1
|
Wu R, Hao J, Wang Y. Recent Advances in Engineering of 2D Layered Metal Chalcogenides for Resistive-Type Gas Sensor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404821. [PMID: 39344560 DOI: 10.1002/smll.202404821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/22/2024] [Indexed: 10/01/2024]
Abstract
2D nanomaterials have triggered widespread attention in sensing applications. Especially for 2D layered metal chalcogenides (LMCs), the unique semiconducting properties and high surface area endow them with great potential for gas sensors. The assembly of 2D LMCs with guest species is an effective functionalization method to produce the synergistic effects of hybridization for greatly enhancing the gas-sensing properties. This review starts with the synthetic techniques, sensing properties, and principles, and then comprehensively compiles the advanced achievements of the pristine 2D LMCs gas sensors. Key advances in the development of the functionalization of 2D LMCs for enhancing gas-sensing properties are categorized according to the spatial architectures. It is systematically discussed in three aspects: surface, lattice, and interlayer, to comprehend the benefits of the functionalized 2D LMCs from surface chemical effect, electronic properties, and structure features. The challenges and outlooks for developing high-performance 2D LMCs-based gas sensors are also proposed.
Collapse
Affiliation(s)
- Ruozhen Wu
- Fujian Provincial Collaborative Innovation Center of Bamboo Ecological Industry, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, 354300, P. R. China
- Department of Polymer Materials and Engineering, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, 354300, P. R. China
| | - Juanyuan Hao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - You Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
2
|
Zhu Y, Feng B, Su Y, Li G, Liu Y, Hou Y, Zhang J, Li W, Zhong G, Yang C, Chen M. Strong Covalent Coupling in Vertically Layered SnSe 2/PTAA Heterojunctions Enabled High Performance Inorganic-Organic Hybrid Photodetectors. NANO LETTERS 2024; 24:6778-6787. [PMID: 38767965 DOI: 10.1021/acs.nanolett.4c01515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Controllable large-scale integration of two-dimensional (2D) materials with organic semiconductors and the realization of strong coupling between them still remain challenging. Herein, we demonstrate a wafer-scale, vertically layered SnSe2/PTAA heterojunction array with high light-trapping ability via a low-temperature molecular beam epitaxy method and a facile spin-coating process. Conductive probe atomic force microscopy (CP-AFM) measurements reveal strong rectification and photoresponse behavior in the individual SnSe2 nanosheet/PTAA heterojunction. Theoretical analysis demonstrates that vertically layered SnSe2/PTAA heterojunctions exhibit stronger C-Se covalent coupling than that of the conventional tiled type, which could facilitate more efficient charge transfer. Benefiting from these advantages, the SnSe2/PTAA heterojunction photodetectors with an optimized PTAA concentration show high performance, including a responsivity of 41.02 A/W, an external quantum efficiency of 1.31 × 104%, and high uniformity. The proposed approach for constructing large-scale 2D inorganic-organic heterostructures represents an effective route to fabricate high-performance broadband photodetectors for integrated optoelectronic systems.
Collapse
Affiliation(s)
- Yuanhao Zhu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Bohan Feng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Yuhan Su
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Guangyuan Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yingming Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuxin Hou
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Jie Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wenjie Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Guohua Zhong
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chunlei Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ming Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
3
|
Sun K, Xia W, Wang C, Suo P, Zou Y, Peng J, Wang W, Lin X, Jin Z, Guo Y, Ma G. Highly intrinsic carrier mobility in tin diselenide crystal accessed with ultrafast terahertz spectroscopy. OPTICS EXPRESS 2024; 32:17657-17666. [PMID: 38858943 DOI: 10.1364/oe.523383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/17/2024] [Indexed: 06/12/2024]
Abstract
Tin diselenide (SnSe2), a layered transition metal dichalcogenide (TMDC), stands out among other TMDCs for its extraordinary photoactive ability and low thermal conductivity. Consequently, it has stimulated many influential researches on photodetectors, ultrafast pulse shaping, thermoelectric devices, etc. However, the carrier mobility in SnSe2, as determined experimentally, remains limited to tens of cm2V-1s-1. This limitation poses a challenge for achieving high-performance SnSe2-based devices. Theoretical calculations, on the other hand, predict that the carrier mobility in SnSe2 can reach hundreds of cm2V-1s-1, approximately one order of magnitude higher than experimental value. Interestingly, the carrier mobility could be underestimated significantly in long-range transportation measurements due to the presence of defects and boundary scattering effects. To address this discrepancy, we employ optic pump terahertz probe spectroscopy to access the photoinduced dynamical THz photoconductivity of SnSe2. Our findings reveal that the intrinsic carrier mobility in conventional SnSe2 single crystal is remarkably high, reaching 353.2 ± 37.7 cm2V-1s-1, consistent with the theoretical prediction. Additionally, dynamical THz photoconductivity measurements reveal that the SnSe2 crystal containing rich defects efficiently capture photoinduced conduction-band electrons and valence-band holes with time constants of ∼20 and ∼200 ps, respectively. Meanwhile, we observe an impulsively stimulated Raman scattering at 0.60 THz. Our study not only demonstrates ultrafast THz spectroscopy as a reliable method for determining intrinsic carrier mobility and detection of low frequency coherent Raman mode in materials but also provides valuable reference for the future application of high-performance SnSe2-based devices.
