1
|
Exertier F, Tegg L, Taylor A, Cairney JM, Fu J, Marceau RKW. Nanoscale Analysis of Frozen Water by Atom Probe Tomography Using Graphene Encapsulation and Cryo-Workflows. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2025; 30:1181-1194. [PMID: 38905154 DOI: 10.1093/mam/ozae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/24/2024] [Accepted: 05/28/2024] [Indexed: 06/23/2024]
Abstract
There has been an increasing interest in atom probe tomography (APT) to characterize hydrated and biological materials. A major benefit of APT compared to microscopy techniques more commonly used in biology is its combination of outstanding three-dimensional (3D) spatial resolution and mass sensitivity. APT has already been successfully used to characterize biominerals, revealing key structural information at the atomic scale, however there are many challenges inherent to the analysis of soft hydrated materials. New preparation protocols, often involving specimen preparation and transfer at cryogenic temperature, enable APT analysis of hydrated materials and have the potential to enable 3D atomic scale characterization of biological materials in the near-native hydrated state. In this study, samples of pure water at the tips of tungsten needle specimens were prepared at room temperature by graphene encapsulation. A comparative study was conducted where specimens were transferred at either room temperature or cryo-temperature and analyzed by APT by varying the flight path and pulsing mode. The differences between the analysis workflows are presented along with recommendations for future studies, and the compatibility between graphene coating and cryogenic workflows is demonstrated.
Collapse
Affiliation(s)
- Florant Exertier
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Levi Tegg
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006, Australia
| | - Adam Taylor
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Julie M Cairney
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jing Fu
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Ross K W Marceau
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
2
|
Belluati A, Harley I, Lieberwirth I, Bruns N. An Outer Membrane-Inspired Polymer Coating Protects and Endows Escherichia coli with Novel Functionalities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303384. [PMID: 37452438 DOI: 10.1002/smll.202303384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/06/2023] [Indexed: 07/18/2023]
Abstract
A bio-inspired membrane made of Pluronic L-121 is produced around Escherichia coli thanks to the simple co-extrusion of bacteria and polymer vesicles. The block copolymer-coated bacteria can withstand various harsh shocks, for example, temperature, pressure, osmolarity, and chemical agents. The polymer membrane also makes the bacteria resistant to enzymatic digestion and enables them to degrade toxic compounds, improving their performance as whole-cell biocatalysts. Moreover, the polymer membrane acts as an anchor layer for the surface modification of the bacteria. Being decorated with α-amylase or lysozyme, the cells are endowed with the ability to digest starch or self-predatory bacteria are created. Thus, without any genetic engineering, the phenotype of encapsulated bacteria is changed as they become sturdier and gain novel metabolic functionalities.
Collapse
Affiliation(s)
- Andrea Belluati
- Department of Chemistry and Centre for Synthetic Biology, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| | - Iain Harley
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Ingo Lieberwirth
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Nico Bruns
- Department of Chemistry and Centre for Synthetic Biology, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| |
Collapse
|
3
|
Yuan B, Hua Z, Jia S, Lu Y, Shi E, Yu Y. Graphene protection improves the stability of two-dimensional halide perovskites under the electron irradiation. Microsc Res Tech 2022; 85:3582-3588. [PMID: 35880591 DOI: 10.1002/jemt.24209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/09/2022] [Accepted: 07/09/2022] [Indexed: 11/10/2022]
Abstract
The crystal structure of two-dimensional (2D) organic-inorganic halide perovskites undergoes fast structural collapse under the electron beam irradiation, hindering high-resolution transmission electron microscopy imaging. Graphene protection is an effective solution to mitigate the damage of electron-beam irradiation and has been applied in 2D materials such as MoS2 . However, the effectivity of graphene protection has not been demonstrated in 2D halide perovskites yet, as traditional wet-transfer of graphene with aqueous solution would cause serious degradation for moisture-sensitive halide perovskites. Here, we verified that graphene protection plays a protection role and developed a method using nonpolar solvent to transfer the graphene layer atop the perovskite nanosheets. With this method, the perovskite nanosheets might be well protected by graphene encapsulation. HIGHLIGHTS: Transfer method of graphene on moisture-sensitive 2D halide perovskites using nonpolar solvents was developed. Graphene substrate is proven to be able to mitigate electron-beam damage to 2D halide perovskites. Encapsulation structure of graphene/halide perovskite/graphene was demonstrated.
