1
|
Navarro E, González MU, Béron F, Tejo F, Escrig J, García-Martín JM. Large-Area Nanopillar Arrays by Glancing Angle Deposition with Tailored Magnetic Properties. NANOMATERIALS 2022; 12:nano12071186. [PMID: 35407304 PMCID: PMC9000416 DOI: 10.3390/nano12071186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023]
Abstract
Ferromagnetic films down to thicknesses of tens of nanometers and composed by polycrystalline Fe and Fe2O3 nanopillars are grown in large areas by glancing angle deposition with magnetron sputtering (MS-GLAD). The morphological features of these films strongly depend on the growth conditions. Vertical or tilted nanopillars have been fabricated depending on whether the substrate is kept rotating azimuthally during deposition or not, respectively. The magnetic properties of these nanopillars films, such as hysteresis loops squareness, adjustable switching fields, magnetic anisotropy and coercivity, can be tuned with the specific morphology. In particular, the growth performed through a collimator mask mounted onto a not rotating azimuthally substrate produces almost isolated well-defined tilted nanopillars that exhibit a magnetic hardening. The first-order reversal curves diagrams and micromagnetic simulations revealed that a growth-induced uniaxial anisotropy, associated with an anisotropic surface morphology produced by the glancing angle deposition in the direction perpendicular to the atomic flux, plays an important role in the observed magnetic signatures. These results demonstrate the potential of the MS-GLAD method to fabricate nanostructured films in large area with tailored structural and magnetic properties for technological applications.
Collapse
Affiliation(s)
- Elena Navarro
- Instituto de Magnetismo Aplicado, Universidad Complutense de Madrid-ADIF-CSIC, P.O. Box 155, Las Rozas, 28230 Madrid, Spain
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence:
| | - María Ujué González
- Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, Tres Cantos, 28760 Madrid, Spain; (M.U.G.); (J.M.G.-M.)
| | - Fanny Béron
- Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-859, SP, Brazil;
| | - Felipe Tejo
- Departamento de Física, Facultad de Ciencia, Universidad de Santiago de Chile (USACH), Santiago 9170124, Chile; (F.T.); (J.E.)
- Instituto de Ciencia de Materiales de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Juan Escrig
- Departamento de Física, Facultad de Ciencia, Universidad de Santiago de Chile (USACH), Santiago 9170124, Chile; (F.T.); (J.E.)
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Santiago 9170124, Chile
| | - José Miguel García-Martín
- Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, Tres Cantos, 28760 Madrid, Spain; (M.U.G.); (J.M.G.-M.)
| |
Collapse
|
2
|
Khalakhan I, Bogar M, Vorokhta M, Kúš P, Yakovlev Y, Dopita M, Sandbeck DJS, Cherevko S, Matolínová I, Amenitsch H. Evolution of the PtNi Bimetallic Alloy Fuel Cell Catalyst under Simulated Operational Conditions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17602-17610. [PMID: 32191029 DOI: 10.1021/acsami.0c02083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Comprehensive understanding of the catalyst corrosion dynamics is a prerequisite for the development of an efficient cathode catalyst in proton-exchange membrane fuel cells. To reach this aim, the behavior of fuel cell catalysts must be investigated directly under reaction conditions. Herein, we applied a strategic combination of in situ/online techniques: in situ electrochemical atomic force microscopy, in situ grazing incidence small angle X-ray scattering, and electrochemical scanning flow cell with online detection by inductively coupled plasma mass spectrometry. This combination of techniques allows in-depth investigation of the potential-dependent surface restructuring of a PtNi model thin film catalyst during potentiodynamic cycling in an aqueous acidic electrolyte. The study reveals a clear correlation between the upper potential limit and structural behavior of the PtNi catalyst, namely, its dealloying and coarsening. The results show that at 0.6 and 1.0 VRHE upper potentials, the PtNi catalyst essentially preserves its structure during the entire cycling procedure. The crucial changes in the morphology of PtNi layers are found to occur at 1.3 and 1.5 VRHE cycling potentials. Strong dealloying at the early stage of cycling is substituted with strong coarsening of catalyst particles at the later stage. The coarsening at the later stage of cycling is assigned to the electrochemical Ostwald ripening process.
