1
|
Tayal A, Coburn DS, Abel D, Rakitin M, Ivashkevych O, Wlodek J, Wierzbicki D, Xu W, Nazaretski E, Stavitski E, Leshchev D. Five-analyzer Johann spectrometer for hard X-ray photon-in/photon-out spectroscopy at the Inner Shell Spectroscopy beamline at NSLS-II: design, alignment and data acquisition. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:1609-1621. [PMID: 39475836 PMCID: PMC11542649 DOI: 10.1107/s1600577524009342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/23/2024] [Indexed: 11/08/2024]
Abstract
Here, a recently commissioned five-analyzer Johann spectrometer at the Inner Shell Spectroscopy beamline (8-ID) at the National Synchrotron Light Source II (NSLS-II) is presented. Designed for hard X-ray photon-in/photon-out spectroscopy, the spectrometer achieves a resolution in the 0.5-2 eV range, depending on the element and/or emission line, providing detailed insights into the local electronic and geometric structure of materials. It serves a diverse user community, including fields such as physical, chemical, biological, environmental and materials sciences. This article details the mechanical design, alignment procedures and data-acquisition scheme of the spectrometer, with a particular focus on the continuous asynchronous data-acquisition approach that significantly enhances experimental efficiency.
Collapse
Affiliation(s)
- Akhil Tayal
- National Synchrotron Light Source IIBrookhaven National LaboratoryUptonNY11973USA
| | - David Scott Coburn
- National Synchrotron Light Source IIBrookhaven National LaboratoryUptonNY11973USA
| | - Donald Abel
- National Synchrotron Light Source IIBrookhaven National LaboratoryUptonNY11973USA
| | - Max Rakitin
- National Synchrotron Light Source IIBrookhaven National LaboratoryUptonNY11973USA
| | - Oksana Ivashkevych
- National Synchrotron Light Source IIBrookhaven National LaboratoryUptonNY11973USA
| | - Jakub Wlodek
- National Synchrotron Light Source IIBrookhaven National LaboratoryUptonNY11973USA
| | - Dominik Wierzbicki
- National Synchrotron Light Source IIBrookhaven National LaboratoryUptonNY11973USA
- AGH University of Science and Technology, Faculty of Energy and Fuels, Al. A. Mickiewicza 30, 30-059Cracow, Poland
| | - Weihe Xu
- National Synchrotron Light Source IIBrookhaven National LaboratoryUptonNY11973USA
| | - Evgeny Nazaretski
- National Synchrotron Light Source IIBrookhaven National LaboratoryUptonNY11973USA
| | - Eli Stavitski
- National Synchrotron Light Source IIBrookhaven National LaboratoryUptonNY11973USA
| | - Denis Leshchev
- National Synchrotron Light Source IIBrookhaven National LaboratoryUptonNY11973USA
| |
Collapse
|
2
|
Elliott JD, Rogalev V, Wilson N, Duta M, Reynolds CJ, Filik J, Penfold TJ, Diaz-Moreno S. Web-CONEXS: an inroad to theoretical X-ray absorption spectroscopy. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:1276-1284. [PMID: 39088400 PMCID: PMC11371047 DOI: 10.1107/s1600577524005630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/12/2024] [Indexed: 08/03/2024]
Abstract
Accurate analysis of the rich information contained within X-ray spectra usually calls for detailed electronic structure theory simulations. However, density functional theory (DFT), time-dependent DFT and many-body perturbation theory calculations increasingly require the use of advanced codes running on high-performance computing (HPC) facilities. Consequently, many researchers who would like to augment their experimental work with such simulations are hampered by the compounding of nontrivial knowledge requirements, specialist training and significant time investment. To this end, we present Web-CONEXS, an intuitive graphical web application for democratizing electronic structure theory simulations. Web-CONEXS generates and submits simulation workflows for theoretical X-ray absorption and X-ray emission spectroscopy to a remote computing cluster. In the present form, Web-CONEXS interfaces with three software packages: ORCA, FDMNES and Quantum ESPRESSO, and an extensive materials database courtesy of the Materials Project API. These software packages have been selected to model diverse materials and properties. Web-CONEXS has been conceived with the novice user in mind; job submission is limited to a subset of simulation parameters. This ensures that much of the simulation complexity is lifted and preliminary theoretical results are generated faster. Web-CONEXS can be leveraged to support beam time proposals and serve as a platform for preliminary analysis of experimental data.
