1
|
Xiao R, Zhou X, Zhang C, Liu X, Han S, Che C. Organic Thermoelectric Materials for Wearable Electronic Devices. SENSORS (BASEL, SWITZERLAND) 2024; 24:4600. [PMID: 39065999 PMCID: PMC11280558 DOI: 10.3390/s24144600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Wearable electronic devices have emerged as a pivotal technology in healthcare and artificial intelligence robots. Among the materials that are employed in wearable electronic devices, organic thermoelectric materials possess great application potential due to their advantages such as flexibility, easy processing ability, no working noise, being self-powered, applicable in a wide range of scenarios, etc. However, compared with classic conductive materials and inorganic thermoelectric materials, the research on organic thermoelectric materials is still insufficient. In order to improve our understanding of the potential of organic thermoelectric materials in wearable electronic devices, this paper reviews the types of organic thermoelectric materials and composites, their assembly strategies, and their potential applications in wearable electronic devices. This review aims to guide new researchers and offer strategic insights into wearable electronic device development.
Collapse
Affiliation(s)
- Runfeng Xiao
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China; (R.X.); (C.Z.); (X.L.)
| | - Xiaoyan Zhou
- Taizhou Research Institute, Southern University of Science and Technology, Taizhou 317700, China;
| | - Chan Zhang
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China; (R.X.); (C.Z.); (X.L.)
| | - Xi Liu
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China; (R.X.); (C.Z.); (X.L.)
| | - Shaobo Han
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China; (R.X.); (C.Z.); (X.L.)
| | - Canyan Che
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
2
|
Jafarkhani S, Khakbiz M, Amoabediny G, Mohammadi J, Tahmasebipour M, Rabbani H, Salimi A, Lee KB. A novel co-culture assay to evaluate the effects of sympathetic innervation on vascular smooth muscle differentiation. Bioorg Chem 2023; 133:106233. [PMID: 36731293 DOI: 10.1016/j.bioorg.2022.106233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/22/2022]
Abstract
Dedifferentiation of vascular smooth muscle cells (VSMCs) from a functional phenotype to an inverse synthetic phenotype is a symptom of cardiovascular disorders, such as atherosclerosis and hypertension. The sympathetic nervous system (SNS) is an essential regulator of the differentiation of vascular smooth muscle cells (VSMCs). In addition, numerous studies suggest that SNS also stimulates VSMCs to retain their contractile phenotype. However, the molecular mechanisms for this stimulation have not been thoroughly studied. In this study, we used a novel in vitro co-culture method to evaluate the effective cellular interactions and stimulatory effects of sympathetic neurons on the differentiation of VSMCs. We co-cultured rat neural-like pheochromocytoma cells (PC12) and rat aortic VSMCs with this method. Expression of VSMCs contractile genes, including smooth muscle actin (acta2), myosin heavy chain (myh11), elastin (eln), and smoothelin (smtn), were determined by quantitative real-time-PCR analysis as an indicator of VSMCs differentiation. Fold changes for specific contractile genes in VSMCs grown in vitro for seven days in the presence (innervated) and absence (non-innervated) of sympathetic neurons were 3.5 for acta2, 6.5 for myh11, 4.19 for eln, and 4 for smtn (normalized to Tata Binding Protein (TBP)). As a result, these data suggest that sympathetic innervation promotes VSMCs' contractile gene expression and also maintains VSMCs' functional phenotype.
