1
|
Alexandre M, Águas H, Fortunato E, Martins R, Mendes MJ. Understanding the Potential of Light Absorption in Dots-in-Host Semiconductors. ACS PHOTONICS 2024; 11:4048-4057. [PMID: 39429861 PMCID: PMC11487685 DOI: 10.1021/acsphotonics.4c00760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 10/22/2024]
Abstract
The outstanding physical properties of dots-in-host (QD@Host) hetero semiconductors demand detailed methods to fundamentally understand the best routes to optimize their potentialities for different applications. In this work, a 4-band k.p-based method was developed for rock-salt quantum dots (QDs) that describes the complete optical properties of arbitrary QD@Host systems, trailblazing the way for the full optoelectronic analysis of quantum-structured solar cells. Starting with the determination of the QD bandgap and validation against well-established literature results, the electron transition rate is then computed and analyzed against the main system parameters. This is followed by a multiparameter optimization, considering intermediate band solar cells as a promising application, where the best QD configuration was determined, together with the corresponding QD@Host absorption spectrum, in view of attaining the theoretical maximum efficiency (∼50%) of this photovoltaic technology. The results show the creation of pronounced sub-bandgap absorption due to the electronic transitions from/to the quantum-confined states, which enables a much broader exploitation of the sunlight spectrum.
Collapse
Affiliation(s)
- Miguel Alexandre
- Department of Materials Science,
NOVA School of Science and Technology and CEMOP/UNINOVA, i3N/CENIMAT, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Hugo Águas
- Department of Materials Science,
NOVA School of Science and Technology and CEMOP/UNINOVA, i3N/CENIMAT, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Elvira Fortunato
- Department of Materials Science,
NOVA School of Science and Technology and CEMOP/UNINOVA, i3N/CENIMAT, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Rodrigo Martins
- Department of Materials Science,
NOVA School of Science and Technology and CEMOP/UNINOVA, i3N/CENIMAT, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Manuel J. Mendes
- Department of Materials Science,
NOVA School of Science and Technology and CEMOP/UNINOVA, i3N/CENIMAT, Campus de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
2
|
Ribeiro G, Ferreira G, Menda UD, Alexandre M, Brites MJ, Barreiros MA, Jana S, Águas H, Martins R, Fernandes PA, Salomé P, Mendes MJ. Sub-Bandgap Sensitization of Perovskite Semiconductors via Colloidal Quantum Dots Incorporation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2447. [PMID: 37686955 PMCID: PMC10489900 DOI: 10.3390/nano13172447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/20/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
By taking advantage of the outstanding intrinsic optoelectronic properties of perovskite-based photovoltaic materials, together with the strong near-infrared (NIR) absorption and electronic confinement in PbS quantum dots (QDs), sub-bandgap photocurrent generation is possible, opening the way for solar cell efficiencies surpassing the classical limits. The present study shows an effective methodology for the inclusion of high densities of colloidal PbS QDs in a MAPbI3 (methylammonium lead iodide) perovskite matrix as a means to enhance the spectral window of photon absorption of the perovskite host film and allow photocurrent production below its bandgap. The QDs were introduced in the perovskite matrix in different sizes and concentrations to study the formation of quantum-confined levels within the host bandgap and the potential formation of a delocalized intermediate mini-band (IB). Pronounced sub-bandgap (in NIR) absorption was optically confirmed with the introduction of QDs in the perovskite. The consequent photocurrent generation was demonstrated via photoconductivity measurements, which indicated IB establishment in the films. Despite verifying the reduced crystallinity of the MAPbI3 matrix with a higher concentration and size of the embedded QDs, the nanostructured films showed pronounced enhancement (above 10-fold) in NIR absorption and consequent photocurrent generation at photon energies below the perovskite bandgap.
Collapse
Affiliation(s)
- G. Ribeiro
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal (M.A.); (S.J.); (H.Á.)
- INL, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; (P.A.F.); (P.S.)
| | - G. Ferreira
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal (M.A.); (S.J.); (H.Á.)
| | - U. D. Menda
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal (M.A.); (S.J.); (H.Á.)
| | - M. Alexandre
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal (M.A.); (S.J.); (H.Á.)
| | - M. J. Brites
- LNEG, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal; (M.J.B.)
| | - M. A. Barreiros
- LNEG, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa, Portugal; (M.J.B.)
| | - S. Jana
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal (M.A.); (S.J.); (H.Á.)
| | - H. Águas
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal (M.A.); (S.J.); (H.Á.)
| | - R. Martins
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal (M.A.); (S.J.); (H.Á.)
| | - P. A. Fernandes
- INL, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; (P.A.F.); (P.S.)
- CIETI, Departamento de Física, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, 4249-015 Porto, Portugal
- Departamento de Física, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - P. Salomé
- INL, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; (P.A.F.); (P.S.)