Collapse
|
4
|
Jin S, Wu D, Song W, Hao H, Gao W, Yan S. Superior acetone sensor based on hetero-interface of SnSe 2/SnO 2 quasi core shell nanoparticles for previewing diabetes. J Colloid Interface Sci 2022; 621:119-130. [PMID: 35452926 DOI: 10.1016/j.jcis.2022.04.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/21/2022] [Accepted: 04/09/2022] [Indexed: 10/18/2022]
Abstract
To improve gas sensing performance of SnO2 sensor, a heterostructure constructed by SnO2 and SnSe2 is designed and synthesized via hydrothermal method and post thermal oxidation treatment. The obtained SnSe2/SnO2 composite nanoparticles demonstrate a special core-shell structure with SnO2 nanograins distributed in the shell and mixed SnSe2 and SnO2 nanograins in the core. Owning to the promoted charge transfer effect invited by SnSe2, the sensor based on SnSe2/SnO2 composite nanoparticles exhibit expressively enhanced acetone sensing performance compared to the pristine SnO2 sensor. At the working temperature of 300 °C, the SnSe2/SnO2 composite sensor with optimized composition exhibits superior sensing property towards acetone, including high response (10.77-100 ppm), low theoretical limit of detection (0.354 ppm), high selectivity and good reproducibility. Moreover, the sensor shows a satisfactory sensing performance in trace acetone gas detection under high humidity condition (relative humidity: 70-90%), making it a promising candidate to constructing exhaled breath sensors for acetone detection.
Collapse
Affiliation(s)
- Shicheng Jin
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Di Wu
- Dalian Scientific Test and Control Technology Institute, Dalian 116001, China
| | - Weinan Song
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Hongshun Hao
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Wenyuan Gao
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Shuang Yan
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
5
|
Wang B, Gu Y, Chen L, Ji L, Zhu H, Sun Q. Gas sensing devices based on two-dimensional materials: a review. NANOTECHNOLOGY 2022; 33:252001. [PMID: 35290973 DOI: 10.1088/1361-6528/ac5df5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Gas sensors have been widely utilized penetrating every aspect of our daily lives, such as medical industry, environmental safety testing, and the food industry. In recent years, two-dimensional (2D) materials have shown promising potential and prominent advantages in gas sensing technology, due to their unique physical and chemical properties. In addition, the ultra-high surface-to-volume ratio and surface activity of the 2D materials with atomic-level thickness enables enhanced absorption and sensitivity. Till now, different gas sensing techniques have been developed to further boost the performance of 2D materials-based gas sensors, such as various surface functionalization and Van der Waals heterojunction formation. In this article, a comprehensive review of advanced gas sensing devices is provided based on 2D materials, focusing on two sensing principles of charge-exchange and surface oxygen ion adsorption. Six types of typical gas sensor devices based on 2D materials are introduced with discussion of latest research progress and future perspectives.
