1
|
Liu K, Epsztein R, Lin S, Qu J, Sun M. Ion-Ion Selectivity of Synthetic Membranes with Confined Nanostructures. ACS NANO 2024; 18:21633-21650. [PMID: 39114876 DOI: 10.1021/acsnano.4c00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Synthetic membranes featuring confined nanostructures have emerged as a prominent category of leading materials that can selectively separate target ions from complex water matrices. Further advancements in these membranes will pressingly rely on the ability to elucidate the inherent connection between transmembrane ion permeation behaviors and the ion-selective nanostructures. In this review, we first abstract state-of-the-art nanostructures with a diversity of spatial confinements in current synthetic membranes. Next, the underlying mechanisms that govern ion permeation under the spatial nanoconfinement are analyzed. We then proceed to assess ion-selective membrane materials with a focus on their structural merits that allow ultrahigh selectivity for a wide range of monovalent and divalent ions. We also highlight recent advancements in experimental methodologies for measuring ionic permeability, hydration numbers, and energy barriers to transport. We conclude by putting forth the future research prospects and challenges in the realm of high-performance ion-selective membranes.
Collapse
Affiliation(s)
- Kairui Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Razi Epsztein
- Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Shihong Lin
- Department of Civil and Environmental Engineering and Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Meng Sun
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
2
|
Zhang G, Lin L, Shen W, Wang X, Wang Y, Cao L, Liu F. A New Strategy for Highly Efficient Separation between Monovalent Cations by Applying Opposite-Oriented Pressure and Electric Fields. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203396. [PMID: 35906891 DOI: 10.1002/smll.202203396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Biological ion channels exhibit excellent ion selectivity, but it has been challenging to design their artificial counterparts, especially for highly efficient separation of similar ions. Here, a new strategy to achieve high selectivity between alkali metal ions with artificial nanostructures is reported. Molecular dynamics (MD) simulations and experiments are combined to study the transportation of monovalent cations through graphene oxide (GO) nanoslits by applying pressure or/and electric fields. It is found that the ionic transport selectivity under the pressure driving reverses compared with that under the electric field driving. Moreover, MD simulations show that different monovalent cations can be separated with unprecedentedly high selectivity by applying opposite-oriented pressure and electric fields. This highly efficient separation originates from two distinctive ionic transporting modes, that is, hydration shells drive ions under pressure, but drag ions under the electric field. Hence, ions with different hydration strengths can be efficiently separated by tuning the net mobility induced by the two types of driving forces when the selected ions are kept moving while the other ones are immobilized. And nanoconfinement is confirmed to enhance the separation efficacy. This discovery paves a new avenue for separating similar ions without elaborately designing biomimetic nanostructures.
Collapse
Affiliation(s)
- Gehui Zhang
- State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, 100871, China
| | - Lingxin Lin
- College of Energy, Xiamen University, Xiamen, Fujian, 361005, China
| | - Wenhao Shen
- State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, 100871, China
| | - Xue Wang
- State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, 100871, China
| | - Yugang Wang
- State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, 100871, China
| | - Liuxuan Cao
- College of Energy, Xiamen University, Xiamen, Fujian, 361005, China
| | - Feng Liu
- State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, 100871, China
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China
| |
Collapse
|
3
|
Multiple Li+ extraction mechanisms of sulfate saline by graphene nanopores: Effects of ion association under electric fields. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Gao H, Wang J, Liu Y, Xie Y, Král P, Lu R. Selectivity of ion transport in narrow carbon nanotubes depends on the driving force due to drag or drive nature of their active hydration shells. J Chem Phys 2021; 154:104707. [PMID: 33722021 DOI: 10.1063/5.0038662] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Molecular dynamics simulations have revealed the important roles of hydration shells of ions transported through ultrathin carbon nanotubes (CNTs). In particular, ions driven by electric fields tend to drag their hydration shells behind them, while for ions transported by pressure, their hydration shells can actively drive them. Given the different binding strengths of hydration shells to ions of different sizes, these active roles of hydration shells affect the relative entry rates and driving speeds of ions in CNTs.
