Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy; (H.H.); (E.L.); (M.C.); (C.S.)
| | - Ewelina Lorenc
- CIMAINA and Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy; (H.H.); (E.L.); (M.C.); (C.S.)
| | - Matteo Chighizola
- CIMAINA and Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy; (H.H.); (E.L.); (M.C.); (C.S.)
| | - Carsten Schulte
- CIMAINA and Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy; (H.H.); (E.L.); (M.C.); (C.S.)
| | - Luca Varinelli
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, 20133 Milan, Italy; (L.V.); (M.G.)
| | - Marcello Deraco
- Peritoneal Surface Malignancies Unit, Colorectal Surgery, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, 20133 Milan, Italy; (M.D.); (M.G.)
| | - Marcello Guaglio
- Peritoneal Surface Malignancies Unit, Colorectal Surgery, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, 20133 Milan, Italy; (M.D.); (M.G.)
| | - Manuela Gariboldi
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, 20133 Milan, Italy; (L.V.); (M.G.)
| | - Alessandro Podestà
- CIMAINA and Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy; (H.H.); (E.L.); (M.C.); (C.S.)
| |
Collapse
|
8
|
Chighizola M, Puricelli L, Bellon L, Podestà A. Large colloidal probes for atomic force microscopy: Fabrication and calibration issues. J Mol Recognit 2020; 34:e2879. [PMID: 33098182 DOI: 10.1002/jmr.2879] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 12/16/2022]
Abstract
Atomic force microscopy (AFM) is a powerful tool to investigate interaction forces at the micro and nanoscale. Cantilever stiffness, dimensions and geometry of the tip can be chosen according to the requirements of the specific application, in terms of spatial resolution and force sensitivity. Colloidal probes (CPs), obtained by attaching a spherical particle to a tipless (TL) cantilever, offer several advantages for accurate force measurements: tunable and well-characterisable radius; higher averaging capabilities (at the expense of spatial resolution) and sensitivity to weak interactions; a well-defined interaction geometry (sphere on flat), which allows accurate and reliable data fitting by means of analytical models. The dynamics of standard AFM probes has been widely investigated, and protocols have been developed for the calibration of the cantilever spring constant. Nevertheless, the dynamics of CPs, and in particular of large CPs, with radius well above 10 μm and mass comparable, or larger, than the cantilever mass, is at present still poorly characterized. Here we describe the fabrication and calibration of (large) CPs. We describe and discuss the peculiar dynamical behaviour of CPs, and present an alternative protocol for the accurate calibration of the spring constant.
Collapse
Affiliation(s)
- Matteo Chighizola
- C.I.Ma.I.Na. and Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, Milan, Italy
| | - Luca Puricelli
- C.I.Ma.I.Na. and Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, Milan, Italy
| | - Ludovic Bellon
- Laboratoire de Physique, Univ. Lyon, ENS de Lyon, Univ. Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Alessandro Podestà
- C.I.Ma.I.Na. and Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
9
|
Chighizola M, Previdi A, Dini T, Piazzoni C, Lenardi C, Milani P, Schulte C, Podestà A. Adhesion force spectroscopy with nanostructured colloidal probes reveals nanotopography-dependent early mechanotransductive interactions at the cell membrane level. NANOSCALE 2020; 12:14708-14723. [PMID: 32618323 DOI: 10.1039/d0nr01991g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mechanosensing, the ability of cells to perceive and interpret the microenvironmental biophysical cues (such as the nanotopography), impacts strongly cellular behaviour through mechanotransductive processes and signalling. These events are predominantly mediated by integrins, the principal cellular adhesion receptors located at the cell/extracellular matrix (ECM) interface. Because of the typical piconewton force range and nanometre length scale of mechanotransductive interactions, achieving a detailed understanding of the spatiotemporal dynamics occurring at the cell/microenvironment interface is challenging; sophisticated interdisciplinary methodologies are required. Moreover, an accurate control over the nanotopographical features of the microenvironment is essential, in order to systematically investigate and precisely assess the influence of the different nanotopographical motifs on the mechanotransductive process. In this framework, we were able to study and quantify the impact of microenvironmental nanotopography on early cellular adhesion events by means of adhesion force spectroscopy based on innovative colloidal probes mimicking the nanotopography of natural ECMs. These probes provided the opportunity to detect nanotopography-specific modulations of the molecular clutch force loading dynamics and integrin clustering at the level of single binding events, in the critical time window of nascent adhesion formation. Following this approach, we found that the nanotopographical features are responsible for an excessive force loading in single adhesion sites after 20-60 s of interaction, causing a drop in the number of adhesion sites. However, by manganese treatment we demonstrated that the availability of activated integrins is a critical regulatory factor for these nanotopography-dependent dynamics.