- i3N, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - M. J. Mendes
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal (M.A.); (S.J.); (H.Á.)
| |
Collapse
|
3
|
Cuadra L, Salcedo-Sanz S, Nieto-Borge JC. Carrier Transport in Colloidal Quantum Dot Intermediate Band Solar Cell Materials Using Network Science. Int J Mol Sci 2023; 24:3797. [PMID: 36835214 PMCID: PMC9960920 DOI: 10.3390/ijms24043797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Colloidal quantum dots (CQDs) have been proposed to obtain intermediate band (IB) materials. The IB solar cell can absorb sub-band-gap photons via an isolated IB within the gap, generating extra electron-hole pairs that increase the current without degrading the voltage, as has been demonstrated experimentally for real cells. In this paper, we model the electron hopping transport (HT) as a network embedded in space and energy so that a node represents the first excited electron state localized in a CQD while a link encodes the Miller-Abrahams (MA) hopping rate for the electron to hop from one node (=state) to another, forming an "electron-HT network". Similarly, we model the hole-HT system as a network so that a node encodes the first hole state localized in a CQD while a link represents the MA hopping rate for the hole to hop between nodes, leading to a "hole-HT network". The associated network Laplacian matrices allow for studying carrier dynamics in both networks. Our simulations suggest that reducing both the carrier effective mass in the ligand and the inter-dot distance increases HT efficiency. We have found a design constraint: It is necessary for the average barrier height to be larger than the energetic disorder to not degrade intra-band absorption.
Collapse
Affiliation(s)
- Lucas Cuadra
- Department of Signal Processing and Communications, University of Alcalá, 28805 Madrid, Spain
- Department of Physics and Mathematics, University of Alcalá, 28805 Madrid, Spain
| | - Sancho Salcedo-Sanz
- Department of Signal Processing and Communications, University of Alcalá, 28805 Madrid, Spain
| | | |
Collapse
|
4
|
Hahn RVH, Rodríguez-Bolívar S, Rodosthenous P, Skibinsky-Gitlin ES, Califano M, Gómez-Campos FM. Optical Absorption in N-Dimensional Colloidal Quantum Dot Arrays: Influence of Stoichiometry and Applications in Intermediate Band Solar Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3387. [PMID: 36234515 PMCID: PMC9565355 DOI: 10.3390/nano12193387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
We present a theoretical atomistic study of the optical properties of non-toxic InX (X = P, As, Sb) colloidal quantum dot arrays for application in photovoltaics. We focus on the electronic structure and optical absorption and on their dependence on array dimensionality and surface stoichiometry motivated by the rapid development of experimental techniques to achieve high periodicity and colloidal quantum dot characteristics. The homogeneous response of colloidal quantum dot arrays to different light polarizations is also investigated. Our results shed light on the optical behaviour of these novel multi-dimensional nanomaterials and identify some of them as ideal building blocks for intermediate band solar cells.
Collapse
Affiliation(s)
- Rebeca V. H. Hahn
- Departamento de Electrónica y Tecnología de los Computadores, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Salvador Rodríguez-Bolívar
- Departamento de Electrónica y Tecnología de los Computadores, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Panagiotis Rodosthenous
- Pollard Institute, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Erik S. Skibinsky-Gitlin
- Departamento de Electrónica y Tecnología de los Computadores, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Marco Califano
- Pollard Institute, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Francisco M. Gómez-Campos
- Departamento de Electrónica y Tecnología de los Computadores, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
5
|
Nguyen HT, Tran TT, Bhatt V, Kumar M, Yun JH. Photoluminescence Properties of CdSe/ZnS Quantum Dot Donor-Acceptor via Plasmon Coupling of Metal Nanostructures and Application on Photovoltaic Devices. J Phys Chem Lett 2022; 13:4394-4401. [PMID: 35546522 DOI: 10.1021/acs.jpclett.2c00903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hybrid nanostructures composed of quantum dots (QDs) and metal nanoparticles (MNS) have gained immense research interest because of their unique optical properties. In optoelectronic applications, quenching and enhancement in QD photoluminescence (PL) are critical parameters. Herein, gold nanoparticles coating a silica layer decorated with quantum dots (AuNPs@SiO2@QDs) are prepared with diverse SiO2 thickness and QD diameter for investigating the exciton-plasmon interaction. This reveals the charge interaction between QDs and AuNPs@SiO2 resulting from different impacts of the Föster energy-transfer process and plasmon resonance enhancement. The variation in both radiative and nonradiative energy-transfer processes in CdSe/ZnS QDs donor-acceptor pairs clarifies the impact of AuNPs@SiO2. In addition, the hybrid structures are plainly incorporated with silicon solar cells, which activated the improvement in the power conversion efficiency (PCE). With the significant tunability of the PL intensity in the visible and near-infrared regions, this hybrid nanostructure provides potential strategies for developing efficient optoelectronics via facile methods.