Collapse
Affiliation(s)
- Saeed Jafarkhani
- Division of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, North Karegar Ave., PO Box 14395-1561, Tehran, Iran
| | - Mehrdad Khakbiz
- Division of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, North Karegar Ave., PO Box 14395-1561, Tehran, Iran; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Ghasem Amoabediny
- Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran; Faculty of Chemical Engineering, College of Engineering, University of Tehran, Iran
| | - Javad Mohammadi
- Division of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, North Karegar Ave., PO Box 14395-1561, Tehran, Iran
| | - Mohammad Tahmasebipour
- Department of Interdisciplinary Technology, Faculty of New Sciences and Technologies, University of Tehran, North Karegar Ave., PO Box 14395-1561, Tehran, Iran
| | - Hodjattallah Rabbani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ali Salimi
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
3
|
|
4
|
Šafaříková E, Ehlich J, Stříteský S, Vala M, Weiter M, Pacherník J, Kubala L, Víteček J. Conductive Polymer PEDOT:PSS-Based Platform for Embryonic Stem-Cell Differentiation. Int J Mol Sci 2022; 23:ijms23031107. [PMID: 35163031 PMCID: PMC8835127 DOI: 10.3390/ijms23031107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 01/12/2023] Open
Abstract
Organic semiconductors are constantly gaining interest in regenerative medicine. Their tunable physico-chemical properties, including electrical conductivity, are very promising for the control of stem-cell differentiation. However, their use for combined material-based and electrical stimulation remains largely underexplored. Therefore, we carried out a study on whether a platform based on the conductive polymer poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) can be beneficial to the differentiation of mouse embryonic stem cells (mESCs). The platform was prepared using the layout of a standard 24-well cell-culture plate. Polyethylene naphthalate foil served as the substrate for the preparation of interdigitated gold electrodes by physical vapor deposition. The PEDOT:PSS pattern was fabricated by precise screen printing over the gold electrodes. The PEDOT:PSS platform was able to produce higher electrical current with the pulsed-direct-current (DC) electrostimulation mode (1 Hz, 200 mV/mm, 100 ms pulse duration) compared to plain gold electrodes. There was a dominant capacitive component. In proof-of-concept experiments, mESCs were able to respond to such electrostimulation by membrane depolarization and elevation of cytosolic calcium. Further, the PEDOT:PSS platform was able to upregulate cardiomyogenesis and potentially inhibit early neurogenesis per se with minor contribution of electrostimulation. Hence, the present work highlights the large potential of PEDOT:PSS in regenerative medicine.
Collapse
Affiliation(s)
- Eva Šafaříková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic; (E.Š.); (L.K.)
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic;
| | - Jiří Ehlich
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic; (J.E.); (S.S.); (M.V.); (M.W.)
| | - Stanislav Stříteský
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic; (J.E.); (S.S.); (M.V.); (M.W.)
| | - Martin Vala
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic; (J.E.); (S.S.); (M.V.); (M.W.)
| | - Martin Weiter
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic; (J.E.); (S.S.); (M.V.); (M.W.)
| | - Jiří Pacherník
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic;
| | - Lukáš Kubala
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic; (E.Š.); (L.K.)
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic;
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekařská 53, 656 91 Brno, Czech Republic
| | - Jan Víteček
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic; (E.Š.); (L.K.)
- Correspondence: ; Tel./Fax: +420-541-517104; Fax: +420-541-517104
| |
Collapse
|
5
|
Lin LJ, Ge YM, Tian Y, Liu N, Luo XH, Xue YT, Xue YZB, Wen CY, Tang B. Multi-scale mechanical investigation of articular cartilage suffered progressive pseudorheumatoid dysplasia. Clin Biomech (Bristol, Avon) 2020; 79:104947. [PMID: 31959394 DOI: 10.1016/j.clinbiomech.2019.12.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 11/16/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Progressive pseudorheumatoid dysplasia is a rare skeletal dysplasia mainly caused by abnormal autosomal recessive inheritance. Although the main function of cartilage is mechanical support and the characteristics of this disease is the degradation of AC, previous studies on it had been mainly focused on clinical and genetic aspects and the mechanical behavior of the cartilage affected by PPRD is still ambiguous. In this study, we investigate the mechanics and structure of the cartilage suffered disease at multi-scale, from individual chondrocytes to the bulk-scale tissue. METHODS Depth-sensing indenter were employed to investigate the mechanics of cartilage; we performed atomic force microscope nanoindentation to investigate the cell mechanics and scanning electron microscopy were used to explore the structure feature and chemical composition. FINDINGS The elastic modulus of chondrocytes harvested from cartilage suffered from progressive pseudorheumatoid dysplasia is significantly higher than from normal cartilage, same trend were also found in tissue level. Moreover, denser collagen meshwork and matrix calcification were also observed. INTERPRETATION The elastic modulus of cartilage should closely related to its denser structure and the calcification, and may potentially be an indicator for clinical diagnosis. The stiffening of chondrocytes during PPRD progression should play a rather important role in its pathogenesis.