Collapse
Affiliation(s)
- Biao Yuan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.,Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, China
| | - Ziyi Hua
- School of Engineering, Westlake University, Hangzhou, China
| | - Shunhan Jia
- School of Engineering, Westlake University, Hangzhou, China.,CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Yuan Lu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.,Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, China
| | - Enzheng Shi
- School of Engineering, Westlake University, Hangzhou, China
| | - Yi Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.,Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, China
| |
Collapse
|
4
|
Dipolar Noise in Fluorinated Molecular Wires. NANOMATERIALS 2022; 12:nano12081371. [PMID: 35458080 PMCID: PMC9031467 DOI: 10.3390/nano12081371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023]
Abstract
We demonstrate a strategy to directly map and quantify the effects of dipole formation on electrical transports and noises in the self-assembled monolayers (SAMs) of molecular wires. In this method, the SAM patterns of fluorinated molecules with dipole moments were prepared on conducting substrates, and a conducting probe in contact-mode atomic force microscopy was utilized to map currents and noises through the probe on the molecular patterns. The maps were analyzed to extract the characteristic parameters of dipolar noises in SAMs, and the results were compared with those of hydrogenated molecular patterns without dipole moments. At rather low bias conditions, the fluorinated molecular junctions exhibited a tunneling conduction and a resistance value comparable to that of the hydrogenated molecules with a six-times-longer length, which was attributed to stronger dipoles formation in fluorinated molecules. Interestingly, conductance (G) in different regions of fluorinated molecular patterns exhibited a strong correlation with a noise power spectral density of SI/I2 like SI/I2 ∝ G-2, which can be explained by enhanced barrier fluctuations produced by the dipoles of fluorinated molecules. Furthermore, we observed that the noise power spectral density of fluorinated molecules showed an anomalous frequency (f) dependence like SI/I2 ∝ 1/f1.7, possibly due to the slowing down of the tunneling of carriers from increased barrier fluctuations. In rather high bias conditions, conductions in both hydrogenated and fluorinated molecules showed a transition from tunneling to thermionic charge transports. Our results provide important insights into the effects of dipoles on mesoscopic transport and resistance-fluctuation in molecules and could have a significant impact on the fundamental understanding and applications in this area.
Collapse
|
5
|
Recent advances in single-cell analysis: Encapsulation materials, analysis methods and integrative platform for microfluidic technology. Talanta 2021; 234:122671. [PMID: 34364472 DOI: 10.1016/j.talanta.2021.122671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 12/27/2022]
Abstract
Traditional cell biology researches on cell populations by their origin, tissue, morphology, and secretions. Because of the heterogeneity of cells, research at the single-cell level can obtain more accurate and comprehensive information that reflects the physiological state and process of the cell, increasing the significance of single-cell analysis. The application of single-cell analysis is faced with the problem of contaminated or damaged cells caused by cell sample transportation. Reversible encapsulation of a single cell can protect cells from the external environment and open the encapsulation shell to release cells, thus preserving cell integrity and improving extraction efficiency of analytes. Meanwhile, microfluidic single cell analysis (MSCA) exhibits integration, miniaturization, and high throughput, which can considerably improve the efficiency of single-cell analysis. The researches on single-cell reversible encapsulation materials, single-cell analysis methods, and the MSCA integration platform are analyzed and summarized in this review. The problems of single-cell viability, network of single-cell signal, and simultaneous detection of multiple biotoxins in food based on single-cell are proposed for future research.
Collapse
|
6
|
Qiu S, Zheng C, Garg V, Chen Y, Gervinskas G, Li J, Dunstone MA, Marceau RKW, Fu J. Three-Dimensional Chemical Mapping of a Single Protein in the Hydrated State with Atom Probe Tomography. Anal Chem 2020; 92:5168-5177. [DOI: 10.1021/acs.analchem.9b05668] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shi Qiu
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Changxi Zheng
- ARC Centre of Excellence for Future Low-Energy Electronics Technologies, Monash University, Clayton, VIC 3800, Australia
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
| | - Vivek Garg
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Yu Chen
- Monash Centre for Electron Microscopy, Monash University, Clayton, VIC 3800, Australia
| | - Gediminas Gervinskas
- Monash Ramaciotti Centre for Cryo Electron Microscopy, Monash University, Clayton, VIC 3800, Australia
| | - Jian Li
- Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Michelle A. Dunstone
- Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
- ARC Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Ross K. W. Marceau
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Jing Fu
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
- ARC Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
7
|
Gallion LA, Anttila MM, Abraham DH, Proctor A, Allbritton NL. Preserving Single Cells in Space and Time for Analytical Assays. Trends Analyt Chem 2020; 122:115723. [PMID: 32153309 PMCID: PMC7061724 DOI: 10.1016/j.trac.2019.115723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Analytical assays performed within clinical laboratories influence roughly 70% of all medical decisions by facilitating disease detection, diagnosis, and management. Both in clinical and academic research laboratories, single-cell assays permit measurement of cell diversity and identification of rare cells, both of which are important in the understanding of disease pathogenesis. For clinically utility, the single-cell assays must be compatible with the clinical workflow steps of sample collection, sample transportation, pre-analysis processing, and single-cell assay; therefore, it is paramount to preserve cells in a state that resembles that in vivo rather than measuring signaling behaviors initiated in response to stressors such as sample collection and processing. To address these challenges, novel cell fixation (and more broadly, cell preservation) techniques incorporate programmable fixation times, reversible bond formation and cleavage, chemoselective reactions, and improved analyte recovery. These technologies will further the development of individualized, precision therapies for patients to yield improved clinical outcomes.