Collapse
Affiliation(s)
- Ha Trang Nguyen
- Department of Electrical Engineering, Incheon National University, Incheon 406772, Korea
| | - Thanh Thao Tran
- Department of Electrical Engineering, Incheon National University, Incheon 406772, Korea
| | - Vishwa Bhatt
- Department of Electrical Engineering, Incheon National University, Incheon 406772, Korea
| | - Manjeet Kumar
- Department of Electrical Engineering, Incheon National University, Incheon 406772, Korea
| | - Ju-Hyung Yun
- Department of Electrical Engineering, Incheon National University, Incheon 406772, Korea
| |
Collapse
|
6
|
Alexandre M, Águas H, Fortunato E, Martins R, Mendes MJ. Light management with quantum nanostructured dots-in-host semiconductors. LIGHT, SCIENCE & APPLICATIONS 2021; 10:231. [PMID: 34785654 PMCID: PMC8595380 DOI: 10.1038/s41377-021-00671-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Insightful knowledge on quantum nanostructured materials is paramount to engineer and exploit their vast gamut of applications. Here, a formalism based on the single-band effective mass equation was developed to determine the light absorption of colloidal quantum dots (CQDs) embedded in a wider bandgap semiconductor host, employing only three parameters (dots/host potential barrier, effective mass, and QD size). It was ascertained how to tune such parameters to design the energy level structure and consequent optical response. Our findings show that the CQD size has the biggest effect on the number and energy of the confined levels, while the potential barrier causes a linear shift of their values. While smaller QDs allow wider energetic separation between levels (as desired for most quantum-based technologies), the larger dots with higher number of levels are those that exhibit the strongest absorption. Nevertheless, it was unprecedently shown that such quantum-enabled absorption coefficients can reach the levels (104-105 cm-1) of bulk semiconductors.
Collapse
Affiliation(s)
- M Alexandre
- i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Campus de Caparica, 2829-516, Caparica, Portugal.
| | - H Águas
- i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Campus de Caparica, 2829-516, Caparica, Portugal
| | - E Fortunato
- i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Campus de Caparica, 2829-516, Caparica, Portugal
| | - R Martins
- i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Campus de Caparica, 2829-516, Caparica, Portugal
| | - M J Mendes
- i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Campus de Caparica, 2829-516, Caparica, Portugal.
| |
Collapse
|
7
|
Chen M, Lu L, Yu H, Li C, Zhao N. Integration of Colloidal Quantum Dots with Photonic Structures for Optoelectronic and Optical Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101560. [PMID: 34319002 PMCID: PMC8456226 DOI: 10.1002/advs.202101560] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/23/2021] [Indexed: 05/05/2023]
Abstract
Colloidal quantum dot (QD), a solution-processable nanoscale optoelectronic building block with well-controlled light absorption and emission properties, has emerged as a promising material system capable of interacting with various photonic structures. Integrated QD/photonic structures have been successfully realized in many optical and optoelectronic devices, enabling enhanced performance and/or new functionalities. In this review, the recent advances in this research area are summarized. In particular, the use of four typical photonic structures, namely, diffraction gratings, resonance cavities, plasmonic structures, and photonic crystals, in modulating the light absorption (e.g., for solar cells and photodetectors) or light emission (e.g., for color converters, lasers, and light emitting diodes) properties of QD-based devices is discussed. A brief overview of QD-based passive devices for on-chip photonic circuit integration is also presented to provide a holistic view on future opportunities for QD/photonic structure-integrated optoelectronic systems.
Collapse
Affiliation(s)
- Mengyu Chen
- School of Electronic Science and EngineeringXiamen UniversityXiamen361005P. R. China
- Department of Electronic EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong SARChina
| | - Lihua Lu
- School of Electronic Science and EngineeringXiamen UniversityXiamen361005P. R. China
| | - Hui Yu
- Department of Electronic EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong SARChina
| | - Cheng Li
- School of Electronic Science and EngineeringXiamen UniversityXiamen361005P. R. China
- Future DisplayInstitute of XiamenXiamen361005P. R. China
| | - Ni Zhao
- Department of Electronic EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong SARChina
| |
Collapse
|
8
|
Liu X, Kongsuwan N, Li X, Zhao D, Wu Z, Hess O, Zhang X. Tailoring the Third-Order Nonlinear Optical Property of a Hybrid Semiconductor Quantum Dot-Metal Nanoparticle: From Saturable to Fano-Enhanced Absorption. J Phys Chem Lett 2019; 10:7594-7602. [PMID: 31769991 DOI: 10.1021/acs.jpclett.9b02627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Semiconductor-metal hybrid nanostructures present an exotic class of nonlinear optical materials due to their potential optoelectronic applications. However, most studies to date focus on their total optical responses instead of contributions from individual nonlinear orders. In this Letter, we present a theoretical study on the third-order nonlinear optical absorption of a hybrid colloidal semiconductor quantum dot (SQD)-metal nanoparticle (MNP) system. We develop a novel analytic treatment based on the nonlinear density matrix equation and derive a closed-form expression for the optical susceptibility. Our study identifies the parameter space that governs the system's optical transition from being a saturable absorber to a Fano-enhanced absorber. We attribute this transition to the plasmon-mediated self-interaction of the SQD. The findings provide a valuable guideline for optimized designs of functional nanophotonic devices based on SQD-MNP hybrid structures.