Collapse
Affiliation(s)
- Boran Wang
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, People's Republic of China
| | - Yi Gu
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, People's Republic of China
| | - Lin Chen
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, People's Republic of China
| | - Li Ji
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, People's Republic of China
| | - Hao Zhu
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, People's Republic of China
| | - Qingqing Sun
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
6
|
Xu G, Dong R, Gu D, Tian H, Xiong L, Wang Z, Wang W, Shao Y, Li W, Li G, Zheng X, Yu Y, Feng Y, Dong Y, Zhong G, Zhang B, Li W, Wei L, Yang C, Chen M. Selenium Vacancies and Synergistic Effect of Near- and Far-Field-Enabled Ultrasensitive Surface-Enhanced Raman-Scattering-Active Substrates for Malaria Detection. J Phys Chem Lett 2022; 13:1453-1463. [PMID: 35129342 DOI: 10.1021/acs.jpclett.1c03873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Defect engineering with the active control of defect states brings remarkable enhancement on surface-enhanced Raman scattering (SERS) by magnifying semiconductor-molecule interaction. Such light-trapping architectures can increase the light path length, which promotes photon-analytes interactions and further improves the SERS sensitivity. However, by far the reported semiconductor SERS-active substrates based on these strategies are often nonuniform and commonly in the form of isolated laminates or random clusters, which limit their reliability and stability for practical applications. Herein, we develop self-grown single-crystalline "V-shape" SnSe2-x (SnSe1.5, SnSe1.75, SnSe2) nanoflake arrays (SnSe2-x NFAs) with controlled selenium vacancies over large-area (10 cm × 10 cm) for ultrahigh-sensitivity SERS. First-principles density functional theory (DFT) is used to calculate the band gap and the electronic density of states (DOS). Based on the Herzberg-Teller theory regarding the vibronic coupling, the results of theoretical calculation reveal that the downshift of band edge and high DOS of SnSe1.75 can effectively enhance the vibronic coupling within the SnSe1.75-R6G system, which in turn enhances the photoinduced charge transfer resonance and contributes to the SERS activity with a remarkable enhancement factor of 1.68 × 107. Furthermore, we propose and demonstrate ultrasensitive (10-15 M for R6G), uniform, and reliable SERS substrates by forming SnSe1.75 NFAs/Au heterostructures via a facile Au evaporation process. We attribute the superior performance of our SnSe1.75 NFAs/Au heterostructures to the following reasons: (1) selenium vacancies and (2) synergistic effect of the near and far fields. In addition, we successfully build a detection platform to achieve rapid (∼15 min for the whole process), antibody-free, in situ, and reliable early malaria detection (100% detection rate for 10 samples with 160 points) in whole blood, and molecular hemozoin (<100/mL) can be detected. Our approach not only provides an efficient technique to obtain large-area, uniform, and reliable SERS-active substrates but also offers a substantial impact on addressing practical issues in many application scenarios such as the detection of insect-borne infectious diseases.
Collapse
Affiliation(s)
- Guoliang Xu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, People's Republic of China
| | - Ruiling Dong
- Shenzhen International Travel Health Care Center and Shenzhen Academy of Inspection and Quarantine, Shenzhen Customs District, Shenzhen 518000, People's Republic of China
| | - Dayong Gu
- Department of Clinical Laboratory, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518000, People's Republic of China
| | - Huili Tian
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, People's Republic of China
| | - Lei Xiong
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Zhixun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Wei Wang
- Department of Clinical Laboratory, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518000, People's Republic of China
| | - Yan Shao
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Wenjie Li
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Guangyuan Li
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Xue Zheng
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Yang Yu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Ye Feng
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Yuming Dong