Collapse
Affiliation(s)
- L J Lin
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Y M Ge
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Y Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - N Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - X H Luo
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Y T Xue
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Y Z B Xue
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - C Y Wen
- Interdisciplinary Division of Biomedical Engineering, Hong Kong Polytechnic University, HKUSAR, China
| | - B Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China; Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
6
|
Abend A, Steele C, Schmidt S, Frank R, Jahnke HG, Zink M. Proliferation and Cluster Analysis of Neurons and Glial Cell Organization on Nanocolumnar TiN Sub-Strates. Int J Mol Sci 2020; 21:E6249. [PMID: 32872379 PMCID: PMC7503702 DOI: 10.3390/ijms21176249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
Biomaterials employed for neural stimulation, as well as brain/machine interfaces, offer great perspectives to combat neurodegenerative diseases, while application of lab-on-a-chip devices such as multielectrode arrays is a promising alternative to assess neural function in vitro. For bioelectronic monitoring, nanostructured microelectrodes are required, which exhibit an increased surface area where the detection sensitivity is not reduced by the self-impedance of the electrode. In our study, we investigated the interaction of neurons (SH-SY5Y) and glial cells (U-87 MG) with nanocolumnar titanium nitride (TiN) electrode materials in comparison to TiN with larger surface grains, gold, and indium tin oxide (ITO) substrates. Glial cells showed an enhanced proliferation on TiN materials; however, these cells spread evenly distributed over all the substrate surfaces. By contrast, neurons proliferated fastest on nanocolumnar TiN and formed large cell agglomerations. We implemented a radial autocorrelation function of cellular positions combined with various clustering algorithms. These combined analyses allowed us to quantify the largest cluster on nanocolumnar TiN; however, on ITO and gold, neurons spread more homogeneously across the substrates. As SH-SY5Y cells tend to grow in clusters under physiologic conditions, our study proves nanocolumnar TiN as a potential bioactive material candidate for the application of microelectrodes in contact with neurons. To this end, the employed K-means clustering algorithm together with radial autocorrelation analysis is a valuable tool to quantify cell-surface interaction and cell organization to evaluate biomaterials' performance in vitro.
Collapse
Affiliation(s)
- Alice Abend
- Soft Matter Physics Division and Biotechnology & Biomedical Group, Peter-Debye-Institute for Soft Matter Physics, Leipzig University, Linnéstr. 5, 04103 Leipzig, Germany; (A.A.); (C.S.)
| | - Chelsie Steele
- Soft Matter Physics Division and Biotechnology & Biomedical Group, Peter-Debye-Institute for Soft Matter Physics, Leipzig University, Linnéstr. 5, 04103 Leipzig, Germany; (A.A.); (C.S.)
| | - Sabine Schmidt
- Centre for Biotechnology and Biomedicine, Molecular Biological-Biochemical Processing Technology, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany; (S.S.); (R.F.)
| | - Ronny Frank
- Centre for Biotechnology and Biomedicine, Molecular Biological-Biochemical Processing Technology, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany; (S.S.); (R.F.)
| | - Heinz-Georg Jahnke
- Centre for Biotechnology and Biomedicine, Molecular Biological-Biochemical Processing Technology, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany; (S.S.); (R.F.)
| | - Mareike Zink
- Soft Matter Physics Division and Biotechnology & Biomedical Group, Peter-Debye-Institute for Soft Matter Physics, Leipzig University, Linnéstr. 5, 04103 Leipzig, Germany; (A.A.); (C.S.)