Collapse
Affiliation(s)
- Xiaona Liu
- School of Physical Science and Technology , Southwest University , Chongqing 400715 , P. R. China
- State Key Laboratory of Superlattices and Microstructures , Institute of Semiconductors, Chinese Academy of Sciences , Beijing 100083 , P. R. China
- The Blackett Laboratory , Imperial College London , Prince Consort Road , London SW7 2AZ , United Kingdom
| | - Nuttawut Kongsuwan
- The Blackett Laboratory , Imperial College London , Prince Consort Road , London SW7 2AZ , United Kingdom
| | - Xiaoguang Li
- Institute for Advanced Study , Shenzhen University , Shenzhen 518060 , P. R. China
| | - Dongxing Zhao
- School of Physical Science and Technology , Southwest University , Chongqing 400715 , P. R. China
| | - Zhengmao Wu
- School of Physical Science and Technology , Southwest University , Chongqing 400715 , P. R. China
| | - Ortwin Hess
- The Blackett Laboratory , Imperial College London , Prince Consort Road , London SW7 2AZ , United Kingdom
| | - Xinhui Zhang
- State Key Laboratory of Superlattices and Microstructures , Institute of Semiconductors, Chinese Academy of Sciences , Beijing 100083 , P. R. China
| |
Collapse
|
9
|
Bezen L, Yochelis S, Jayarathna D, Bhunia D, Achim C, Paltiel Y. Chiral Molecule-Enhanced Extinction Ratios of Quantum Dots Coupled to Random Plasmonic Structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3076-3081. [PMID: 29424540 DOI: 10.1021/acs.langmuir.8b00155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Devices based on self-assembled hybrid colloidal quantum dots (CQDs) coupled with specific organic linker molecules are a promising way to simply realize room-temperature, spectrally tunable light detectors. Nevertheless, this type of devices usually has low quantum efficiency. Plasmonics has been shown as an efficient tool in guiding and confining light at nanoscale dimensions. As plasmonic modes exhibit highly confined fields, they locally increase light-matter interactions and consequently enhance the performance of CQD-based photodetectors. Recent publications presented experimental results of large extinction enhancement from a monolayer of CQDs coupled to random gold nanoislands using a monolayer of organic alkyl linkers. We report here that a twofold larger extinction enhancement in the visible spectrum is observed when a monolayer of helical chiral molecules connects the CQDs to the gold structure instead of a monolayer of achiral linkers. We also show that this effect provides insight into the chirality of the molecules within the monolayer. In future work, we plan to evaluate the potential of these results to be used in the construction of a more efficient and sensitive photon detector based on surface QDs, as well as to supply a simple way to map the chirality of a single chiral monolayer.
Collapse
Affiliation(s)
- Lior Bezen
- Applied Physics Department , The Hebrew University , Jerusalem 91904 , Israel
| | - Shira Yochelis
- Applied Physics Department , The Hebrew University , Jerusalem 91904 , Israel
| | - Dilhara Jayarathna
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Dinesh Bhunia
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Catalina Achim
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Yossi Paltiel
- Applied Physics Department , The Hebrew University , Jerusalem 91904 , Israel
| |
Collapse
|
10
|
Affiliation(s)
- Kosei Ueno
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Tomoya Oshikiri
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Quan Sun
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Xu Shi
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Hiroaki Misawa
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
11
|
Office paper decorated with silver nanostars - an alternative cost effective platform for trace analyte detection by SERS. Sci Rep 2017; 7:2480. [PMID: 28559536 PMCID: PMC5449394 DOI: 10.1038/s41598-017-02484-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/30/2017] [Indexed: 12/02/2022] Open
Abstract
For analytical applications in portable sensors to be used in the point-of-need, low-cost SERS substrates using paper as a base, are an alternative. In this work, SERS substrates were produced on two different types of paper: a high porosity paper (Whatman no. 1); and a low porosity paper (commercially available office paper, Portucel Soporcel). Solutions containing spherical silver nanoparticles (AgNPs) and silver nanostars (AgNSs) were separately drop-casted on hydrophilic wells patterned on the papers. The porosity of the paper was found to play a determinant role on the AgNP and AgNS distribution along the paper fibres, with most of the nanoparticles being retained at the illuminated surface of the office paper substrate. The highest SERS enhancements were obtained for the office paper substrate, with deposited AgNSs. A limit of detection for rhodamine-6G as low as 11.4 ± 0.2 pg could be achieved, with an analytical enhancement factor of ≈107 for this specific analyte. The well patterning technique allowed good signal uniformity (RSD of 1.7%). Besides, these SERS substrates remained stable after 5 weeks of storage (RSD of 7.3%). Paper-induced aggregation of AgNPs was found to be a viable alternative to the classical salt-induced aggregation, to obtain a highly sensitive SERS substrates.