Collapse
Affiliation(s)
- Joshua D. Elliott
- Diamond Light SourceHarwell Science and Innovation ParkDidcotOxfordshireOX11 8UQUnited Kingdom
| | - Victor Rogalev
- Diamond Light SourceHarwell Science and Innovation ParkDidcotOxfordshireOX11 8UQUnited Kingdom
| | - Nigel Wilson
- Diamond Light SourceHarwell Science and Innovation ParkDidcotOxfordshireOX11 8UQUnited Kingdom
| | - Mihai Duta
- Diamond Light SourceHarwell Science and Innovation ParkDidcotOxfordshireOX11 8UQUnited Kingdom
| | - Christopher J. Reynolds
- Diamond Light SourceHarwell Science and Innovation ParkDidcotOxfordshireOX11 8UQUnited Kingdom
| | - Jacob Filik
- Diamond Light SourceHarwell Science and Innovation ParkDidcotOxfordshireOX11 8UQUnited Kingdom
| | - Thomas J. Penfold
- Chemistry – School of Natural and Environmental Science, Newcastle University, Newcastle Upon-TyneNE1 7RU, United Kingdom
| | - Sofia Diaz-Moreno
- Diamond Light SourceHarwell Science and Innovation ParkDidcotOxfordshireOX11 8UQUnited Kingdom
| |
Collapse
|
3
|
Morgan LM, Loche D, Corrias A, Hayama S, Mountjoy G. Using Ex Situ and In Situ HERFD-XANES to Reveal the Superior Oxidation and Reduction Cycling of Ceria Nanocubes Dispersed in Silica Aerogel. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:19554-19562. [PMID: 37817919 PMCID: PMC10561250 DOI: 10.1021/acs.jpcc.3c03785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/07/2023] [Indexed: 10/12/2023]
Abstract
The oxygen storage capacity of ceria-based catalytic materials is influenced by their size, morphology, and surface structure, which can be tuned using surfactant-mediated synthesis. In particular, the cuboidal morphology exposes the most reactive surfaces; however, when the capping agent is removed, the nanocubes can agglomerate and limit the available reactive surface. Here, we study ceria nanocubes, lanthanum-doped ceria nanocubes, and ceria nanocubes embedded inside a highly porous silica aerogel by high-energy resolution fluorescence detection-X-ray absorption near edge spectroscopy at the Ce L3 edge. In situ measurements showed an increased reversibility of redox cycles in ceria nanocubes when embedded in the aerogel, demonstrating enhanced reactivity due to the retention of reactive surfaces. These aerogel nanocomposites show greater improvement in the redox capacity and increased thermal stability of this catalytic material compared to the surfactant-capped nanocubes. Ex situ measurements were also performed to study the effect of lanthanum doping on the cerium oxidation state in the nanocubes, indicating a higher proportion of Ce4+ compared to that of the undoped ceria nanocubes.
Collapse
Affiliation(s)
- Lucy M. Morgan
- School
of Chemistry and Forensic Science, University
of Kent, Ingram Building, Canterbury CT2 7NH, U.K.
| | - Danilo Loche
- School
of Chemistry and Forensic Science, University
of Kent, Ingram Building, Canterbury CT2 7NH, U.K.
| | - Anna Corrias
- School
of Chemistry and Forensic Science, University
of Kent, Ingram Building, Canterbury CT2 7NH, U.K.
| | - Shusaku Hayama
- Diamond
Light Source, Harwell Science & Innovation
Campus, Didcot OX11 DE, U.K.
| | - Gavin Mountjoy
- School
of Physics and Astronomy, University of
Kent, Ingram Building, Canterbury CT2 7NH, U.K.
