1
|
Parmigiani M, Schifano V, Taglietti A, Galinetto P, Albini B. Increasing gold nanostars SERS response with silver shells: a surface-based seed-growth approach. NANOTECHNOLOGY 2024; 35:195603. [PMID: 38306966 DOI: 10.1088/1361-6528/ad25c9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/02/2024] [Indexed: 02/04/2024]
Abstract
A straightforward method to prepare surface enhanced Raman spectroscopy (SERS) chips containing a monolayer of silver coated gold nanostars (GNS@Ag) grafted on a glass surface is introduced. The synthetic approach is based on a seed growth method performed directly on surface, using GNS as seeds, and involving a green pathway, which only uses silver nitate, ascorbic acid and water, to grow the silver shell. The preparation was optimized to maximize signals obtaining a SERS response of one order of magnitude greater than that from the original GNS based chips, offering in the meantime good homogeneity and acceptable reproducibility. The proposed GNS@Ag SERS chips are able to detect pesticide thiram down to 20 ppb.
Collapse
Affiliation(s)
- Miriam Parmigiani
- Dipartimento di Chimica, Sezione di Chimica Generale, Università di Pavia, viale Taramelli, 12-I-27100 Pavia-Italy
| | - Veronica Schifano
- Dipartimento di Chimica, Sezione di Chimica Generale, Università di Pavia, viale Taramelli, 12-I-27100 Pavia-Italy
| | - Angelo Taglietti
- Dipartimento di Chimica, Sezione di Chimica Generale, Università di Pavia, viale Taramelli, 12-I-27100 Pavia-Italy
| | - Pietro Galinetto
- Dipartimento di Fisica, Università di Pavia, Via Bassi 6,-I-27100 Pavia-Italy
| | - Benedetta Albini
- Dipartimento di Fisica, Università di Pavia, Via Bassi 6,-I-27100 Pavia-Italy
| |
Collapse
|
2
|
Weng G, Yang J, Li J, Zhu J, Zhao J. Ag triangle nanoplates assembled on PVC/SEBS membrane as flexible SERS substrates for skin cortisol sensing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123154. [PMID: 37478705 DOI: 10.1016/j.saa.2023.123154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/25/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Surface-enhanced Raman scattering (SERS) based on rigid substrates has been widely used in biomedical detection due to its high sensitivity and specificity. However, the tedious operation steps for preparing SERS rigid substrates limited their applications in real-world detection. Compared with general rigid substrate, the flexible substrate has the advantages of simple preparation and easy portability, which are suitable for rapid, wearable and personalized detection in the field of point-of-care test. Herein, the flexible SERS substrates employing copolymer were fabricated and used for detection of skin cortisol, a biomarker for evaluating psychological stress in sweat. Silver triangle nanoplates with sharp corner were used as enhanced particles, and transferred to polyvinyl chloride/styrene-ethylene-butene-styrene copolymer (PVC/SEBS) film through three-phase interface self-assembly. By adjusting the size of silver nanoparticles, the ratio of PVC to SEBS in the polymer film, and the number of transfers of self-assembled silver films, the enhancement effect of the flexible SERS substrate was maximized. In addition, functionalization of the flexible SERS substrate with cortisol antibodies is used to achieve specific detection of cortisol on the skin surface. Under the optimal conditions, the Raman peak intensities at 1268 and 1500 cm-1 of the cortisol had a good linear relationship with the logarithm of its concentration in the range of 10-7 to 10-3 M, and the detection limits were 5.47 × 10-8 M and 5.51 × 10-8 M, respectively. The flexible silver triangle nanoplates SERS substrate constructed by self-assembly in the three-phase interface has the characteristics of good specificity and high sensitivity, which has potential for transdermal cortisol wearable detection, providing a feasible method for the rapid evaluating psychological stress level.
Collapse
Affiliation(s)
- Guojun Weng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, China
| | - Jianming Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, China
| | - Jianjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, China
| | - Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, China
| | - Junwu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, China.