Collapse
Affiliation(s)
- M Chighizola
- C.I.Ma.I.Na. and Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, via Celoria 16, 20133 Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Eppell SJ, Friedenberg D, Payton O, Picco L, Zypman FR. Euler-Bernoulli theory accurately predicts atomic force microscope cantilever shape during non-equilibrium snap-to-contact motion. NANOTECHNOLOGY 2020; 31:185702. [PMID: 31962307 DOI: 10.1088/1361-6528/ab6dff] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We prove that the Euler-Bernoulli elastic beam theory can be reliably used to describe the dynamics of an atomic force microscope cantilever during the far from equilibrium snap-to-contact event. In conventional atomic force microscope operation, force-separation curves are obtained by post-processing voltage versus time traces produced by measuring one point on the cantilever close to the hanging end. In this article, we assess the validity of the Euler-Bernoulli equation during the snap-to-contact event. The assessment is based on a direct comparison between experiment and theory. The experiment uses Doppler vibrometry to measure displacement versus time for many points along the long axis of the cantilever. The theoretical algorithm is based on a solution of the Euler-Bernoulli equation to obtain the full shape of the cantilever as a function of time. The algorithm uses as boundary conditions, experimentally obtained information only near the hanging end of the cantilever. The solution is obtained in a manner that takes into account non-equilibrium motion. Within experimental error, the theory agrees with experiment indicating that the Euler-Bernoulli theory is appropriate to predict the cantilever kinematics during snap-to-contact. Since forces on the tip can be obtained from the instantaneous shape of the cantilever, this work should allow for computation of tip-sample forces during the snap-to-contact event from a conventional force-distance measured input.
Collapse
Affiliation(s)
- Steven J Eppell
- Biomedical Engineering Dept., Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44122, United States of America
| | | | | | | | | |
Collapse
|
11
|
Kosgodagan Acharige S, Laurent J, Steinberger A. Capillary force on a tilted cylinder: Atomic Force Microscope (AFM) measurements. J Colloid Interface Sci 2017; 505:1118-1124. [PMID: 28697550 DOI: 10.1016/j.jcis.2017.06.095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/26/2017] [Accepted: 06/28/2017] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS The capillary force in situations where the liquid meniscus is asymmetric, such as the one around a tilted object, has been hitherto barely investigated even though these situations are very common in practice. In particular, the capillary force exerted on a tilted object may depend on the dipping angle i. EXPERIMENTS We investigate experimentally the capillary force that applies on a tilted cylinder as a function of its dipping angle i, using a home-built tilting Atomic Force Microscope (AFM) with custom made probes. A micrometric-size rod is glued at the end of an AFM cantilever of known stiffness, whose deflection is measured when the cylindrical probe is dipped in and retracted from reference liquids. FINDINGS We show that a torque correction is necessary to understand the measured deflection. We give the explicit expression of this correction as a function of the probes' geometrical parameters, so that its magnitude can be readily evaluated. The results are compatible with a vertical capillary force varying as 1/cosi, in agreement with a recent theoretical prediction. Finally, we discuss the accuracy of the method for measuring the surface tension times the cosine of the contact angle of the liquid on the probe.
Collapse
Affiliation(s)
| | - Justine Laurent
- Univ Lyon, Ens de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, F-69342, Lyon, France.
| | - Audrey Steinberger
- Univ Lyon, Ens de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, F-69342, Lyon, France.
| |
Collapse
|
12
|
Paolino P, Aguilar Sandoval FA, Bellon L. Quadrature phase interferometer for high resolution force spectroscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2013; 84:095001. [PMID: 24089852 DOI: 10.1063/1.4819743] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this article, we present a deflection measurement setup for Atomic Force Microscopy (AFM). It is based on a quadrature phase differential interferometer: we measure the optical path difference between a laser beam reflecting above the cantilever tip and a reference beam reflecting on the static base of the sensor. A design with very low environmental susceptibility and another allowing calibrated measurements on a wide spectral range are described. Both enable a very high resolution (down to 2.5×10(-15) m/√Hz), illustrated by thermal noise measurements on AFM cantilevers. They present an excellent long-term stability and a constant sensitivity independent of the optical phase of the interferometer. A quick review shows that our precision is equaling or out-performing the best results reported in the literature, but for a much larger deflection range, up to a few μm.
Collapse
|