| |
Collapse
|
4
|
Tran NTT, Sier D, Kirk T, Tran CQ, Mosselmans JFW, Diaz-Moreno S, Chantler CT. A new satellite of manganese revealed by extended-range high-energy-resolution fluorescence detection. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:605-612. [PMID: 37026392 PMCID: PMC10161895 DOI: 10.1107/s1600577523002539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/14/2023] [Indexed: 05/06/2023]
Abstract
The discovery of a new physical process in manganese metal is reported. This process will also be present for all manganese-containing materials in condensed matter. The process was discovered by applying our new technique of XR-HERFD (extended-range high-energy-resolution fluorescence detection), which was developed from the popular high-resolution RIXS (resonant inelastic X-ray scattering) and HERFD approaches. The acquired data are accurate to many hundreds of standard deviations beyond what is regarded as the criterion for `discovery'. Identification and characterization of many-body processes can shed light on the X-ray absorption fine-structure spectra and inform the scientist on how to interpret them, hence leading to the ability to measure the dynamical nanostructures which are observable using the XR-HERFD method. Although the many-body reduction factor has been used universally in X-ray absorption spectroscopy in analysis over the past 30 years (thousands of papers per year), this experimental result proves that many-body effects are not representable by any constant reduction factor parameter. This paradigm change will provide the foundation for many future studies and X-ray spectroscopy.
Collapse
Affiliation(s)
- Nicholas T. T. Tran
- School of Physics, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Daniel Sier
- School of Physics, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Tony Kirk
- Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Chanh Q. Tran
- Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria 3086, Australia
| | | | | | | |
Collapse
|
5
|
Simonelli L, Marini C, Ribo L, Homs R, Avila J, Heinis D, Preda I, Klementiev K. The CLEAR X-ray emission spectrometer available at the CLAESS beamline of ALBA synchrotron. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:235-241. [PMID: 36601942 PMCID: PMC9814063 DOI: 10.1107/s1600577522009821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/06/2022] [Indexed: 06/17/2023]
Abstract
The CLEAR X-ray emission spectrometer installed at the CLAESS beamline of the ALBA synchrotron is described. It is an energy-dispersive spectrometer based on Rowland circle geometry with 1 m-diameter circle. The energy dispersion is achieved by the combination of a diced analyzer crystal and a unidimensional detector. A single unconventional dynamically bent analyzer crystal (Si 111) permits a wide energy range to be covered, just by exploiting its different reflections (333, 444, 555, 777, 888): 6-22 keV, with a spectrometer efficiency that decreases above 11 keV because of the Si detector thickness (Mythen, 350 µm), while the relative scattering intensities for the Si 333, 444, 555, 777 and 888 reflections correspond to 36, 40, 21, 13 and 15, respectively. The provided energy resolution is typically below 1-2 eV and depends on the beam size, working Bragg angle and reflection exploited. In most cases the energy dispersion ranges from 10 to 20 eV and can be enlarged by working in the out-of-Rowland geometry up to 40 eV. The spectrometer works in full backscattering geometry with the beam passing through the two halves of the analyzer. The vacuum beam path and the particular geometry allow a typical average noise of only 0.5 counts per second per pixel. The spectrometer is mainly used for measuring emission lines and high-resolution absorption spectra, with a typical scanning time for highly concentrated systems of around half an hour, including several repeats. The intrinsic energy dispersion allows systematic collection of resonant X-ray emission maps by measuring high-resolution absorption spectra. Moreover, it allows spectra to be measured on a single-shot basis. Resonant inelastic X-ray scattering experiments to probe electronic excitations are feasible, although the spectrometer is not optimized for this purpose due to the limited energy resolution and scattering geometry provided. In that case, to minimize the quasi-elastic line, the spectrometer is able to rotate along the beam path. Advantages and disadvantages with respect to other existing spectrometers are highlighted.
