1
|
Böhme S, Arias-Zapata J, Garnier J, Girardot C, Legrain A, Zelsmann M. Annealing treatments of cylindrical siloxane-based block copolymers optimized for nanomanufacturing. MICRO AND NANO ENGINEERING 2018. [DOI: 10.1016/j.mne.2018.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
2
|
Smith BD, Patil JJ, Ferralis N, Grossman JC. Catalyst Self-Assembly for Scalable Patterning of Sub 10 nm Ultrahigh Aspect Ratio Nanopores in Silicon. ACS APPLIED MATERIALS & INTERFACES 2016; 8:8043-8049. [PMID: 26999295 DOI: 10.1021/acsami.6b01927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nanoporous silicon (NPSi) has received significant attention for its potential to contribute to a large number of applications, but has not yet been extensively implemented because of the inability of current state-of-the-art nanofabrication techniques to achieve sufficiently small pore size, high aspect ratio, and process scalability. In this work we describe the fabrication of NPSi via a modified metal-assisted chemical etching (MACE) process in which silica-shell gold nanoparticle (SiO2-AuNP) monolayers self-assemble from solution onto a silicon substrate. Exposure to the MACE etchant solution results in the rapid consumption of the SiO2 spacer shell, leaving well-spaced arrays of bare AuNPs on the substrate surface. Particles then begin to catalyze the etching of nanopore arrays without interruption, resulting in the formation of highly anisotropic individual pores. The excellent directionality of pore formation is thought to be promoted by the homogeneous interparticle spacing of the gold core nanocatalysts, which allow for even hole injection and subsequent etching along preferred crystallographic orientations. Electron microscopy and image analysis confirm the ability of the developed technique to produce micrometer-scale arrays of sub 10 nm nanopores with narrow size distributions and aspect ratios of over 100:1. By introducing a scalable process for obtaining high aspect ratio pores in a novel size regime, this work opens the door to implementation of NPSi in numerous devices and applications.
Collapse
Affiliation(s)
- Brendan D Smith
- Department of Materials Science and Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jatin J Patil
- Department of Materials Science and Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, University of Waterloo , 200 University Avenue West, Waterloo, Ontario N2L 6G9, Canada
| | - Nicola Ferralis
- Department of Materials Science and Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeffrey C Grossman
- Department of Materials Science and Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Bazaka K, Jacob MV, Ostrikov KK. Sustainable Life Cycles of Natural-Precursor-Derived Nanocarbons. Chem Rev 2015; 116:163-214. [PMID: 26717047 DOI: 10.1021/acs.chemrev.5b00566] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sustainable societal and economic development relies on novel nanotechnologies that offer maximum efficiency at minimal environmental cost. Yet, it is very challenging to apply green chemistry approaches across the entire life cycle of nanotech products, from design and nanomaterial synthesis to utilization and disposal. Recently, novel, efficient methods based on nonequilibrium reactive plasma chemistries that minimize the process steps and dramatically reduce the use of expensive and hazardous reagents have been applied to low-cost natural and waste sources to produce value-added nanomaterials with a wide range of applications. This review discusses the distinctive effects of nonequilibrium reactive chemistries and how these effects can aid and advance the integration of sustainable chemistry into each stage of nanotech product life. Examples of the use of enabling plasma-based technologies in sustainable production and degradation of nanotech products are discussed-from selection of precursors derived from natural resources and their conversion into functional building units, to methods for green synthesis of useful naturally degradable carbon-based nanomaterials, to device operation and eventual disintegration into naturally degradable yet potentially reusable byproducts.
Collapse
Affiliation(s)
- Kateryna Bazaka
- Institute for Future Environments, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology , Brisbane, Queensland 4000, Australia.,Electronics Materials Lab, College of Science, Technology and Engineering, James Cook University , Townsville, Queensland 4811, Australia.,CSIRO-QUT Joint Sustainable Materials and Devices Laboratory, Commonwealth Scientific and Industrial Research Organization , P.O. Box 218, Lindfield, New South Wales 2070, Australia
| | - Mohan V Jacob
- Electronics Materials Lab, College of Science, Technology and Engineering, James Cook University , Townsville, Queensland 4811, Australia
| | - Kostya Ken Ostrikov
- Institute for Future Environments, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology , Brisbane, Queensland 4000, Australia.,CSIRO-QUT Joint Sustainable Materials and Devices Laboratory, Commonwealth Scientific and Industrial Research Organization , P.O. Box 218, Lindfield, New South Wales 2070, Australia.,School of Physics, The University of Sydney , Sydney, New South Wales 2006, Australia
| |
Collapse
|