1
|
Daware SV, Mondal R, Kothari M, Chowdhury A, Liu ACY, Prabhakar R, Kumaraswamy G. Synthesis and Characterization of Monolayer Colloidal Sheets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23198-23208. [PMID: 39288076 DOI: 10.1021/acs.langmuir.4c02262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Sheet-like colloidal assemblies represent model systems to investigate the structure and properties of two-dimensional materials. Here, we report a simple yet versatile method for the preparation of colloidal monolayer sheet-like assemblies that affords control over the size, crystalline order, flexibility, and defect density. The protocol that we report relies on self-assembly of colloids as a sessile drop of dispersion is evaporated on an oil-covered substrate. In this case, the contact line continually moves as the drop shrinks. Polyethyleneimine polymer-covered micrometer-sized colloidal particles are transported to the air-water interface and assemble to form a monolayer sheet as the drop dries. Cross-linking the polymer renders the colloidal assembly permanent. Interestingly, monodisperse colloidal particles form disordered assemblies when dried from low concentration dispersions, while polycrystalline ordered assemblies form at higher concentrations. We demonstrate that increasing the cross-linker to polymer ratio decreases the flexibility of the assembly. Introduction of different-sized colloidal particles in a sheet leads to increased disorder. Removal of sacrificial particles from the sheet allowed the introduction of "holes" in the sheets. Thus, these colloidal sheets are models for probing the effects of disorder, doping, and vacancies in two-dimensional systems.
Collapse
Affiliation(s)
- Santosh Vasant Daware
- Department of Chemical Engineering, Indian Institute of Bombay, Mumbai 400076, India
- IITB Monash Research Academy, IIT Bombay, Powai 400076, India
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton 3800, Australia
| | - Ranajit Mondal
- Department of Chemical Engineering, IIT Hyderabad, Kandi, Telangana 502284, India
| | - Mansi Kothari
- Department of Chemistry, Indian Institute of Bombay, Mumbai 400076, India
| | - Arindam Chowdhury
- Department of Chemistry, Indian Institute of Bombay, Mumbai 400076, India
| | - Amelia C Y Liu
- School of Physics and Astronomy, Monash University, Clayton 3800, Australia
| | - Ranganathan Prabhakar
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton 3800, Australia
| | - Guruswamy Kumaraswamy
- Department of Chemical Engineering, Indian Institute of Bombay, Mumbai 400076, India
| |
Collapse
|
2
|
Meester V, van der Wel C, Verweij RW, Biondaro G, Kraft DJ. Dumbbell Impurities in 2D Crystals of Repulsive Colloidal Spheres Trap Dislocations. PHYSICAL REVIEW LETTERS 2024; 133:158202. [PMID: 39454158 DOI: 10.1103/physrevlett.133.158202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 07/23/2024] [Accepted: 09/13/2024] [Indexed: 10/27/2024]
Abstract
Impurity-induced defects play a crucial role for the properties of crystals, but little is known about impurities with anisotropic shape. Here, we study how colloidal dumbbells distort and interact with a hexagonal crystal of charged colloidal spheres at a fluid interface. We find that subtle differences in the dumbbell length determine whether it induces a local distortion of the lattice or traps a dislocation, and determine how the dumbbell moves inside the repulsive hexagonal lattice. Our results provide new routes toward controlling material properties and understanding fundamental questions in phase transitions through particle-bound dislocations.
Collapse
|
3
|
Terdik JZ, Weitz DA, Spaepen F. Mechanical testing of colloidal solids with millipascal stress and single-particle strain resolution. Phys Rev E 2024; 110:024606. [PMID: 39295063 DOI: 10.1103/physreve.110.024606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/08/2024] [Indexed: 09/21/2024]
Abstract
We introduce a technique, traction rheoscopy, to carry out mechanical testing of colloidal solids. A confocal microscope is used to directly measure stress and strain during externally applied deformation. The stress is measured, with single-mPa resolution, by determining the strain in a compliant polymer gel in mechanical contact with the colloidal solid. Simultaneously, the confocal microscope is used to measure structural change in the colloidal solid with single particle resolution during the deformation. To demonstrate the utility and sensitivity of this technique, we deform a hard-sphere colloidal glass in simple shear, and from the macroscopic shear strain and measured stress determine the stress-strain curve. Using the stress-strain curve and measured shear modulus, we decompose the macroscopic shear strain into an elastic and a plastic component. We also determine a local strain tensor for each particle using the changes in its nearest-neighbor distances. These local strains are spatially heterogeneous throughout the sample, but, when averaged, match the macroscopic strain. A microscopic yield criterion is used to split the local strains into subyield and yielded partitions; averages over these partitions complement the macroscopic elastic-plastic decomposition obtained from the stress-strain curve. By combining mechanical testing with single-particle structural measurements, traction rheoscopy is a unique tool for the study of deformation mechanisms in a diverse range of soft materials.