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Guohua Zhong
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Baoping Zhang
- Laboratory of Micro/Nano-Optoelectronics, Department of Micro Electronic and Integrated Circuits, Xiamen University, Xiamen 361005, China
| | - Weimin Li
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Chunlei Yang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ming Chen
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
7
|
Sierra-Castillo A, Haye E, Acosta S, Arenal R, Bittencourt C, Colomer JF. Atmospheric pressure chemical vapor deposition growth of vertically aligned SnS 2 and SnSe 2 nanosheets. RSC Adv 2021; 11:36483-36493. [PMID: 35494379 PMCID: PMC9043430 DOI: 10.1039/d1ra05672g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/04/2021] [Indexed: 12/15/2022] Open
Abstract
Laminated metal dichalcogenides are candidates for different potential applications ranging from catalysis to nanoelectronics. However, efforts are still needed to optimize synthesis methods aiming to control the number of layers, morphology, and crystallinity, parameters that govern the properties of the synthesized materials. Another important parameter is the thickness and the length of the samples with the possibility of large-scale growth of target homogeneous materials. Here, we report a chemical vapor deposition method at atmospheric pressure to produce vertically aligned tin dichalcogenide based-materials. Tin disulfide (SnS2) and tin diselenide (SnSe2) vertically aligned nanosheets have been synthesized and characterized by different methods showing their crystallinity and purity. Homogenous crystalline 2H-phase SnS2 nanosheets with high purity were synthesized with vertical orientation on substrates; sulfur vacancies were observed at the edges of the sheets. Similarly, in the crystalline 2H phase SnSe2 nanosheets selenium vacancies were observed at the edges. Moreover, these nanosheets are larger than the SnS2 nanosheets, show lower nanosheet homogeneity on substrates and contamination with selenium atoms from the synthesis was observed. The synthesized nanomaterials are interesting in various applications where the edge accessibility and/or directionality of the nanosheets play a major role as for example in gas sensing or field emission.
Collapse
Affiliation(s)
- Ayrton Sierra-Castillo
- Research Group on Carbon Nanostructures (CARBONNAGe), University of Namur 5000 Namur Belgium
| | - Emile Haye
- Laboratoire d'Analyse par Réactions Nucléaires (LARN), Namur Institute of Structured Matter (NISM), University of Namur 5000 Namur Belgium
| | - Selene Acosta
- Chimie des Interactions Plasma-Surface (ChIPS), Research Institute for Materials Science and Engineering, Université de Mons 7000 Mons Belgium
| | - Raul Arenal
- Instituto de Nanociencia y Materiales de Aragon (INMA), CSIC-Universidad de Zaragoza 50009 Zaragoza Spain
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza 50018 Zaragoza Spain
- ARAID Foundation 50018 Zaragoza Spain
| | - Carla Bittencourt
- Chimie des Interactions Plasma-Surface (ChIPS), Research Institute for Materials Science and Engineering, Université de Mons 7000 Mons Belgium
| | - Jean-François Colomer
- Research Group on Carbon Nanostructures (CARBONNAGe), University of Namur 5000 Namur Belgium
| |
Collapse
|
8
|
Strategies for Improving the Sensing Performance of Semiconductor Gas Sensors for High-Performance Formaldehyde Detection: A Review. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9070179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Formaldehyde is a poisonous and harmful gas, which is ubiquitous in our daily life. Long-term exposure to formaldehyde harms human body functions; therefore, it is urgent to fabricate sensors for the real-time monitoring of formaldehyde concentrations. Metal oxide semiconductor (MOS) gas sensors is favored by researchers as a result of their low cost, simple operation and portability. In this paper, the mechanism of formaldehyde detection by gas sensors is introduced, and then the ways of ameliorating the response of gas sensors for formaldehyde detection in recent years are summarized. These methods include the control of the microstructure and morphology of sensing materials, the doping modification of matrix materials, the development of new semiconductor sensing materials, the outfield control strategy and the construction of the filter membrane. These five methods will provide a good prerequisite for the preparation of better performing formaldehyde gas sensors.