Collapse
|
12
|
Murphy GP, Gough JJ, Higgins LJ, Karanikolas VD, Wilson KM, Garcia Coindreau JA, Zubialevich VZ, Parbrook PJ, Bradley AL. Ag colloids and arrays for plasmonic non-radiative energy transfer from quantum dots to a quantum well. NANOTECHNOLOGY 2017; 28:115401. [PMID: 28140370 DOI: 10.1088/1361-6528/aa5b67] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Non-radiative energy transfer (NRET) can be an efficient process of benefit to many applications including photovoltaics, sensors, light emitting diodes and photodetectors. Combining the remarkable optical properties of quantum dots (QDs) with the electrical properties of quantum wells (QWs) allows for the formation of hybrid devices which can utilize NRET as a means of transferring absorbed optical energy from the QDs to the QW. Here we report on plasmon-enhanced NRET from semiconductor nanocrystal QDs to a QW. Ag nanoparticles in the form of colloids and ordered arrays are used to demonstrate plasmon-mediated NRET from QDs to QWs with varying top barrier thicknesses. Plasmon-mediated energy transfer (ET) efficiencies of up to ∼25% are observed with the Ag colloids. The distance dependence of the plasmon-mediated ET is found to follow the same d -4 dependence as the direct QD to QW ET. There is also evidence for an increase in the characteristic distance of the interaction, thus indicating that it follows a Förster-like model with the Ag nanoparticle-QD acting as an enhanced donor dipole. Ordered Ag nanoparticle arrays display plasmon-mediated ET efficiencies up to ∼21%. To explore the tunability of the array system, two arrays with different geometries are presented. It is demonstrated that changing the geometry of the array allows a transition from overall quenching of the acceptor QW emission to enhancement, as well as control of the competition between the QD donor quenching and ET rates.
Collapse
Affiliation(s)
- Graham P Murphy
- School of Physics and CRANN, Trinity College Dublin, College Green, Dublin 2, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhang W, Yan YL, Guo FQ, Zhong LS, Wang J, Wang Y, Xu YH. Size-dependent photoluminescent property of hybrid nanoparticlesconsisted with YVO4:Eu3+and gold. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1757-899x/182/1/012024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Foroutan S, Baghban H. Theory of plasmonic quantum-dot-based intermediate band solar cells. APPLIED OPTICS 2016; 55:3405-3412. [PMID: 27140348 DOI: 10.1364/ao.55.003405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
High scattering cross section of plasmonic nanoparticles in intermediate band solar cells (IBSCs) based on quantum dots (QDs) can obviate the low photon absorption in QD layers. In this report, we present a modeling procedure to extract the optical and electrical characteristics of a GaAs-based plasmonic intermediate band solar cell (PIBSC). It is shown that metal nanoparticles (MNPs) that are responsible for scattering of incident photons in the absorber layer can lead to photocurrent enhancement, provided that an optimum size and density is calculated. Proper design of QD layers that control the intermediate energy band location, as well as the loss-scattering trade-off of MNPs, can result in an efficiency increase of ∼4.2% in the PIBSC compared to a similar IBSC, and an increase of ∼5.9% compared to a reference GaAs PIN cell. A comprehensive discussion on the effect of intermediate band region width and current-voltage characteristics of the designed cell is presented.
Collapse
|
15
|
Yan J, Liu P, Ma C, Lin Z, Yang G. Plasmonic near-touching titanium oxide nanoparticles to realize solar energy harvesting and effective local heating. NANOSCALE 2016; 8:8826-8838. [PMID: 27067248 DOI: 10.1039/c6nr01295g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Through the excitation of plasmon resonance, the energy of plasmonic nanoparticles either reradiates through light scattering or decays into energetic electrons (absorption). The plasmon-induced absorption can greatly enhance the efficiency of solar energy harvesting, local heating, photodetection and photocatalysis. Here, we demonstrate that heavily self-doped titanium oxide nanoparticles (TiO1.67 analogue arising from oxygen vacancies in rutile TiO2) with the plasmon resonance dominated by an interband transition shows strong absorption to build a broadband perfect absorber in the wavelength range from 300 to 2000 nm covering the solar irradiation spectrum completely. The absorptivity of the fabricated array is greater than 90% in the whole spectral range. And the broadband and strong absorption is due to the plasmon hybridization and hot spot generation from near-touching TiO1.67 nanoparticles with different sizes. What is more, the local heating of a TiO1.67 nanoparticle layer is fast and effective. The temperature increases quickly from 30 °C to 80 °C within 200 seconds. This local heating can realize rapid solar-enabled evaporation which can find applications in large-scale distillation and seawater desalination. These findings actually open a pathway for applications of these newly developed plasmonic materials in the energy and environment fields.