Collapse
Affiliation(s)
| | - David A Weitz
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA; Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA; and Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115
| | | |
Collapse
|
4
|
Melio J, Henkes SE, Kraft DJ. Soft and Stiff Normal Modes in Floppy Colloidal Square Lattices. PHYSICAL REVIEW LETTERS 2024; 132:078202. [PMID: 38427878 DOI: 10.1103/physrevlett.132.078202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/08/2023] [Accepted: 01/03/2024] [Indexed: 03/03/2024]
Abstract
Floppy microscale spring networks are widely studied in theory and simulations, but no well-controlled experimental system currently exists. Here, we show that square lattices consisting of colloid-supported lipid bilayers functionalized with DNA linkers act as microscale floppy spring networks. We extract their normal modes by inverting the particle displacement correlation matrix, showing the emergence of a spectrum of soft modes with low effective stiffness in addition to stiff modes that derive from linker interactions. Evaluation of the softest mode, a uniform shear mode, reveals that shear stiffness decreases with lattice size. Experiments match well with Brownian particle simulations, and we develop a theoretical description based on mapping interactions onto a linear response model to describe the modes. Our results reveal the importance of entropic steric effects and can be used for developing reconfigurable materials at the colloidal length scale.
Collapse
Affiliation(s)
- Julio Melio
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| | - Silke E Henkes
- Lorentz Institute, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands
| | - Daniela J Kraft
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| |
Collapse
|
5
|
Kajiya T, Sawai D, Miyata K, Miyashita Y, Noda H. Simple method to measure rheological properties of soft surfaces by a micro-needle contact. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:76. [PMID: 36103057 DOI: 10.1140/epje/s10189-022-00227-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
We developed a simple method to investigate rheological properties of soft surfaces, such as polymeric liquids and colloidal suspensions, by capturing the images of a metal micro-needle inserted into the surface. At contact, a meniscus-like deformation is formed on the surface. By relating the shape of the deformation to the balance of applied forces, local elasticity and viscosity just inside the surface are obtained. With a facile setup and rapid measurement process, the present method can be implemented to variety of systems, for instance, drying sessile drops and small volume of liquid confined in a capillary.
Collapse
Affiliation(s)
- Tadashi Kajiya
- Analysis Technology Center, Fujifilm Corporation, 210 Nakanuma, Minamiashigara, Kanagawa, 250-0193, Japan.
| | - Daisuke Sawai
- Analysis Technology Center, Fujifilm Corporation, 210 Nakanuma, Minamiashigara, Kanagawa, 250-0193, Japan
| | - Koji Miyata
- Analysis Technology Center, Fujifilm Corporation, 210 Nakanuma, Minamiashigara, Kanagawa, 250-0193, Japan
| | - Yosuke Miyashita
- Analysis Technology Center, Fujifilm Corporation, 210 Nakanuma, Minamiashigara, Kanagawa, 250-0193, Japan
| | - Hiroyuki Noda
- Analysis Technology Center, Fujifilm Corporation, 210 Nakanuma, Minamiashigara, Kanagawa, 250-0193, Japan
| |
Collapse
|
6
|
Raudsepp A, Jameson GB, Williams MAK. Estimating orientation of optically trapped, near vertical, microsphere dimers using central moments and off-focus imaging. APPLIED OPTICS 2022; 61:607-614. [PMID: 35200903 DOI: 10.1364/ao.446610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Near vertical optically trapped dimers, composed of pairs of microspheres, and constructed in situ, were imaged in bright-field in flow and at rest, and with displacement Δz from the transverse xy imaging plane of an inverted microscope. Image first central moments μ01 were measured, and their dependence on the imposed flow velocity of the surrounding fluid was calculated. This dependence was related to the at-rest restricted diffusion statistics. It was assumed that, for small perturbations, the torque T on the dimer was proportional to the velocity of flow v and resulting angular deflection Δθ so that T∝v∝Δθ. Displacements Δz at which v∝Δμ01∝Δθ, which are typically off focus, were examined in more detail; in this range, Δθ=hΔμ01. The hydrodynamics of the dimer were modeled as that of a prolate ellipsoid, and the constant of proportionality h was determined by comparing the short-time mean-squared variation measured during diffusion to that predicted by the model calculation: h2⟨Δμ012(t)⟩=⟨Δθ2(t)⟩. With h determined, the optical trap stiffness kθ was determined from the long-time restricted diffusion of the dimer. The measured kθ and Δθ can then be used compute torque: T=kθΔθ, potentially enabling the near vertical optically trapped dimer to be used as a torque probe.