Collapse
|
9
|
Boukhvalov DW, Paolucci V, D'Olimpio G, Cantalini C, Politano A. Chemical reactions on surfaces for applications in catalysis, gas sensing, adsorption-assisted desalination and Li-ion batteries: opportunities and challenges for surface science. Phys Chem Chem Phys 2021; 23:7541-7552. [PMID: 32926041 DOI: 10.1039/d0cp03317k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study of chemical processes on solid surfaces is a powerful tool to discover novel physicochemical concepts with direct implications for processes based on chemical reactions at surfaces, largely exploited by industry. Recent upgrades of experimental tools and computational capabilities, as well as the advent of two-dimensional materials, have opened new opportunities and challenges for surface science. In this Perspective, we highlight recent advances in application fields strictly connected to novel concepts emerging in surface science. Specifically, we show for selected case-study examples that surface oxidation can be unexpectedly beneficial for improving the efficiency in electrocatalysis (the hydrogen evolution reaction and oxygen evolution reaction) and photocatalysis, as well as in gas sensing. Moreover, we discuss the adsorption-assisted mechanism in membrane distillation for seawater desalination, as well as the use of surface-science tools in the study of Li-ion batteries. In all these applications, surface-science methodologies (both experimental and theoretical) have unveiled new physicochemical processes, whose efficiency can be further tuned by controlling surface phenomena, thus paving the way for a new era for the investigation of surfaces and interfaces of nanomaterials. In addition, we discuss the role of surface scientists in contemporary condensed matter physics, taking as case-study examples specific controversial debates concerning unexpected phenomena emerging in nanosheets of layered materials, solved by adopting a surface-science approach.
Collapse
Affiliation(s)
- Danil W Boukhvalov
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, P. R. China
| | | | | | | | | |
Collapse
|
10
|
Kumar M, Rani S, Singh Y, Gour KS, Singh VN. Tin-selenide as a futuristic material: properties and applications. RSC Adv 2021; 11:6477-6503. [PMID: 35423185 PMCID: PMC8694900 DOI: 10.1039/d0ra09807h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/26/2020] [Indexed: 12/14/2022] Open
Abstract
SnSe/SnSe2 is a promising versatile material with applications in various fields like solar cells, photodetectors, memory devices, lithium and sodium-ion batteries, gas sensing, photocatalysis, supercapacitors, topological insulators, resistive switching devices due to its optimal band gap. In this review, all possible applications of SnSe/SnSe2 have been summarized. Some of the basic properties, as well as synthesis techniques have also been outlined. This review will help the researcher to understand the properties and possible applications of tin selenide-based materials. Thus, this will help in advancing the field of tin selenide-based materials for next generation technology.
Collapse
Affiliation(s)
- Manoj Kumar
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus Ghaziabad Uttar Pradesh 201002 India
- Indian Reference Materials (BND) Division, National Physical Laboratory, Council of Scientific and Industrial Research (CSIR) Dr K. S. Krishnan Road New Delhi 110012 India
| | - Sanju Rani
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus Ghaziabad Uttar Pradesh 201002 India
- Indian Reference Materials (BND) Division, National Physical Laboratory, Council of Scientific and Industrial Research (CSIR) Dr K. S. Krishnan Road New Delhi 110012 India
| | - Yogesh Singh
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus Ghaziabad Uttar Pradesh 201002 India
- Indian Reference Materials (BND) Division, National Physical Laboratory, Council of Scientific and Industrial Research (CSIR) Dr K. S. Krishnan Road New Delhi 110012 India
| | - Kuldeep Singh Gour
- Optoelectronics Convergence Research Center, Chonnam National University Gwangju 61186 Republic of Korea
| | - Vidya Nand Singh
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus Ghaziabad Uttar Pradesh 201002 India
- Indian Reference Materials (BND) Division, National Physical Laboratory, Council of Scientific and Industrial Research (CSIR) Dr K. S. Krishnan Road New Delhi 110012 India
| |
Collapse
|
11
|
Lazanas AC, Prodromidis MI. Two-dimensional inorganic nanosheets: production and utility in the development of novel electrochemical (bio)sensors and gas-sensing applications. Mikrochim Acta 2021; 188:6. [PMID: 33389171 DOI: 10.1007/s00604-020-04674-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/30/2020] [Indexed: 01/09/2023]
Abstract
This review (with 178 references) focuses on inorganic layered materials (ILMs) and the use of their two-dimensional nanosheets in the development of novel electrochemical (bio)sensors, analytical devices, and gas-phase sensing applications. The text is organized in three main sections including the presentation of the most important families of ILMs, a comprehensive outline of various "bottom-up", "top-down," and hydro(solvo)thermal methods that have been used for the production of ILM nanosheets, and finally an evaluative survey on their utility for the determination of analytes with interest in different sectors of contemporary analysis. Critical discussion on the effect of the production method on their electronic properties, the suitability of each nanomaterial in different sensing technologies along with an assessment of the performance of the (bio)sensors and devices that have been proposed within the last 5 years, is enclosed. The perspectives of further improving the utility of 2D inorganic nanosheets in sensing applications, in real-world samples, are also discussed.