| |
Collapse
|
7
|
Mikušová N, Nechvilová K, Kalendová A, Hájková T, Capáková Z, Junkar I, Lehocký M, Mozetič M, Humpolíček P. The effect of composition of a polymeric coating on the biofilm formation of bacteria and filamentous fungi. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2018.1429435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Nikola Mikušová
- Centre of Polymer Systems, Tomas Bata University in Zlin, Tr. Tomase Bati, Zlin, Czech Republic
| | - Kateřina Nechvilová
- Department of Paints and Organic Coatings, Faculty of Chemical Technology, Institute of Chemistry and Technology of Macromolecular Materials, Pardubice, Czech Republic
| | - Andréa Kalendová
- Department of Paints and Organic Coatings, Faculty of Chemical Technology, Institute of Chemistry and Technology of Macromolecular Materials, Pardubice, Czech Republic
| | - Tereza Hájková
- Department of Paints and Organic Coatings, Faculty of Chemical Technology, Institute of Chemistry and Technology of Macromolecular Materials, Pardubice, Czech Republic
| | - Zdenka Capáková
- Centre of Polymer Systems, Tomas Bata University in Zlin, Tr. Tomase Bati, Zlin, Czech Republic
| | - Ita Junkar
- Department of Surface Engineering and Optoelectronics, Josef Stefan Institute, Ljubljana, Slovenia
| | - Marián Lehocký
- Centre of Polymer Systems, Tomas Bata University in Zlin, Tr. Tomase Bati, Zlin, Czech Republic
| | - Miran Mozetič
- Department of Surface Engineering and Optoelectronics, Josef Stefan Institute, Ljubljana, Slovenia
| | - Petr Humpolíček
- Centre of Polymer Systems, Tomas Bata University in Zlin, Tr. Tomase Bati, Zlin, Czech Republic
- Polymer Centre, Faculty of Technology, Tomas Bata University in Zlin, Zlin, Czech Republic
| |
Collapse
|
8
|
Zhang X, Zhang G, Li J, He X, Wang Y, Hang R, Huang X, Tang B, Chu PK. Cellular response to nano-structured Zr and ZrO2 alloyed layers on Ti-6Al-4V. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:523-530. [DOI: 10.1016/j.msec.2018.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 03/19/2018] [Accepted: 05/02/2018] [Indexed: 11/30/2022]
|
9
|
Scharin-Mehlmann M, Häring A, Rommel M, Dirnecker T, Friedrich O, Frey L, Gilbert DF. Nano- and Micro-Patterned S-, H-, and X-PDMS for Cell-Based Applications: Comparison of Wettability, Roughness, and Cell-Derived Parameters. Front Bioeng Biotechnol 2018; 6:51. [PMID: 29765941 PMCID: PMC5938557 DOI: 10.3389/fbioe.2018.00051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022] Open
Abstract
Polydimethylsiloxane (PDMS) is a promising biomaterial for generating artificial extracellular matrix (ECM) like patterned topographies, yet its hydrophobic nature limits its applicability to cell-based approaches. Although plasma treatment can enhance the wettability of PDMS, the surface is known to recover its hydrophobicity within a few hours after exposure to air. To investigate the capability of a novel PDMS-type (X-PDMS) for in vitro based assessment of physiological cell properties, we designed and fabricated plane as well as nano- and micrometer-scaled pillar-patterned growth substrates using the elastomer types S-, H- and X-PDMS, which were fabricated from commercially available components. Most importantly, we compared X-PDMS based growth substrates which have not yet been investigated in this context with H- as well as well-known S-PDMS based substrates. Due to its applicability to fabricating nanometer-sized topographic features with high accuracy and pattern fidelity, this material may be of high relevance for specific biomedical applications. To assess their applicability to cell-based approaches, we characterized the generated surfaces using water contact angle (WCA) measurement and atomic force microscopy (AFM) as indicators of wettability and roughness, respectively. We further assessed cell number, cell area and cellular elongation as indirect measures of cellular viability and adhesion by image cytometry and phenotypic profiling, respectively, using Calcein and Hoechst 33342 stained human foreskin fibroblasts as a model system. We show for the first time that different PDMS types are differently sensitive to plasma treatment. We further demonstrate that surface hydrophobicity changes along with changing height of the pillar-structures. Our data indicate that plane and structured X-PDMS shows cytocompatibility and adhesive properties comparable to the previously described elastomer types S- and H-PDMS. We conclude that nanometer-sized structuring of X-PDMS may serve as a powerful method for altering surface properties toward production of biomedical devices for cell-based applications.
