1
|
Abdelwahab WM, Le-Vinh B, Riffey A, Hicks L, Buhl C, Ettenger G, Jackson KJ, Weiss AM, Miller S, Ryter K, Evans JT, Burkhart DJ. Promotion of Th17 Polarized Immunity via Co-Delivery of Mincle Agonist and Tuberculosis Antigen Using Silica Nanoparticles. ACS APPLIED BIO MATERIALS 2024; 7:3877-3889. [PMID: 38832760 DOI: 10.1021/acsabm.4c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Adjuvants and immunomodulators that effectively drive a Th17-skewed immune response are not part of the standard vaccine toolkit. Vaccine adjuvants and delivery technologies that can induce Th17 or Th1/17 immunity and protection against bacterial pathogens, such as tuberculosis (TB), are urgently needed. Th17-polarized immune response can be induced using agonists that bind and activate C-type lectin receptors (CLRs) such as macrophage inducible C-type lectin (Mincle). A simple but effective strategy was developed for codelivering Mincle agonists with the recombinant Mycobacterium tuberculosis fusion antigen, M72, using tunable silica nanoparticles (SNP). Anionic bare SNP, hydrophobic phenyl-functionalized SNP (P-SNP), and cationic amine-functionalized SNP (A-SNP) of different sizes were coated with three synthetic Mincle agonists, UM-1024, UM-1052, and UM-1098, and evaluated for adjuvant activity in vitro and in vivo. The antigen and adjuvant were coadsorbed onto SNP via electrostatic and hydrophobic interactions, facilitating multivalent display and delivery to antigen presenting cells. The cationic A-SNP showed the highest coloading efficiency for the antigen and adjuvant. In addition, the UM-1098-adsorbed A-SNP formulation demonstrated slow-release kinetics in vitro, excellent stability over 12 months of storage, and strong IL-6 induction from human peripheral blood mononuclear cells. Co-adsorption of UM-1098 and M72 on A-SNP significantly improved antigen-specific humoral and Th17-polarized immune responses in vivo in BALB/c mice relative to the controls. Taken together, A-SNP is a promising platform for codelivery and proper presentation of adjuvants and antigens and provides the basis for their further development as a vaccine delivery platform for immunization against TB or other diseases for which Th17 immunity contributes to protection.
Collapse
Affiliation(s)
- Walid M Abdelwahab
- Center for Translational Medicine, 32 campus drive, Missoula, Montana 59812, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
| | - Bao Le-Vinh
- Center for Translational Medicine, 32 campus drive, Missoula, Montana 59812, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
| | - Alexander Riffey
- Center for Translational Medicine, 32 campus drive, Missoula, Montana 59812, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
| | - Linda Hicks
- Center for Translational Medicine, 32 campus drive, Missoula, Montana 59812, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
| | - Cassandra Buhl
- Center for Translational Medicine, 32 campus drive, Missoula, Montana 59812, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
| | - George Ettenger
- Center for Translational Medicine, 32 campus drive, Missoula, Montana 59812, United States
- Department of Chemistry, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
| | - Konner J Jackson
- Center for Translational Medicine, 32 campus drive, Missoula, Montana 59812, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
- Inimmune Corporation, 1121 East Broadway, Missoula, Montana 59812, United States
| | - Adam M Weiss
- Center for Translational Medicine, 32 campus drive, Missoula, Montana 59812, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
| | - Shannon Miller
- Center for Translational Medicine, 32 campus drive, Missoula, Montana 59812, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
- Inimmune Corporation, 1121 East Broadway, Missoula, Montana 59812, United States
| | - Kendal Ryter
- Center for Translational Medicine, 32 campus drive, Missoula, Montana 59812, United States
- Department of Chemistry, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
- Inimmune Corporation, 1121 East Broadway, Missoula, Montana 59812, United States
| | - Jay T Evans
- Center for Translational Medicine, 32 campus drive, Missoula, Montana 59812, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
- Inimmune Corporation, 1121 East Broadway, Missoula, Montana 59812, United States
| | - David J Burkhart
- Center for Translational Medicine, 32 campus drive, Missoula, Montana 59812, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
- Inimmune Corporation, 1121 East Broadway, Missoula, Montana 59812, United States
| |
Collapse
|
2
|
Miwa H, Antao OQ, Kelly‐Scumpia KM, Baghdasarian S, Mayer DP, Shang L, Sanchez GM, Archang MM, Scumpia PO, Weinstein JS, Di Carlo D. Improved Humoral Immunity and Protection against Influenza Virus Infection with a 3d Porous Biomaterial Vaccine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302248. [PMID: 37750461 PMCID: PMC10625058 DOI: 10.1002/advs.202302248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/03/2023] [Indexed: 09/27/2023]