Collapse
Affiliation(s)
- Haiqi Gao
- Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Jing Wang
- Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Yuzhen Liu
- Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Yannan Xie
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, People's Republic of China
| | - Petr Král
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Ruifeng Lu
- Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| |
Collapse
|
5
|
Yu YS, Tan RR, Ding HM. Controlling ion transport in a C 2N-based nanochannel with tunable interlayer spacing. Phys Chem Chem Phys 2020; 22:16855-16861. [PMID: 32666963 DOI: 10.1039/d0cp02993a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selective ion transport through a nanochannel formed by stacked two-dimensional materials plays a key role in water desalination, nanofiltration, and ion separation. Although there have been many functional nanomaterials used in these applications, how to well control ion transport in a laminar structure so as to obtain the desired selectivity still remains a challenging problem. In the present work, the transport of ions through a C2N-based nanochannel is investigated by using all-atom molecular dynamics simulation. It is found that C2N-based nanochannels with different interlayer spacing posses diverse ion selectivity, which is mainly attributed to the distinct loading capability among ions and the different velocity of ions inside the nanochannel. Moreover, we also find that the ion selectivity is dependent on the electric field, but nearly independent of the salt concentration. The present study may provide some physical insights into the experimental design of C2N-based nanodevices in nanofiltration.
Collapse
Affiliation(s)
- You-Sheng Yu
- School of Science, East China University of Technology, Nanchang 330013, China
| | | | | |
Collapse
|
6
|
Qian J, Gao X, Pan B. Nanoconfinement-Mediated Water Treatment: From Fundamental to Application. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8509-8526. [PMID: 32511915 DOI: 10.1021/acs.est.0c01065] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Safe and clean water is of pivotal importance to all living species and the ecosystem on earth. However, the accelerating economy and industrialization of mankind generate water pollutants with much larger quantity and higher complexity than ever before, challenging the efficacy of traditional water treatment technologies. The flourishing researches on nanomaterials and nanotechnologies in the past decade have generated new understandings on many fundamental processes and brought revolutionary upgrades to various traditional technologies in almost all areas, including water treatment. An indispensable step toward the real application of nanomaterials in water treatment is to confine them in large processable substrate to address various inherent issues, such as spontaneous aggregation, difficult operation and potential environmental risks. Strikingly, when the size of the spatial restriction provided by the substrate is on the order of only one or several nanometers, referred to as nanoconfinement, the phase behavior of matter and the energy diagram of a chemical reaction could be utterly changed. Nevertheless, the relationship between such changes under nanoconfinement and their implications for water treatment is rarely elucidated systematically. In this Critical Review, we will briefly summarize the current state-of-the-art of the nanomaterials, as well as the nanoconfined analogues (i.e., nanocomposites) developed for water treatment. Afterward, we will put emphasis on the effects of nanoconfinement from three aspects, that is, on the structure and behavior of water molecules, on the formation (e.g., crystallization) of confined nanomaterials, and on the nanoenabled chemical reactions. For each aspect, we will build the correlation between the nanoconfinement effects and the current studies for water treatment. More importantly, we will make proposals for future studies based on the missing links between some of the nanoconfinement effects and the water treatment technologies. Through this Critical Review, we aim to raise the research attention on using nanoconfinement as a fundamental guide or even tool to advance water treatment technologies.