Collapse
Affiliation(s)
- Ivan Khalakhan
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University, V Holešovičkách 2, 18000 Prague 8, Czech Republic
| | - Marco Bogar
- Graz University of Technology, Institute for Inorganic Chemistry, Stremayrgasse 9, 8010 Graz, Austria
- CERIC-ERIC c/o Elettra Synchrotron, S.S. 14 Km 163.5, 34149 Basovizza, Trieste, Italy
| | - Mykhailo Vorokhta
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University, V Holešovičkách 2, 18000 Prague 8, Czech Republic
| | - Peter Kúš
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University, V Holešovičkách 2, 18000 Prague 8, Czech Republic
| | - Yurii Yakovlev
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University, V Holešovičkách 2, 18000 Prague 8, Czech Republic
| | - Milan Dopita
- Faculty of Mathematics and Physics, Department of Condensed Matter Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
| | - Daniel John Seale Sandbeck
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH. Egerlandstr. 3, 91058 Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH. Egerlandstr. 3, 91058 Erlangen, Germany
| | - Iva Matolínová
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University, V Holešovičkách 2, 18000 Prague 8, Czech Republic
| | - Heinz Amenitsch
- Graz University of Technology, Institute for Inorganic Chemistry, Stremayrgasse 9, 8010 Graz, Austria
| |
Collapse
|
3
|
Vergara J, Favieres C, Magén C, de Teresa JM, Ibarra MR, Madurga V. Structurally Oriented Nano-Sheets in Co Thin Films: Changing Their Anisotropic Physical Properties by Thermally-Induced Relaxation. MATERIALS 2017; 10:ma10121390. [PMID: 29206155 PMCID: PMC5744325 DOI: 10.3390/ma10121390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/24/2017] [Accepted: 11/29/2017] [Indexed: 11/21/2022]
Abstract
We show how nanocrystalline Co films formed by separated oblique nano-sheets display anisotropy in their resistivity, magnetization process, surface nano-morphology and optical transmission. After performing a heat treatment at 270 °C, these anisotropies decrease. This loss has been monitored measuring the resistivity as a function of temperature. The resistivity measured parallel to the direction of the nano-sheets has been constant up to 270 °C, but it decreases when measured perpendicular to the nano-sheets. This suggests the existence of a structural relaxation, which produces the change of the Co nano-sheets during annealing. The changes in the nano-morphology and the local chemical composition of the films at the nanoscale after heating above 270 °C have been analysed by scanning transmission electron microscopy (STEM). Thus, an approach and coalescence of the nano-sheets have been directly visualized. The spectrum of activation energies of this structural relaxation has indicated that the coalescence of the nano-sheets has taken place between 1.2 and 1.7 eV. In addition, an increase in the size of the nano-crystals has occurred in the samples annealed at 400 °C. This study may be relevant for the application in devices working, for example, in the GHz range and to achieve the retention of the anisotropy of these films at higher temperatures.
Collapse
Affiliation(s)
- José Vergara
- Laboratorio de Magnetismo, Departamento de Física, Universidad Pública de Navarra, 31006 Pamplona, Spain.
- Instituto de Materiales Avanzados, Universidad Pública de Navarra, 31006 Pamplona, Spain.
| | - Cristina Favieres
- Laboratorio de Magnetismo, Departamento de Física, Universidad Pública de Navarra, 31006 Pamplona, Spain.
- Instituto de Materiales Avanzados, Universidad Pública de Navarra, 31006 Pamplona, Spain.
| | - César Magén
- Instituto de Nanociencia de Aragón (INA) and Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain.
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain.
- Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain.
| | - José María de Teresa
- Instituto de Nanociencia de Aragón (INA) and Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain.
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain.
- Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain.
| | - Manuel Ricardo Ibarra
- Instituto de Nanociencia de Aragón (INA) and Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain.
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain.
| | - Vicente Madurga
- Laboratorio de Magnetismo, Departamento de Física, Universidad Pública de Navarra, 31006 Pamplona, Spain.
- Instituto de Materiales Avanzados, Universidad Pública de Navarra, 31006 Pamplona, Spain.
| |
Collapse
|