Collapse
Affiliation(s)
- Luke A. Gallion
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Matthew M. Anttila
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David H. Abraham
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Angela Proctor
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nancy L. Allbritton
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599, USA and North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
8
|
Garg V, Chou T, Liu A, De Marco A, Kamaliya B, Qiu S, Mote RG, Fu J. Weaving nanostructures with site-specific ion induced bidirectional bending. NANOSCALE ADVANCES 2019; 1:3067-3077. [PMID: 36133581 PMCID: PMC9418629 DOI: 10.1039/c9na00382g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 05/13/2023]
Abstract
Site-specific ion-irradiation is a promising tool fostering strain-engineering of freestanding nanostructures to realize 3D-configurations towards various functionalities. We first develop a novel approach of fabricating freestanding 3D silicon nanostructures by low dose ion-implantation followed by chemical-etching. The fabricated nanostructures can then be deformed bidirectionally by varying the local irradiation of kiloelectronvolt gallium ions. By further tuning the ion-dose and energy, various nanostructure configurations can be realized, thus extending its horizon to new functional 3D-nanostructures. It has been revealed that at higher-energies (∼30 kV), the nanostructures can exhibit two-stage bidirectional-bending in contrast to the bending towards the incident-ions at lower-energies (∼16), implying an effective transfer of kinetic-energy. Computational studies show that the spatial-distribution of implanted-ions, dislocated silicon atoms, has potentially contributed to the local development of stresses. Nanocharacterization confirms the formation of two distinguishable ion-irradiated and un-irradiated regions, while the smoothened morphology of the irradiated-surface suggested that the bending is also coupled with sputtering at higher ion-doses. The bending effects associated with local ion irradiation in contrast to global ion irradiation are presented, with the mechanism elucidated. Finally, weaving of nanostructures is demonstrated through strain-engineering for new nanoscale artefacts such as ultra-long fully-bent nanowires, nano-hooks, and nano-meshes. The aligned growth of bacterial-cells is observed on the fabricated nanowires, and a mesh based "bacterial-trap" for site-specific capture of bacterial cells is demonstrated emphasizing the versatile nature of the current approach.
Collapse
Affiliation(s)
- Vivek Garg
- IITB-Monash Research Academy, Indian Institute of Technology Bombay Powai Mumbai 400076 India
- Department of Mechanical Engineering, Indian Institute of Technology Bombay Powai Mumbai 400076 India
- Department of Mechanical and Aerospace Engineering, Monash University Wellington Road Clayton Victoria 3800 Australia
| | - Tsengming Chou
- Laboratory of Multiscale Imaging, Stevens Institute of Technology Hoboken NJ 07030 USA
| | - Amelia Liu
- Monash Centre for Electron Microscopy, Monash University Clayton VIC 3800 Australia
| | - Alex De Marco
- Department of Biochemistry and Molecular Biology, Monash University Clayton VIC 3800 Australia
| | - Bhaveshkumar Kamaliya
- IITB-Monash Research Academy, Indian Institute of Technology Bombay Powai Mumbai 400076 India
- Department of Mechanical and Aerospace Engineering, Monash University Wellington Road Clayton Victoria 3800 Australia
- Department Physics, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Shi Qiu
- Department of Mechanical and Aerospace Engineering, Monash University Wellington Road Clayton Victoria 3800 Australia
| | - Rakesh G Mote
- Department of Mechanical Engineering, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Jing Fu
- Department of Mechanical and Aerospace Engineering, Monash University Wellington Road Clayton Victoria 3800 Australia
| |
Collapse
|