Collapse
Affiliation(s)
- L. Simonelli
- CELLS-ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - C. Marini
- CELLS-ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - L. Ribo
- CELLS-ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - R. Homs
- CELLS-ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - J. Avila
- CELLS-ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - D. Heinis
- CELLS-ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - I. Preda
- CELLS-ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - K. Klementiev
- CELLS-ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Barcelona, Spain
- MAX IV Laboratory, Fotongatan 2, 225 94 Lund, Sweden
| |
Collapse
|
6
|
Zhydachevskyy Y, Mykhaylyk V, Stasiv V, Bulyk LI, Hreb V, Lutsyuk I, Luchechko A, Hayama S, Vasylechko L, Suchocki A. Chemical Tuning, Pressure, and Temperature Behavior of Mn 4+ Photoluminescence in Ga 2O 3–Al 2O 3 Alloys. Inorg Chem 2022; 61:18135-18146. [DOI: 10.1021/acs.inorgchem.2c02807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yaroslav Zhydachevskyy
- Institute of Physics, Polish Academy of Sciences, aleja Lotników 32/46, Warsaw02-668, Poland
| | | | - Vasyl Stasiv
- Institute of Physics, Polish Academy of Sciences, aleja Lotników 32/46, Warsaw02-668, Poland
| | - Lev-Ivan Bulyk
- Institute of Physics, Polish Academy of Sciences, aleja Lotników 32/46, Warsaw02-668, Poland
| | - Vasyl Hreb
- Lviv Polytechnic National University, South Bandera Street 12, Lviv79013, Ukraine
| | - Iryna Lutsyuk
- Lviv Polytechnic National University, South Bandera Street 12, Lviv79013, Ukraine
| | - Andriy Luchechko
- Ivan Franko National University of Lviv, Tarnavskogo Street 107, Lviv79017, Ukraine
| | - Shusaku Hayama
- Diamond Light Source, Harwell Campus, DidcotOX11 0DE, U.K
| | - Leonid Vasylechko
- Lviv Polytechnic National University, South Bandera Street 12, Lviv79013, Ukraine
| | - Andrzej Suchocki
- Institute of Physics, Polish Academy of Sciences, aleja Lotników 32/46, Warsaw02-668, Poland
| |
Collapse
|
7
|
Edwards NP, Bargar JR, van Campen D, van Veelen A, Sokaras D, Bergmann U, Webb SM. A new μ-high energy resolution fluorescence detection microprobe imaging spectrometer at the Stanford Synchrotron Radiation Lightsource beamline 6-2. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:083101. [PMID: 36050052 PMCID: PMC9392580 DOI: 10.1063/5.0095229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Here, we describe a new synchrotron X-ray Fluorescence (XRF) imaging instrument with an integrated High Energy Fluorescence Detection X-ray Absorption Spectroscopy (HERFD-XAS) spectrometer at the Stanford Synchrotron Radiation Lightsource at beamline 6-2. The X-ray beam size on the sample can be defined via a range of pinhole apertures or focusing optics. XRF imaging is performed using a continuous rapid scan system with sample stages covering a travel range of 250 × 200 mm2, allowing for multiple samples and/or large samples to be mounted. The HERFD spectrometer is a Johann-type with seven spherically bent 100 mm diameter crystals arranged on intersecting Rowland circles of 1 m diameter with a total solid angle of about 0.44% of 4π sr. A wide range of emission lines can be studied with the available Bragg angle range of ∼64.5°-82.6°. With this instrument, elements in a sample can be rapidly mapped via XRF and then selected features targeted for HERFD-XAS analysis. Furthermore, utilizing the higher spectral resolution of HERFD for XRF imaging provides better separation of interfering emission lines, and it can be used to select a much narrower emission bandwidth, resulting in increased image contrast for imaging specific element species, i.e., sparse excitation energy XAS imaging. This combination of features and characteristics provides a highly adaptable and valuable tool in the study of a wide range of materials.
Collapse
Affiliation(s)
- Nicholas P. Edwards
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - John R. Bargar
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Douglas van Campen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Arjen van Veelen
- Material Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Uwe Bergmann
- Physics Department, University of Wisonsin-Madison, 1150 University Avenue, Madison, Wisconsin 53706-1390, USA
| | - Samuel M. Webb
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| |
Collapse
|