Collapse
Affiliation(s)
- Alexandros Ch Lazanas
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45 110, Ioannina, Greece
| | - Mamas I Prodromidis
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45 110, Ioannina, Greece.
| |
Collapse
|
12
|
Wang T, Wang Y, Sun Q, Zheng S, Liu L, Li J, Hao J. Boosted interfacial charge transfer in SnO2/SnSe2 heterostructures: toward ultrasensitive room-temperature H2S detection. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01326a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Novel Sn atom cosharing SnO2/SnSe2 heterostructures with a high-quality interface were synthesized via in situ thermal oxidation of SnSe. The boosted interfacial charge transfer endows the material with excellent H2S sensing performance.
Collapse
Affiliation(s)
- Tingting Wang
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - You Wang
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
- School of Materials Science and Engineering
| | - Quan Sun
- School of Materials Science and Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Shengliang Zheng
- School of Materials Science and Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Lizhao Liu
- Key Laboratory of Materials Modification by Laser
- Ion and Electron Beams (Dalian University of Technology)
- Ministry of Education
- Dalian 116024
- China
| | - Jialu Li
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Juanyuan Hao
- School of Materials Science and Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| |
Collapse
|
13
|
Wang T, Wang Y, Zheng S, Sun Q, Wu R, Hao J. Design of hierarchical SnSe 2 for efficient detection of trace NO 2 at room temperature. CrystEngComm 2021. [DOI: 10.1039/d1ce00804h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanosheet-assembled hierarchical SnSe2 could serve as a new suitable candidate for high-performance room-temperature NO2 gas sensing.
Collapse
Affiliation(s)
- Tingting Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - You Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Shengliang Zheng
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Quan Sun
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Ruozhen Wu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Juanyuan Hao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
14
|
SnSe2-Zn-Porphyrin Nanocomposite Thin Films for Threshold Methane Concentration Detection at Room Temperature. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8040134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nanocomposite thin films, sensitive to methane at the room temperature (25–30 °C), have been prepared, starting from SnSe2 powder and Zn(II)-5,10,15,20-tetrakis-(4-aminophenyl)- -porphyrin (ZnTAPP) powder, that were fully characterized by XRD, UV-VIS, FT-IR, Nuclear Magnetic Resonance (1H-NMR and 13C-NMR), Atomic Force Microscopy (AFM), SEM and Electron Paramagnetic Resonance (EPR) techniques. Film deposition was made by drop casting from a suitable solvent for the two starting materials, after mixing them in an ultrasonic bath. The thickness of these films were estimated from SEM images, and found to be around 1.3 μm. These thin films proved to be sensitive to a threshold methane (CH4) concentration as low as 1000 ppm, at a room temperature of about 25 °C, without the need for heating the sensing element. The nanocomposite material has a prompt and reproducible response to methane in the case of air, with 50% relative humidity (RH) as well. A comparison of the methane sensing performances of our new nanocomposite film with that of other recently reported methane sensitive materials is provided. It is suitable for signaling gas presence before reaching the critical lower explosion limit concentration of methane at 50,000 ppm.
Collapse
|
15
|
Abstract
The fabrication and transfer of freestanding single-crystal ferroelectric membranes deserve intensive investigations as to their potential applications in flexible wearable devices, such as flexible data storage devices and varied sensors in E-skin configurations. In this report, we have shown a comprehensive study approach to the acquisition of a large-area freestanding single-crystal ferroelectric BaTiO3 by the Sr3Al2O6 scarification layer method. By controlling the thickness of the BaTiO3 and Sr3Al2O6, the exposed area of the Sr3Al2O6 interlayer, and the utilization of an additional electrode La2/3Sr1/3MnO3 layer, the crack density on the freestanding BaTiO3 can be dramatically decreased from 24.53% to almost none; then, a more than 700 × 530 μm2 area high-quality freestanding BaTiO3 membrane can be achieved. Our results offer a clear and repeatable technology routine for the acquisition of a flexible large-area ferroelectric membrane, which should be instructive to other transition metal oxides as well. Our study can confidently boost flexible device fabrication based on single-crystal transition metal oxides.