Collapse
|
7
|
Lemineur JF, Noël JM, Courty A, Ausserré D, Combellas C, Kanoufi F. In Situ Optical Monitoring of the Electrochemical Conversion of Dielectric Nanoparticles: From Multistep Charge Injection to Nanoparticle Motion. J Am Chem Soc 2020; 142:7937-7946. [PMID: 32223242 DOI: 10.1021/jacs.0c02071] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
By shortening solid-state diffusion times, the nanoscale size reduction of dielectric materials-such as ionic crystals-has fueled synthetic efforts toward their use as nanoparticles, NPs, in electrochemical storage and conversion cells. Meanwhile, there is a lack of strategies able to image the dynamics of such conversion, operando and at the single NP level. It is achieved here by optical microscopy for a model dielectric ionic nanocrystal, a silver halide NP. Rather than the classical core-shrinking mechanism often used to rationalize the complete electrochemical conversion and charge storage in NPs, an alternative mechanism is proposed here. Owing to its poor conductivity, the NP conversion proceeds to completion through the formation of multiple inclusions. The superlocalization of NP during such heterogeneous multiple-step conversion suggests the local release of ions, which propels the NP toward reacting sites enabling its full conversion.
Collapse
Affiliation(s)
- Jean-François Lemineur
- Université de Paris, ITODYS, CNRS-UMR 7086, 15 rue Jean-Antoine de Baïf, 75013 Paris, France.,Sorbonne Université, MONARIS, CNRS-UMR 8233, 4 Place Jussieu, 75005 Paris, France
| | - Jean-Marc Noël
- Université de Paris, ITODYS, CNRS-UMR 7086, 15 rue Jean-Antoine de Baïf, 75013 Paris, France
| | - Alexa Courty
- Sorbonne Université, MONARIS, CNRS-UMR 8233, 4 Place Jussieu, 75005 Paris, France
| | - Dominique Ausserré
- Université du Maine, Institut des Matériaux et Molécules du Mans, CNRS-UMR 6283, Avenue O. Messiaen, 72000 Le Mans, France
| | - Catherine Combellas
- Université de Paris, ITODYS, CNRS-UMR 7086, 15 rue Jean-Antoine de Baïf, 75013 Paris, France
| | - Frédéric Kanoufi
- Université de Paris, ITODYS, CNRS-UMR 7086, 15 rue Jean-Antoine de Baïf, 75013 Paris, France
| |
Collapse
|
8
|
Yang X, Tong H, Wang WH, Chen K. Emergence and percolation of rigid domains during the colloidal glass transition. Phys Rev E 2019; 99:062610. [PMID: 31330594 DOI: 10.1103/physreve.99.062610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Indexed: 06/10/2023]
Abstract
Using video microscopy, we measure local spatial constraints in disordered binary colloidal samples, ranging from dilute fluids to jammed glasses, and probe their spatial and temporal correlations to local dynamics during the glass transition. We observe the emergence of significant correlations between constraints and local dynamics within the Lindemann criterion, which coincides with the onset of glassy dynamics in supercooled liquids. Rigid domains in fluids are identified based on local constraints and demonstrate a percolation transition near the glass transition, accompanied by the emergence of dynamical heterogeneities. Our results show that spatial constraint instead of the geometry of amorphous structures is the key that connects the complex spatial-temporal correlations in disordered materials.