| |
Collapse
|
3
|
Albini B, Galinetto P, Schiavi S, Giulotto E. Food Safety Issues in the Oltrepò Pavese Area: A SERS Sensing Perspective. SENSORS (BASEL, SWITZERLAND) 2023; 23:9015. [PMID: 38005403 PMCID: PMC10674787 DOI: 10.3390/s23229015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023]
Abstract
Handly and easy-to-use optical instrumentation is very important for food safety monitoring, as it provides the possibility to assess law and health compliances at every stage of the food chain. In particular, the Surface-enhanced Raman Scattering (SERS) method appears highly promising because the intrinsic drawback of Raman spectroscopy, i.e., the natural weakness of the effect and, in turn, of the signal, is overcome thanks to the peculiar interaction between laser light and plasmonic excitations at the SERS substrate. This fact paved the way for the widespread use of SERS sensing not only for food safety but also for biomedicine, pharmaceutical process analysis, forensic science, cultural heritage and more. However, the current technological maturity of the SERS technique does not find a counterpart in the recognition of SERS as a routine method in compliance protocols. This is mainly due to the very scattered landscape of SERS substrates designed and tailored specifically for the targeted analyte. In fact, a very large variety of SERS substrates were proposed for molecular sensing in different environments and matrices. This review presents the advantages and perspectives of SERS sensing in food safety. The focus of the survey is limited to specific analytes of interest for producers, consumers and stakeholders in Oltrepò Pavese, a definite regional area that is located within the district of Pavia in the northern part of Italy. Our attention has been addressed to (i) glyphosate in rice fields, (ii) histamine in a world-famous local product (wine), (iii) tetracycline, an antibiotic often detected in waste sludges that can be dangerous, for instance in maize crops and (iv) Sudan dyes-used as adulterants-in the production of saffron and other spices, which represent niche crops for Oltrepò. The review aims to highlight the SERS performance for each analyte, with a discussion of the different methods used to prepare SERS substrates and the different reported limits of detection.
Collapse
Affiliation(s)
- Benedetta Albini
- Dipartimento di Fisica, Università di Pavia, Via Bassi 6, 27100 Pavia, Italy; (B.A.); (P.G.)
| | - Pietro Galinetto
- Dipartimento di Fisica, Università di Pavia, Via Bassi 6, 27100 Pavia, Italy; (B.A.); (P.G.)
| | - Serena Schiavi
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy;
| | - Enrico Giulotto
- Dipartimento di Fisica, Università di Pavia, Via Bassi 6, 27100 Pavia, Italy; (B.A.); (P.G.)
| |
Collapse
|
4
|
Niihori M, Földes T, Readman CA, Arul R, Grys DB, Nijs BD, Rosta E, Baumberg JJ. SERS Sensing of Dopamine with Fe(III)-Sensitized Nanogaps in Recleanable AuNP Monolayer Films. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302531. [PMID: 37605460 DOI: 10.1002/smll.202302531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/06/2023] [Indexed: 08/23/2023]
Abstract
Sensing of neurotransmitters (NTs) down to nm concentrations is demonstrated by utilizing self-assembled monolayers of plasmonic 60 nm Au nanoparticles in close-packed arrays immobilized onto glass substrates. Multiplicative surface-enhanced Raman spectroscopy enhancements are achieved by integrating Fe(III) sensitizers into the precisely-defined <1 nm nanogaps, to target dopamine (DA) sensing. The transparent glass substrates allow for efficient access from both sides of the monolayer aggregate films by fluid and light, allowing repeated sensing in different analytes. Repeated reusability after analyte sensing is shown through oxygen plasma cleaning protocols, which restore pristine conditions for the nanogaps. Examining binding competition in multiplexed sensing of two catecholamine NTs, DA and epinephrine, reveals their bidentate binding and their interactions. These systems are promising for widespread microfluidic integration enabling a wide range of continuous biofluid monitoring for applications in precision health.
Collapse
Affiliation(s)
- Marika Niihori
- Nanophotonics Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, England, CB3 0HE, UK
| | - Tamás Földes
- Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK
| | - Charlie A Readman
- Nanophotonics Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, England, CB3 0HE, UK
| | - Rakesh Arul
- Nanophotonics Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, England, CB3 0HE, UK
| | - David-Benjamin Grys
- Nanophotonics Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, England, CB3 0HE, UK
| | - Bart de Nijs
- Nanophotonics Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, England, CB3 0HE, UK
| | - Edina Rosta
- Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK
| | - Jeremy J Baumberg
- Nanophotonics Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, England, CB3 0HE, UK
| |
Collapse
|
5
|
Rafiq F, Wang N, Li K, Hong Z, Cao D, Du J, Sun Z. Au-NP-Decorated Cotton Swabs as a Facile SERS Substrate for Food-Safety-Related Molecule Detection. ACS OMEGA 2023; 8:8541-8547. [PMID: 36910972 PMCID: PMC9996776 DOI: 10.1021/acsomega.2c07690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Recently, food safety has received considerable attention, and various analytical techniques have been employed to monitor food quality. One of the promising techniques in this domain is the surface-enhanced Raman scattering (SERS) technique. This study developed a facile, cost-effective SERS method by supporting a wipe-type substrate with a small-head cotton swab. We fabricated Au-nanoparticle (NP)-decorated cotton swabs (CS-Au NP) via the dropwise addition of gold colloid on the cotton fibers. These swabs exhibit reduced gold colloid consumption and a compact fiber structure, allowing for the uniform distribution of Au NPs and easy capture of molecular signals. Experiments were conducted to obtain a CS-Au NP wiper performance optimized for cotton swab selection, NaCl concentration, and Au NP layers. The Raman reporter molecule 4-mercaptopyridine was detected at a concentration of 1 × 10-8 M and a relative standard deviation of ≤10%. The proposed SERS platform enables the facile and reliable detection of food-safety-related molecules such as malachite green on the surface of fruits and vegetables. This paper describes the development of an easy, cost-effective, and environment-friendly method of detecting food-safety-related molecules on various food surfaces through SERS.