Collapse
Affiliation(s)
- Jieshu Qian
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment, Nanjing University, Nanjing 210023 China
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094 China
| | - Xiang Gao
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment, Nanjing University, Nanjing 210023 China
| | - Bingcai Pan
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment, Nanjing University, Nanjing 210023 China
- State Key Laboratory of Pollution Control and Resources Reuse, Nanjing University, Nanjing 210023 China
| |
Collapse
|
7
|
Fu Y, Su S, Zhang N, Wang Y, Guo X, Xue J. Dehydration-Determined Ion Selectivity of Graphene Subnanopores. ACS APPLIED MATERIALS & INTERFACES 2020; 12:24281-24288. [PMID: 32349478 DOI: 10.1021/acsami.0c03932] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Graphene membranes with subnanopores are considered to be the next-generation materials for water desalination and ion separation, while their performance is mainly determined by the relative ion selectivity of the pores. However, the origin of this phenomenon has been controversial in the past few years, which strongly limits the development of related applications. Here, using direct Au ion bombardment, we fabricated the desired subnanopores with average diameters of 0.8 ± 0.16 nm in monolayer graphene. The pores showed the ability to sieve K+, Na+, Li+, Cs+, Mg2+, and Ca2+ cations, and the observed K+/Mg2+ selectivity ratio was over 4. With further molecular dynamics simulations, we demonstrated that the ion selectivity is primarily attributed to the dehydration process of ions that can be quantitatively described by the ion-dependent free-energy barriers. Hopefully, this work is helpful in further enhancing the ion selectivity of graphene nanopores and also presenting a new paradigm for improving the performance of other nanoporous atomically thin membranes, such as MXenes and MoS2.
Collapse
Affiliation(s)
- Yanjun Fu
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, P. R. China
- CAPT, HEDPS, College of Engineering, Peking University, Beijing 100871, P. R. China
| | - Shihao Su
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, P. R. China
- CAPT, HEDPS, College of Engineering, Peking University, Beijing 100871, P. R. China
| | - Ning Zhang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, P. R. China
- CAPT, HEDPS, College of Engineering, Peking University, Beijing 100871, P. R. China
| | - Yihan Wang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, P. R. China
- CAPT, HEDPS, College of Engineering, Peking University, Beijing 100871, P. R. China
| | - Xun Guo
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, P. R. China
| | - Jianming Xue
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, P. R. China
- CAPT, HEDPS, College of Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
8
|
Fedorenko OA, Kaufman IK, Gibby WAT, Barabash ML, Luchinsky DG, Roberts SK, McClintock PVE. Ionic Coulomb blockade and the determinants of selectivity in the NaChBac bacterial sodium channel. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183301. [PMID: 32360369 DOI: 10.1016/j.bbamem.2020.183301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 01/30/2020] [Accepted: 03/29/2020] [Indexed: 10/24/2022]
Abstract
Mutation-induced transformations of conductivity and selectivity in NaChBac bacterial channels are studied experimentally and interpreted within the framework of ionic Coulomb blockade (ICB), while also taking account of resonant quantised dehydration (QD) and site protonation. Site-directed mutagenesis and whole-cell patch-clamp experiments are used to investigate how the fixed charge Qf at the selectivity filter (SF) affects both valence selectivity and same-charge selectivity. The new ICB/QD model predicts that increasing ∣Qf∣ should lead to a shift in selectivity sequences toward larger ion sizes, in agreement with the present experiments and with earlier work. Comparison of the model with experimental data leads to the introduction of an effective charge Qf∗ at the SF, which was found to differ between Aspartate and Glutamate charged rings, and also to depend on position within the SF. It is suggested that protonation of the residues within the restricted space of the SF is important in significantly reducing the effective charge of the EEEE ring. Values of Qf∗ derived from experiments on divalent blockade agree well with expectations based on the ICB/QD model and have led to the first demonstration of ICB oscillations in Ca2+ conduction as a function of the fixed charge. Preliminary studies of the dependence of Ca2+ conduction on pH are qualitatively consistent with the predictions of the model.
Collapse
Affiliation(s)
- O A Fedorenko
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, UK; School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK.
| | - I Kh Kaufman
- Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
| | - W A T Gibby
- Department of Physics, Lancaster University, Lancaster LA1 4YB, UK.
| | - M L Barabash
- Department of Physics, Lancaster University, Lancaster LA1 4YB, UK.
| | - D G Luchinsky
- Department of Physics, Lancaster University, Lancaster LA1 4YB, UK; SGT, Inc., Greenbelt, MD 20770, USA.
| | - S K Roberts
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, UK.
| | - P V E McClintock
- Department of Physics, Lancaster University, Lancaster LA1 4YB, UK.