Collapse
|
16
|
Paolucci V, D'Olimpio G, Kuo CN, Lue CS, Boukhvalov DW, Cantalini C, Politano A. Self-Assembled SnO 2/SnSe 2 Heterostructures: A Suitable Platform for Ultrasensitive NO 2 and H 2 Sensing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34362-34369. [PMID: 32662970 DOI: 10.1021/acsami.0c07901] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
By means of experiments and theory, the gas-sensing properties of tin diselenide (SnSe2) were elucidated. We discover that, while the stoichiometric single crystal is chemically inert even in air, the nonstoichiometric sample assumes a subnanometric SnO2 surface oxide layer once exposed to ambient atmosphere. The presence of Se vacancies induces the formation of a metastable SeO2-like layer, which is finally transformed into a SnO2 skin. Remarkably, the self-assembled SnO2/SnSe2-x heterostructure is particularly efficient in gas sensing, whereas the stoichiometric SnSe2 sample does not show sensing properties. Congruently with the theoretical model, direct sensing tests carried out on SnO2/SnSe2-x at an operational temperature of 150 °C provided sensitivities of (1.06 ± 0.03) and (0.43 ± 0.02) [ppm]-1 for NO2 and H2, respectively, in dry air. The corresponding calculated limits of detection are (0.36 ± 0.01) and (3.6 ± 0.1) ppm for NO2 and H2, respectively. No detectable changes in gas-sensing performances are observed in a time period extended above six months. Our results pave the way for a novel generation of ambient-stable gas sensor based on self-assembled heterostructures formed taking advantage on the natural interaction of substoichiometric van der Waals semiconductors with air.
Collapse
Affiliation(s)
- Valentina Paolucci
- Department of Industrial and Information Engineering and Economics, University of L'Aquila, Via G. Gronchi 18, I-67100 L'Aquila, Italy
| | - Gianluca D'Olimpio
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio, 67100 L'Aquila (AQ), Italy
| | - Chia-Nung Kuo
- Department of Physics, National Cheng Kung University, 1 Ta-Hsueh Road, 70101 Tainan, Taiwan
| | - Chin Shan Lue
- Department of Physics, National Cheng Kung University, 1 Ta-Hsueh Road, 70101 Tainan, Taiwan
| | - Danil W Boukhvalov
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, P. R. China
- Theoretical Physics and Applied Mathematics Department, Ural Federal University, Mira Street 19, 620002 Ekaterinburg, Russia
| | - Carlo Cantalini
- Department of Industrial and Information Engineering and Economics, University of L'Aquila, Via G. Gronchi 18, I-67100 L'Aquila, Italy
| | - Antonio Politano
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio, 67100 L'Aquila (AQ), Italy
- CNR-IMM Istituto per la Microelettronica e Microsistemi, VIII strada 5, I-95121 Catania, Italy
| |
Collapse
|
17
|
Yu Q, Wang B, Wang J, Hu S, Hu J, Li Y. Flowerlike Tin Diselenide Hexagonal Nanosheets for High-Performance Lithium-Ion Batteries. Front Chem 2020; 8:590. [PMID: 32903612 PMCID: PMC7438772 DOI: 10.3389/fchem.2020.00590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/08/2020] [Indexed: 11/21/2022] Open
Abstract
SnSe2 nanosheet is a common anode for lithium-ion batteries (LIBs), but its severe agglomeration hinders its practical application. Herein, a three-dimensional (3D) SnSe2 nanoflower (F-SnSe2) composed of non-stacking vertical upward hexagonal nanosheets was prepared through a colloidal method as an anode material for LIBs. Benefiting from the advantages of fast reaction-diffusion kinetics and buffering unavoidable volume variation during cycling, the F-SnSe2 electrode displays remarkable specific capacity of 795 mAh g-1 after 100 cycles at 100 mA g-1 and superior rate performance (282 mAh g-1 at 2,000 mA g-1). This work provides an effective way to get non-stacking nanosheets in energy storage field.