Abstract
New vaccine platforms that activate humoral immunity and generate neutralizing antibodies are required to combat emerging pathogens, including influenza virus. A slurry of antigen-loaded hydrogel microparticles that anneal to form a porous scaffold with high surface area for antigen uptake by infiltrating immune cells as the biomaterial degrades is demonstrated to enhance humoral immunity. Antigen-loaded-microgels elicited a robust cellular humoral immune response, with increased CD4+ T follicular helper (Tfh) cells and prolonged germinal center (GC) B cells comparable to the commonly used adjuvant, aluminum hydroxide (Alum). Increasing the weight fraction of polymer material led to increased material stiffness and antigen-specific antibody titers superior to Alum. Vaccinating mice with inactivated influenza virus loaded into this more highly cross-linked formulation elicited a strong antibody response and provided protection against a high dose viral challenge. By tuning physical and chemical properties, adjuvanticity can be enhanced leading to humoral immunity and protection against a pathogen, leveraging two different types of antigenic material: individual protein antigen and inactivated virus. The flexibility of the platform may enable design of new vaccines to enhance innate and adaptive immune cell programming to generate and tune high affinity antibodies, a promising approach to generate long-lasting immunity.
Collapse
Affiliation(s)
- Hiromi Miwa
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Olivia Q. Antao
- Center for Immunity and InflammationRutgers New Jersey Medical SchoolNewarkNJ07103USA
| | - Kindra M. Kelly‐Scumpia
- Division of CardiologyDepartment of MedicineDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCA90095USA
| | - Sevana Baghdasarian
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Daniel P. Mayer
- Center for Immunity and InflammationRutgers New Jersey Medical SchoolNewarkNJ07103USA
| | - Lily Shang
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Gina M. Sanchez
- Center for Immunity and InflammationRutgers New Jersey Medical SchoolNewarkNJ07103USA
| | - Maani M. Archang
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCA90095USA
- MSTP ProgramDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCA90095USA
| | - Philip O. Scumpia
- Division of DermatologyDepartment of MedicineDavid Geffen School of MedicineUniversity of California Los AngelesLos AngelesCA90095USA
- Department of DermatologyVA Greater Los Angeles Healthcare SystemLos AngelesCA90073USA
- Jonsson Comprehensive Cancer CenterUniversity of California Los AngelesLos AngelesCA90095USA
| | - Jason S Weinstein
- Center for Immunity and InflammationRutgers New Jersey Medical SchoolNewarkNJ07103USA
| | - Dino Di Carlo
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCA90095USA
- Jonsson Comprehensive Cancer CenterUniversity of California Los AngelesLos AngelesCA90095USA
- Department of Mechanical and Aerospace EngineeringUniversity of California Los AngelesLos AngelesCA90095USA
- California Nano Systems Institute (CNSI)University of California Los AngelesLos AngelesCA90095USA
| |
Collapse
|
3
|
Tan X, Gerbelli BB, Fantini MCDA, Oliveira CLP, Bordallo HN, Oseliero Filho PL. Retrieving the size distribution of SBA-15 mesopores from small-angle X-ray scattering data using a Monte Carlo method. J Appl Crystallogr 2023; 56:1381-1391. [PMID: 37791357 PMCID: PMC10543675 DOI: 10.1107/s160057672300691x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/05/2023] [Indexed: 10/05/2023] Open
Abstract
A Monte Carlo (MC) method was introduced into a state-of-the-art model used to analyse small-angle X-ray scattering (SAXS) data of SBA-15, an ordered mesoporous material with many applications. With this new procedure, referred to herein as the SBA-15+MC model, it is possible to retrieve the size distribution of the mesopores, D(r), in a free modelling approach. To achieve this, two main points were addressed: (i) based on previous implementations, the method was adapted to work with long core-shell cylinders; (ii) since the MC model requires longer processing times, strategies to speed up the calculations were developed, which included a simplified version of the original model used to analyse SAXS data of SBA-15 (referred to as the SBA-15 model) as well as the determination of several structural features from the SAXS curve prior to the fit. The new model was validated with simulated data and later used to fit experimental SAXS curves of SBA-15. The obtained results show that the SBA-15 model only works well because the mesopore size distribution of SBA-15 is narrow, whereas the new approach can be successfully used in cases where D(r) is wider and/or has a more complex profile, such as SBA-15 with expanded mesopores. Even though a specific SAXS example was chosen to prove the model, the strategies presented herein are general and suitable for inclusion in other models aimed at the analysis of SBA-15 and similar ordered mesoporous materials.