| |
Collapse
|
9
|
Guardiani C, Gibby WAT, Barabash ML, Luchinsky DG, McClintock PVE. Exploring the pore charge dependence of K + and Cl - permeation across a graphene monolayer: a molecular dynamics study. RSC Adv 2019; 9:20402-20414. [PMID: 35514713 PMCID: PMC9065459 DOI: 10.1039/c9ra03025e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/30/2019] [Indexed: 01/15/2023] Open
Abstract
Selective permeation through graphene nanopores is attracting increasing interest as an efficient and cost-effective technique for water desalination and purification. In this work, using umbrella sampling and molecular dynamics simulations with constant electric field, we analyze the influence of pore charge on potassium and chloride ion permeation. As pore charge is increased, the barrier of the potential of mean force (PMF) gradually decreases until it turns into a well split in two subminima. While in the case of K+ this pattern can be explained as an increasing electrostatic compensation of the desolvation cost, in the case of Cl- the pattern can be attributed to the accumulation of a concentration polarization layer of potassium ions screening pore charge. The analysis of potassium PMFs in terms of forces revealed a conflicting influence on permeation of van der Waals and electrostatic forces that both undergo an inversion of their direction as pore charge is increased. Even if the most important transition involves the interplay between the electrostatic forces exerted by graphene and water, the simulations also revealed an important role of the changing distribution of potassium and chloride ions. The influence of pore charge on the orientation of water molecules was also found to affect the van der Waals forces they exert on potassium.
Collapse
Affiliation(s)
- Carlo Guardiani
- Department of Physics, Lancaster University Lancaster LA1 4YB UK +44 (0)1524 844037 +44 (0)1524 593073
| | - William A T Gibby
- Department of Physics, Lancaster University Lancaster LA1 4YB UK +44 (0)1524 844037 +44 (0)1524 593073
| | - Miraslau L Barabash
- Department of Physics, Lancaster University Lancaster LA1 4YB UK +44 (0)1524 844037 +44 (0)1524 593073
| | - Dmitry G Luchinsky
- Department of Physics, Lancaster University Lancaster LA1 4YB UK +44 (0)1524 844037 +44 (0)1524 593073
- SGT Inc. Greenbelt MD 20770 USA
| | - Peter V E McClintock
- Department of Physics, Lancaster University Lancaster LA1 4YB UK +44 (0)1524 844037 +44 (0)1524 593073
| |
Collapse
|
10
|
Zhu H, Wang Y, Fan Y, Xu J, Yang C. Structure and Transport Properties of Water and Hydrated Ions in Nano‐Confined Channels. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201900016] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Huajian Zhu
- College of Chemical EngineeringNanjing Tech University Nanjing 210009 China
| | - Yuying Wang
- CAS Key Laboratory of Green Process and EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 China
- School of Chemical EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Yiqun Fan
- College of Chemical EngineeringNanjing Tech University Nanjing 210009 China
| | - Junbo Xu
- CAS Key Laboratory of Green Process and EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 China
| | - Chao Yang
- CAS Key Laboratory of Green Process and EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 China
- School of Chemical EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
11
|
Yu YS, Huang LY, Lu X, Ding HM. Ion transport through a nanoporous C2N membrane: the effect of electric field and layer number. RSC Adv 2018; 8:36705-36711. [PMID: 35558907 PMCID: PMC9088869 DOI: 10.1039/c8ra07795a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/16/2018] [Indexed: 12/20/2022] Open
Abstract
Using all-atom molecular dynamic simulations, we show that a monolayer C2N membrane possesses higher permeability and excellent ion selectivity, and that multilayer C2N membranes have promising potential for water desalination.
Collapse
Affiliation(s)
- You-sheng Yu
- National Laboratory of Solid State Microstructures
- Department of Physics
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
- Nanjing 210093
| | - Lu-yi Huang
- National Laboratory of Solid State Microstructures
- Department of Physics
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
- Nanjing 210093
| | - Xiang Lu
- National Laboratory of Solid State Microstructures
- Department of Physics
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
- Nanjing 210093
| | - Hong-ming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary Research
- School of Physical Science and Technology
- Soochow University
- Suzhou 215006
- China
| |
Collapse
|