Collapse
Affiliation(s)
- Jiahao Yan
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, School of Physics & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| | | | | | | | | |
Collapse
|
16
|
Wing WJ, Sadeghi SM, Gutha RR, Campbell Q, Mao C. Metallic nanoparticle shape and size effects on aluminum oxide-induced enhancement of exciton-plasmon coupling and quantum dot emission. JOURNAL OF APPLIED PHYSICS 2015; 118:124302. [PMID: 26442574 PMCID: PMC4583514 DOI: 10.1063/1.4931378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/01/2015] [Indexed: 06/05/2023]
Abstract
We investigate the shape and size effects of gold metallic nanoparticles on the enhancement of exciton-plasmon coupling and emission of semiconductor quantum dots induced via the simultaneous impact of metal-oxide and plasmonic effects. This enhancement occurs when metallic nanoparticle arrays are separated from the quantum dots by a layered thin film consisting of a high index dielectric material (silicon) and aluminum oxide. Our results show that adding the aluminum oxide layer can increase the degree of polarization of quantum dot emission induced by metallic nanorods by nearly two times, when these nanorods have large aspect ratios. We show when the aspect ratio of these nanorods is reduced to half, the aluminum oxide loses its impact, leading to no improvement in the degree of polarization. These results suggest that a silicon/aluminum oxide layer can significantly enhance exciton-plasmon coupling when quantum dots are in the vicinity of metallic nanoantennas with high aspect ratios.
Collapse
Affiliation(s)
- Waylin J Wing
- Department of Physics, University of Alabama in Huntsville , Huntsville, Alabama 35899, USA
| | - Seyed M Sadeghi
- Department of Physics, University of Alabama in Huntsville , Huntsville, Alabama 35899, USA
| | - Rithvik R Gutha
- Department of Physics, University of Alabama in Huntsville , Huntsville, Alabama 35899, USA
| | - Quinn Campbell
- Department of Physics, University of Alabama in Huntsville , Huntsville, Alabama 35899, USA
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma , Norman, Oklahoma 73019, USA
| |
Collapse
|
17
|
Fu Y, Hara Y, Miller CW, Lopez R. Enhancing light absorption within the carrier transport length in quantum junction solar cells. APPLIED OPTICS 2015; 54:7933-7939. [PMID: 26368966 DOI: 10.1364/ao.54.007933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Colloidal quantum dot (CQD) solar cells have attracted tremendous attention because of their tunable absorption spectrum window and potentially low processing cost. Recently reported quantum junction solar cells represent a promising approach to building a rectifying photovoltaic device that employs CQD layers on each side of the p-n junction. However, the ultimate efficiency of CQD solar cells is still highly limited by their high trap state density in both p- and n-type CQDs. By modeling photonic structures to enhance the light absorption within the carrier transport length and by ensuring that the carrier generation and collection efficiencies were both augmented, our work shows that overall device current density could be improved. We utilized a two-dimensional numerical model to calculate the characteristics of patterned CQD solar cells based on a simple grating structure. Our calculation predicts a short circuit current density as high as 31 mA/cm2, a value nearly 1.5 times larger than that of the conventional flat design, showing the great potential value of patterned quantum junction solar cells.
Collapse
|
18
|
Vörös M, Galli G, Zimanyi GT. Colloidal Nanoparticles for Intermediate Band Solar Cells. ACS NANO 2015; 9:6882-6890. [PMID: 26042468 DOI: 10.1021/acsnano.5b00332] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The Intermediate Band (IB) solar cell concept is a promising idea to transcend the Shockley-Queisser limit. Using the results of first-principles calculations, we propose that colloidal nanoparticles (CNPs) are a viable and efficient platform for the implementation of the IB solar cell concept. We focused on CdSe CNPs and we showed that intragap states present in the isolated CNPs with reconstructed surfaces combine to form an IB in arrays of CNPs, which is well separated from the valence and conduction band edges. We demonstrated that optical transitions to and from the IB are active. We also showed that the IB can be electron doped in a solution, e.g., by decamethylcobaltocene, thus activating an IB-induced absorption process. Our results, together with the recent report of a nearly 10% efficient CNP solar cell, indicate that colloidal nanoparticle intermediate band solar cells are a promising platform to overcome the Shockley-Queisser limit.