Collapse
Affiliation(s)
- Xiunan Yang
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Hua Tong
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Wei-Hua Wang
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Ke Chen
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
9
|
Couëdel L, Nosenko V. Tracking and Linking of Microparticle Trajectories During Mode-Coupling Induced Melting in a Two-Dimensional Complex Plasma Crystal. J Imaging 2019; 5:jimaging5030041. [PMID: 34460469 PMCID: PMC8320910 DOI: 10.3390/jimaging5030041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 11/17/2022] Open
Abstract
In this article, a strategy to track microparticles and link their trajectories adapted to the study of the melting of a quasi two-dimensional complex plasma crystal induced by the mode-coupling instability is presented. Because of the three-dimensional nature of the microparticle motions and the inhomogeneities of the illuminating laser light sheet, the scattered light intensity can change significantly between two frames, making the detection of the microparticles and the linking of their trajectories quite challenging. Thanks to a two-pass noise removal process based on Gaussian blurring of the original frames using two different kernel widths, the signal-to-noise ratio was increased to a level that allowed a better intensity thresholding of different regions of the images and, therefore, the tracking of the poorly illuminated microparticles. Then, by predicting the positions of the microparticles based on their previous positions, long particle trajectories could be reconstructed, allowing accurate measurement of the evolution of the microparticle energies and the evolution of the monolayer properties.
Collapse
Affiliation(s)
- Lénaïc Couëdel
- Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
- CNRS, Aix-Marseille Université, PIIM, UMR 7345, 13397 Marseille CEDEX 20, France
- Correspondence: or
| | - Vladimir Nosenko
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), D-82234 Weßling, Germany
| |
Collapse
|
10
|
Stuckert R, Plüisch CS, Wittemann A. Experimental Assessment and Model Validation on How Shape Determines Sedimentation and Diffusion of Colloidal Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13339-13351. [PMID: 30350686 DOI: 10.1021/acs.langmuir.8b02999] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding the hydrodynamics of colloids with complex shapes is of equal importance to widespread practical applications and fundamental scientific problems, such as gelation, crystallization, and phase behavior. Building on previous work, we present a comprehensive study of sedimentation, diffusion, intrinsic viscosities, and other shape-dependent quantities of clusters built from spherical nanoparticles. Cluster preparation is accomplished by assembling surface-modified polystyrene particles on evaporating emulsion droplets. This results in supracolloids that exhibit well-defined configurations, which are governed by the number of constituent particles. Sorting into uniform cluster fractions is achieved through centrifugation of the cluster mixture in a density gradient. Sedimentation coefficients are elucidated by differential centrifugal sedimentation. Rotational and translational diffusion of the clusters are investigated by polarized and depolarized dynamic light scattering. The experimental results are compared to data obtained via a bead-shell model suitable for predicting hydrodynamic quantities of particles with arbitrary shapes. The experimental data are in excellent agreement with the predictions from hydrodynamic modeling. The variety of investigated shapes shows the robustness of our approach and provides a complete picture of the hydrodynamic behavior of complex particles.
Collapse
Affiliation(s)
- Rouven Stuckert
- Colloid Chemistry , University of Konstanz , Universitaetsstrasse 10 , 78464 Konstanz , Germany
| | - Claudia Simone Plüisch
- Colloid Chemistry , University of Konstanz , Universitaetsstrasse 10 , 78464 Konstanz , Germany
| | - Alexander Wittemann
- Colloid Chemistry , University of Konstanz , Universitaetsstrasse 10 , 78464 Konstanz , Germany
| |
Collapse
|
11
|
Roller J, Pfleiderer P, Meijer JM, Zumbusch A. Detection and tracking of anisotropic core-shell colloids. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:395903. [PMID: 30141415 DOI: 10.1088/1361-648x/aadcbf] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Optical microscopy techniques with three dimensional (3D) resolution are powerful tools for the real-space imaging of the structure and dynamics of colloidal systems. While real-space imaging of spherical particles is well established, the observation of shape anisotropic particles has only recently met a lot of interest. Apart from translation, shape anisotropic particles also possess additional rotational degrees of freedom. In this manuscript, we introduce a novel technique to find the position and the orientation of anisotropic particles in 3D. It is based on an algorithm which is applicable to core-shell particles consisting of a spherical core and a shell with arbitrary shape. We demonstrate the performance of this algorithm using PMMA/PMMA (polymethyl methacrylate) core-shell ellipsoids. The algorithm is tested on artificial images and on experimental data. The correct identification of particle positions with subpixel accuracy and of their orientations with high angular precision in dilute and dense systems is shown. In addition, we developed an advanced particle tracking algorithm that takes both translational and rotational movements of the anisotropic particles into account. We show that our 3D detection and tracking technique is suitable for the accurate and reliable detection of large and dense colloidal systems containing several thousands of particles.