Collapse
Affiliation(s)
- Xiangyin Tan
- Niels Bohr Institute, Copenhagen University, Denmark
| | | | | | | | - Heloísa Nunes Bordallo
- Niels Bohr Institute, Copenhagen University, Denmark
- European Spallation Source, Lund, Sweden
| | - Pedro Leonidas Oseliero Filho
- Niels Bohr Institute, Copenhagen University, Denmark
- Instituto de Física, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
4
|
C Barbosa M, Benavides AL, Carlevaro M, Kahl G, Lomba E. Special issue on soft matter research in Latin America. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:410301. [PMID: 37449707 DOI: 10.1088/1361-648x/acdebd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023]
Affiliation(s)
- Marcia C Barbosa
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana Laura Benavides
- División de Ciencias e Ingenierías, Universidad de Guanajuato, Campus León, Mexico
| | - Manuel Carlevaro
- Instituto de Física de Líquidos y Sistemas Biológicos (CONICET-UNLP) and Universidad Tecnológica Nacional Argentina, La Plata, Buenos Aires, Argentina
| | - Gerhard Kahl
- Institute for Theoretical Physics, TU Wien, Vienna, Austria
| | - Enrique Lomba
- Instituto de Quiímica Fisica Blas Cabrera, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
5
|
Ferreira GC, Sanches TV, Mechler-Dreibi ML, Almeida HM, Storino GY, Sonalio K, Petri FA, Martins TS, da Silva LCC, Montassier HJ, Sant'Anna OA, Fantini MC, de Oliveira LG. Efficacy evaluation of a novel oral silica-based vaccine in inducing mucosal immunity against Mycoplasma hyopneumoniae. Res Vet Sci 2023; 158:141-150. [PMID: 37004428 DOI: 10.1016/j.rvsc.2023.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023]
Abstract
Mycoplasma hyopneumoniae, the main etiological agent of Porcine Enzootic Pneumonia, is widely spread in swine production worldwide. Its prevention is of great interest for the productive system, since its colonization in the lung tissue leads to intense production losses. This study aimed to compare the M. hyopneumoniae shedding and acute-phase response in 30 pigs submitted to different vaccination protocols: an experimental oral vaccine using a nanostructured mesoporous silica (SBA-15) as adjuvant (n = 10); an intramuscular commercially available vaccine at 24 days of age (n = 10); and a control group (n = 10) following experimental challenge with M. hyopneumoniae. Laryngeal and nasal swabs were collected weekly and oral fluids were collected at 7, 10, 14, 17, 23, 28, 35, 42, and 49 days post-infection to monitor pathogen excretion by qPCR. Nasal swabs were also used to detect anti-M. hyopneumoniae IgA by ELISA. Blood samples were collected for monitoring acute phase proteins. The antibody response was observed in both immunized groups seven days after vaccination, while the control group became positive for this immunoglobulin at 4 weeks after challenge. Lung lesion score was similar in the immunized groups, and lower than that observed in the control. SBA-15-adjuvanted oral vaccine provided immunological response, decreased shedding of M. hyopneumoniae and led to mucosal protection confirmed by the reduced pulmonary lesions. This study provides useful data for future development of vaccines against M. hyopneumoniae.
Collapse
|