Collapse
Affiliation(s)
- Qiyao Yu
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China
| | - Bo Wang
- School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Jian Wang
- School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Sisi Hu
- School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Jun Hu
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China
| | - Ying Li
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
18
|
Electrical Properties of Two-Dimensional Materials Used in Gas Sensors. SENSORS 2019; 19:s19061295. [PMID: 30875827 PMCID: PMC6470881 DOI: 10.3390/s19061295] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/10/2019] [Accepted: 03/08/2019] [Indexed: 11/16/2022]
Abstract
In the search for gas sensing materials, two-dimensional materials offer the possibility of designing sensors capable of tuning the electronic band structure by controlling their thickness, quantity of dopants, alloying between different materials, vertical stacking, and the presence of gases. Through materials engineering it is feasible to study the electrical properties of two-dimensional materials which are directly related to their crystalline structure, first Brillouin zone, and dispersion energy, the latter estimated through the tight-binding model. A review of the electrical properties directly related to the crystalline structure of these materials is made in this article for the two-dimensional materials used in the design of gas sensors. It was found that most 2D sensing materials have a hexagonal crystalline structure, although some materials have monoclinic, orthorhombic and triclinic structures. Through the simulation of the mathematical models of the dispersion energy, two-dimensional and three-dimensional electronic band structures were predicted for graphene, hexagonal boron nitride (h-BN) and silicene, which must be known before designing a gas sensor.
Collapse
|
19
|
Xia FF, Yang FL, Hu J, Zheng CZ, Yi HB, Sun JH. Enhanced visible light absorption performance of SnS 2 and SnSe 2 via surface charge transfer doping. RSC Adv 2018; 8:40464-40470. [PMID: 35558239 PMCID: PMC9091377 DOI: 10.1039/c8ra08834a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/27/2018] [Indexed: 01/26/2023] Open
Abstract
The layered two-dimensional (2D) SnS2 and SnSe2 have received intensive attention due to their sizable band gaps and potential properties. However, it has been shown that the visible light absorption of SnS2 and SnSe2 are restricted as photocatalysts and light-harvesting material absorbers for water splitting and high-performance optoelectronic devices. Herein, to enhance the visible light absorption performance of SnS2 and SnSe2, we performed a systematic investigation on tuning the electronic and optical properties of monolayers SnS2 and SnSe2 via surface charge transfer doping (SCTD) with the adsorption of molybdenum trioxide (MoO3) and potassium (K) as surface dopants based on density functional theory. Our calculations reveal that MoO3 molecules and K atoms can draw/donate electrons from/to SnS2 and SnSe2 as acceptors and donors, respectively. The adsorption of MoO3 molecules introduces a new flat impurity state in the gap of the monolayers SnS2/SnSe2, and the Fermi level moves correspondingly to the top of valence band, resulting in a p-type doping of the monolayer SnS2/SnSe2. With the adsorption of K atoms, the electrons can transfer from K atoms to the monolayer of SnS2 and SnSe2, making K an effective electron-donating dopant. Meanwhile, the bandgaps of monolayers SnS2 and SnSe2 decrease after the MoO3 and K doping, which leads to the appearance of appreciable new absorption peaks at around ∼650/480 and ∼600/680 nm, respectively, and yielding an enhanced visible light absorption of SnS2 and SnSe2. Our results unveil that SCTD is an effective way to improve the photocatalytic and light-harvesting performance of SnS2 and SnSe2, broadening their applications in splitting water and degrading environmental pollutants under sunlight irradiation.
Collapse
Affiliation(s)
- F F Xia
- School of Chemical and Environmental Engineering, Jiangsu University of Technology Changzhou 213001 Jiangsu P. R. China
| | - F L Yang
- School of Chemical and Environmental Engineering, Jiangsu University of Technology Changzhou 213001 Jiangsu P. R. China
| | - J Hu
- School of Chemical and Environmental Engineering, Jiangsu University of Technology Changzhou 213001 Jiangsu P. R. China
| | - C Z Zheng
- School of Chemical and Environmental Engineering, Jiangsu University of Technology Changzhou 213001 Jiangsu P. R. China
| | - H B Yi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 Hunan P. R. China
| | - J H Sun
- School of Chemical and Environmental Engineering, Jiangsu University of Technology Changzhou 213001 Jiangsu P. R. China
| |
Collapse
|