Collapse
Affiliation(s)
- Márton Vörös
- †Department of Physics, University of California, Davis, California 95616, United States
- ‡Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Giulia Galli
- ‡Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- #Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Gergely T Zimanyi
- †Department of Physics, University of California, Davis, California 95616, United States
| |
Collapse
|
19
|
Torres-Torres C, López-Suárez A, Can-Uc B, Rangel-Rojo R, Tamayo-Rivera L, Oliver A. Collective optical Kerr effect exhibited by an integrated configuration of silicon quantum dots and gold nanoparticles embedded in ion-implanted silica. NANOTECHNOLOGY 2015; 26:295701. [PMID: 26135968 DOI: 10.1088/0957-4484/26/29/295701] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The study of the third-order optical nonlinear response exhibited by a composite containing gold nanoparticles and silicon quantum dots nucleated by ion implantation in a high-purity silica matrix is presented. The nanocomposites were explored as an integrated configuration containing two different ion-implanted distributions. The time-resolved optical Kerr gate and z-scan techniques were conducted using 80 fs pulses at a 825 nm wavelength; while the nanosecond response was investigated by a vectorial two-wave mixing method at 532 nm with 1 ns pulses. An ultrafast purely electronic nonlinearity was associated to the optical Kerr effect for the femtosecond experiments, while a thermal effect was identified as the main mechanism responsible for the nonlinear optical refraction induced by nanosecond pulses. Comparative experimental tests for examining the contribution of the Au and Si distributions to the total third-order optical response were carried out. We consider that the additional defects generated by consecutive ion irradiations in the preparation of ion-implanted samples do not notably modify the off-resonance electronic optical nonlinearities; but they do result in an important change for near-resonant nanosecond third-order optical phenomena exhibited by the closely spaced nanoparticle distributions.
Collapse
Affiliation(s)
- C Torres-Torres
- Sección de Estudios de Posgrado e Investigación, ESIME ZAC, Instituto Politécnico Nacional, México, D.F. 07738, Mexico
| | | | | | | | | | | |
Collapse
|
20
|
Abualnaja KM, Šiller L, Horrocks BR. Metal-enhanced luminescence of silicon quantum dots: effects of nanoparticles and molecular electron donors and acceptors on the photofading kinetics. NANOTECHNOLOGY 2015; 26:145704. [PMID: 25785514 DOI: 10.1088/0957-4484/26/14/145704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Alkyl-capped silicon quantum dots (SiQDs) show enhanced luminescence when drop cast as films on glass slides in mixtures with Ag or Au nanoparticles or the electron donor ferrocene (Fc). Metal enhancement of quantum dot photoluminescence (PL) is known to arise from a combination of the intense near-field associated with the surface plasmon of the metal on the rate of absorption and the decrease in the lifetime of the excited state. Here we present evidence that an additional factor is also involved: electron transfer from the metal to the quantum dot. Under CW irradiation with an argon ion laser at 488 nm, SiQDs undergo a reversible photofading of the PL as the particles photoionize. A steady-state condition is established by the competition between photoionization and electron-hole recombination. The fading of the initial PL I0 to the steady-state value I∞ can be modelled by a simple first order decay with a lognormal distribution of rates, which reflects the heterogeneity of the sample. In the presence of Ag and Au nanoparticles, the modal rate constants of photofading increase by factors of up to 4-fold and the ratio I0/I∞ decreases by factors up to 5-fold; this is consistent with an increase in the rate of electron-hole recombination facilitated by the metal nanoparticles acting as sources of electrons. Further support for this interpretation comes from the enhancement in PL observed in photofading experiments with films of SiQDs mixed with Fc; this compound is a well-known one-electron donor, but shows no plasmon band which complicates the estimation of PL enhancement with Ag NPs.
Collapse
Affiliation(s)
- Khamael M Abualnaja
- School of Chemical Engineering and Advanced Materials, Herschel Building, Newcastle University, NE1 7RU, UK
| | | | | |
Collapse
|
21
|
Mendes MJ, Morawiec S, Mateus T, Lyubchyk A, Águas H, Ferreira I, Fortunato E, Martins R, Priolo F, Crupi I. Broadband light trapping in thin film solar cells with self-organized plasmonic nano-colloids. NANOTECHNOLOGY 2015; 26:135202. [PMID: 25760231 DOI: 10.1088/0957-4484/26/13/135202] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The intense light scattered from metal nanoparticles sustaining surface plasmons makes them attractive for light trapping in photovoltaic applications. However, a strong resonant response from nanoparticle ensembles can only be obtained if the particles have monodisperse physical properties. Presently, the chemical synthesis of colloidal nanoparticles is the method that produces the highest monodispersion in geometry and material quality, with the added benefits of being low-temperature, low-cost, easily scalable and of allowing control of the surface coverage of the deposited particles. In this paper, novel plasmonic back-reflector structures were developed using spherical gold colloids with appropriate dimensions for pronounced far-field scattering. The plasmonic back reflectors are incorporated in the rear contact of thin film n-i-p nanocrystalline silicon solar cells to boost their photocurrent generation via optical path length enhancement inside the silicon layer. The quantum efficiency spectra of the devices revealed a remarkable broadband enhancement, resulting from both light scattering from the metal nanoparticles and improved light incoupling caused by the hemispherical corrugations at the cells' front surface formed from the deposition of material over the spherically shaped colloids.