Collapse
Affiliation(s)
- J Roller
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | | | | | | |
Collapse
|
12
|
Figliozzi P, Peterson CW, Rice SA, Scherer NF. Direct Visualization of Barrier Crossing Dynamics in a Driven Optical Matter System. ACS NANO 2018; 12:5168-5175. [PMID: 29694025 DOI: 10.1021/acsnano.8b02012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A major impediment to a more complete understanding of barrier crossing and other single-molecule processes is the inability to directly visualize the trajectories and dynamics of atoms and molecules in reactions. Rather, the kinetics are inferred from ensemble measurements or the position of a transducer ( e. g., an AFM cantilever) as a surrogate variable. Direct visualization is highly desirable. Here, we achieve the direct measurement of barrier crossing trajectories by using optical microscopy to observe position and orientation changes of pairs of Ag nanoparticles, i. e. passing events, in an optical ring trap. A two-step mechanism similar to a bimolecular exchange reaction or the Michaelis-Menten scheme is revealed by analysis that combines detailed knowledge of each trajectory, a statistically significant number of repetitions of the passing events, and the driving force dependence of the process. We find that while the total event rate increases with driving force, this increase is due to an increase in the rate of encounters. There is no drive force dependence on the rate of barrier crossing because the key motion for the process involves a random (thermal) radial fluctuation of one particle allowing the other to pass. This simple experiment can readily be extended to study more complex barrier crossing processes by replacing the spherical metal nanoparticles with anisotropic ones or by creating more intricate optical trapping potentials.
Collapse
Affiliation(s)
- Patrick Figliozzi
- Department of Chemistry and James Franck Institute , The University of Chicago , 929 E. 57th Street , Chicago , Illinois 60637 , United States
| | - Curtis W Peterson
- Department of Chemistry and James Franck Institute , The University of Chicago , 929 E. 57th Street , Chicago , Illinois 60637 , United States
| | - Stuart A Rice
- Department of Chemistry and James Franck Institute , The University of Chicago , 929 E. 57th Street , Chicago , Illinois 60637 , United States
| | - Norbert F Scherer
- Department of Chemistry and James Franck Institute , The University of Chicago , 929 E. 57th Street , Chicago , Illinois 60637 , United States
| |
Collapse
|
13
|
Analysis and correction of errors in nanoscale particle tracking using the Single-pixel interior filling function (SPIFF) algorithm. Sci Rep 2017; 7:16553. [PMID: 29185459 PMCID: PMC5707392 DOI: 10.1038/s41598-017-14166-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/05/2017] [Indexed: 11/09/2022] Open
Abstract
Particle tracking, which is an essential tool in many fields of scientific research, uses algorithms that retrieve the centroid of tracked particles with sub-pixel accuracy. However, images in which the particles occupy a small number of pixels on the detector, are in close proximity to other particles or suffer from background noise, show a systematic error in which the particle sub-pixel positions are biased towards the center of the pixel. This "pixel locking" effect greatly reduces particle tracking accuracy. In this report, we demonstrate the severity of these errors by tracking experimental (and simulated) imaging data of optically trapped silver nanoparticles and single fluorescent proteins. We show that errors in interparticle separation, angle and mean square displacement are significantly reduced by applying the corrective Single-Pixel Interior Filling Function (SPIFF) algorithm. Our work demonstrates the potential ubiquity of such errors and the general applicability of SPIFF correction to many experimental fields.
Collapse
|
14
|
Yücel H, Okumuşoğlu NT. A new tracking algorithm for multiple colloidal particles close to contact. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:465101. [PMID: 28972202 DOI: 10.1088/1361-648x/aa908e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this paper, we propose a new algorithm based on radial symmetry center method to track colloidal particles close to contact, where the optical images of the particles start to overlap in digital video microscopy. This overlapping effect is important to observe the pair interaction potential in colloidal studies and it appears as additional interaction in the measurement of the interaction with conventional tracking analysis. The proposed algorithm in this work is simple, fast and applicable for not only two particles but also three and more particles without any modification. The algorithm uses gradient vectors of the particle intensity distribution, which allows us to use a part of the symmetric intensity distribution in the calculation of the actual particle position. In this study, simulations are performed to see the performance of the proposed algorithm for two and three particles, where the simulation images are generated by using fitted curve to experimental particle image for different sized particles. As a result, the algorithm yields the maximum error smaller than 2 nm for [Formula: see text] μm silica particles in contact condition.
Collapse
Affiliation(s)
- Harun Yücel
- Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139, Samsun, Turkey
| | | |
Collapse
|