Collapse
Affiliation(s)
- Marina Scharin-Mehlmann
- Chair of Electron Devices, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Aaron Häring
- Chair of Electron Devices, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mathias Rommel
- Fraunhofer Institute for Integrated Systems and Device Technology (IISB), Erlangen, Germany
| | - Tobias Dirnecker
- Chair of Electron Devices, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Erlangen Graduate School in Advanced Optical Technologies (SAOT), Erlangen, Germany
| | - Lothar Frey
- Chair of Electron Devices, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Fraunhofer Institute for Integrated Systems and Device Technology (IISB), Erlangen, Germany.,Erlangen Graduate School in Advanced Optical Technologies (SAOT), Erlangen, Germany
| | - Daniel F Gilbert
- Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Erlangen Graduate School in Advanced Optical Technologies (SAOT), Erlangen, Germany
| |
Collapse
|
10
|
Kim S, Han DY, Chen Z, Lee WG. Dependence of cell adhesion on extracellular matrix materials formed on pore bridge boundaries by nanopore opening and closing geometry. Analyst 2018; 143:2141-2149. [PMID: 29666866 DOI: 10.1039/c8an00429c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we report experimental results for characterization of the growth and formation of pore bridge materials that modified the adhesion structures of cells cultured on nanomembranes with opening and closing geometry. To perform the proof-of-concept experiments, we fabricated two types of anodized alumina oxide substrates with single-sided opening (i.e., one side open, but closed at the other side) and double-sided opening (i.e., both sides open). In our experiment, we compared the densities of pores formed and of bridge materials which differently act as connective proteins depending on the size of pores. The results show that the pore opening geometry can be used to promote the net contact force between pores, resulting in the growth and formation of pore bridge materials before and after cell culture. The results also imply that the bridge materials can be used to attract the structural protrusion of filopodia that can promote the adhesion of cell-to-cell and cell-to-pore bridge. It is observed that the shape and size of cellular structures of filopodia depend on the presence of pore bridge materials. Overall, this observation brought us a significant clue that cells cultured on nanopore substrates would change the adhesion property depending on not only the formation of nanopores formed on the surface of topological substrates, but also that of pore bridge materials by its morphological growth.
Collapse
Affiliation(s)
- Sueon Kim
- Department of Mechanical Engineering, Kyung Hee University, Yongin 17104, Republic of Korea.
| | | | | | | |
Collapse
|
11
|
Wu JG, Lee CY, Wu SS, Luo SC. Ionic Liquid-Assisted Electropolymerization for Lithographical Perfluorocarbon Deposition and Hydrophobic Patterning. ACS APPLIED MATERIALS & INTERFACES 2016; 8:22688-22695. [PMID: 27509480 DOI: 10.1021/acsami.6b07578] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We developed a novel approach for hydrophobic patterning: combining the photolithography technique with ionic-liquid (IL)-based electropolymerization to fabricate a hydrophobic pattern. Perfluoro-functionalized 3,4-ethylenedioxythiophene (EDOT-F) dispersed in ILs was directly electropolymerized on substrates, which were patterned in advance with positive photoresists. The positive photoresists did not dissolve in ionic liquids during the electropolymerization process, and the poly(EDOT-F) film created hydrophobic domains, which resulted in hydrophobic patterning. This approach provides desired patterns with a lateral resolution consistent with the mask for photolithography. Two kinds of modified indium-tin-oxide-coated glass (ITO-glass) substrates were used to demonstrate the feasibility of process for creating a hydrophobic pattern: ITO-glass substrates coated with nanostructured PEDOT, and the same substrates coated with Au nanoparticles. By confining water droplets on these two patterned substrates to form droplet arrays, we demonstrated two potential applications: multiple droplet-type electrochemical cells and surface-enhanced Raman scattering platforms. In addition, we also applied this approach to create hydrophobic patterning on ITO-coated polyethylene terephthalate (ITO-PET) substrates. The droplet arrays remained well-organized on the ITO-PET substrates even when the substrates were bent. Our work successfully introduced ILs into the photolithography process, implying great potential for these green solvents.
Collapse
Affiliation(s)
- Jhih-Guang Wu
- Department of Materials Science and Engineering, College of Engineering, National Taiwan University , No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Cheng-Yang Lee
- Department of Materials Science and Engineering, National Cheng Kung University , 1 University Road, Tainan 70101, Taiwan
| | - Shao-Shuo Wu
- Department of Materials Science and Engineering, National Cheng Kung University , 1 University Road, Tainan 70101, Taiwan
| | - Shyh-Chyang Luo
- Department of Materials Science and Engineering, College of Engineering, National Taiwan University , No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|