Collapse
Affiliation(s)
- Manuel J Mendes
- CENIMAT/I3N, Departamento de Ciência dos Materiais, and CEMOP/UNINOVA, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal. MATIS IMM-CNR, via S. Sofia 64, I-95123 Catania, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Araújo A, Caro C, Mendes MJ, Nunes D, Fortunato E, Franco R, Águas H, Martins R. Highly efficient nanoplasmonic SERS on cardboard packaging substrates. NANOTECHNOLOGY 2014; 25:415202. [PMID: 25257959 DOI: 10.1088/0957-4484/25/41/415202] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This work reports on highly efficient surface enhanced Raman spectroscopy (SERS) constructed on low-cost, fully recyclable and highly reproducible cardboard plates, which are commonly used as disposable packaging material. The active optical component is based on plasmonic silver nanoparticle structures separated from the metal surface of the cardboard by a nanoscale dielectric gap. The SERS response of the silver (Ag) nanoparticles of various shapes and sizes were systematically investigated, and a Raman enhancement factor higher than 106 for rhodamine 6G detection was achieved. The spectral matching of the plasmonic resonance for maximum Raman enhancement with the optimal local electric field enhancement produced by 60 nm-sized Ag NPs predicted by the electromagnetic simulations reinforces the outstanding results achieved. Furthermore, the nanoplasmonic SERS substrate exhibited high reproducibility and stability. The SERS signals showed that the intensity variation was less than 5%, and the SERS performance could be maintained for up to at least 6 months.
Collapse
|
23
|
Morawiec S, Mendes MJ, Filonovich SA, Mateus T, Mirabella S, Aguas H, Ferreira I, Simone F, Fortunato E, Martins R, Priolo F, Crupi I. Broadband photocurrent enhancement in a-Si:H solar cells with plasmonic back reflectors. OPTICS EXPRESS 2014; 22 Suppl 4:A1059-A1070. [PMID: 24978069 DOI: 10.1364/oe.22.0a1059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Plasmonic light trapping in thin film silicon solar cells is a promising route to achieve high efficiency with reduced volumes of semiconductor material. In this paper, we study the enhancement in the opto-electronic performance of thin a-Si:H solar cells due to the light scattering effects of plasmonic back reflectors (PBRs), composed of self-assembled silver nanoparticles (NPs), incorporated on the cells' rear contact. The optical properties of the PBRs are investigated according to the morphology of the NPs, which can be tuned by the fabrication parameters. By analyzing sets of solar cells built on distinct PBRs we show that the photocurrent enhancement achieved in the a-Si:H light trapping window (600 - 800 nm) stays in linear relation with the PBRs diffuse reflection. The best-performing PBRs allow a pronounced broadband photocurrent enhancement in the cells which is attributed not only to the plasmon-assisted light scattering from the NPs but also to the front surface texture originated from the conformal growth of the cell material over the particles. As a result, remarkably high values of J(sc) and V(oc) are achieved in comparison to those previously reported in the literature for the same type of devices.
Collapse
|
24
|
Mendes MJ, Morawiec S, Simone F, Priolo F, Crupi I. Colloidal plasmonic back reflectors for light trapping in solar cells. NANOSCALE 2014; 6:4796-4805. [PMID: 24664403 DOI: 10.1039/c3nr06768h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A novel type of plasmonic light trapping structure is presented in this paper, composed of metal nanoparticles synthesized in colloidal solution and self-assembled in uniform long-range arrays using a wet-coating method. The high monodispersion in size and spherical shape of the gold colloids used in this work allows a precise match between their measured optical properties and electromagnetic simulations performed with Mie theory, and enables the full exploitation of their collective resonant plasmonic behavior for light-scattering applications. The colloidal arrays are integrated in plasmonic back reflector (PBR) structures aimed for light trapping in thin film solar cells. The PBRs exhibit high diffuse reflectance (up to 75%) in the red and near-infrared spectrum, which can pronouncedly enhance the near-bandgap photocurrent generated by the cells. Furthermore, the colloidal PBRs are fabricated by low-temperature (<120 °C) processes that allow their implementation, as a final step of the cell construction, in typical commercial thin film devices generally fabricated in a superstrate configuration.
Collapse
|