Collapse
Affiliation(s)
- Farzana Rafiq
- MOE
Key Laboratory of Resources and Environmental System Optimization,
College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Ning Wang
- MOE
Key Laboratory of Resources and Environmental System Optimization,
College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Keyou Li
- MOE
Key Laboratory of Resources and Environmental System Optimization,
College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zijin Hong
- MOE
Key Laboratory of Resources and Environmental System Optimization,
College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Dandan Cao
- MOE
Key Laboratory of Resources and Environmental System Optimization,
College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jingjing Du
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| | - Zhenli Sun
- MOE
Key Laboratory of Resources and Environmental System Optimization,
College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
6
|
Parmigiani M, Albini B, Pellegrini G, Genovesi M, De Vita L, Pallavicini P, Dacarro G, Galinetto P, Taglietti A. Surface-Enhanced Raman Spectroscopy Chips Based on Silver Coated Gold Nanostars. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12203609. [PMID: 36296798 PMCID: PMC9609606 DOI: 10.3390/nano12203609] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 06/12/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is becoming widely used as an analytical tool, and the search for stable and highly responsive SERS substrates able to give ultralow detection of pollutants is a current challenge. In this paper we boosted the SERS response of Gold nanostars (GNS) demonstrating that their coating with a layer of silver having a proper thickness produces a 7-fold increase in SERS signals. Glass supported monolayers of these GNS@Ag were then prepared using simple alcoxyliane chemistry, yielding efficient and reproducible SERS chips, which were tested for the detection of molecules representative of different classes of pollutants. Among them, norfloxacin was detected down to 3 ppb, which is one of the lowest limits of detection obtained with this technique for the analyte.
Collapse
Affiliation(s)
- Miriam Parmigiani
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Benedetta Albini
- Department of Physics, University of Pavia, Via Bassi 6, 27100 Pavia, Italy
| | | | - Marco Genovesi
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Lorenzo De Vita
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | | | - Giacomo Dacarro
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Pietro Galinetto
- Department of Physics, University of Pavia, Via Bassi 6, 27100 Pavia, Italy
| | - Angelo Taglietti
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
7
|
Zhao H, Zheng D, Wang H, Lin T, Liu W, Wang X, Lu W, Liu M, Liu W, Zhang Y, Liu M, Zhang P. In Situ Collection and Rapid Detection of Pathogenic Bacteria Using a Flexible SERS Platform Combined with a Portable Raman Spectrometer. Int J Mol Sci 2022; 23:7340. [PMID: 35806345 PMCID: PMC9267095 DOI: 10.3390/ijms23137340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
This study aims to develop a simple, sensitive, low-cost, environmentally friendly and flexible surface-enhanced Raman scattering (SERS) platform, combined with a portable Raman spectrometer, for the rapid and on-site SERS detection of bacteria. Commercial tobacco packaging paper (TPP) with little background interference was used as a loading medium that effectively adsorbed Au nanoparticles and provided sufficient "hot spots". This Au-tobacco packaging paper (Au-TPP) substrate used as a flexible SERS platform can maximize sample collection by wiping irregular surfaces, and was successfully applied to the on-site and rapid detection of pathogenic bacteria. Raman fingerprints of pathogenic bacteria can be obtained by SERS detection of spiked pork using wipeable Au-TPP, which verifies its value in practical applications. The results collected by SERS were further verified by polymerase chain reaction (PCR) results. It showed several advantages in on-site SERS detection, including accurate discrimination, simple preparation, easy operation, good sensitivity, accuracy and reproducibility. This study indicates that the established flexible SERS platform has good practical applications in pathogenic bacterial identification and other rapid detections.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Ping Zhang
- Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing 100124, China; (H.Z.); (D.Z.); (H.W.); (T.L.); (W.L.); (X.W.); (W.L.); (M.L.); (W.L.); (Y.Z.); (M.L.)
| |
Collapse
|
8
|
Wang Z, Li S, Wang J, Shao Y, Mei L. A recyclable graphene/Ag/TiO 2 SERS substrate with high stability and reproducibility for detection of dye molecules. NEW J CHEM 2022. [DOI: 10.1039/d2nj02577a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Magnetron sputtering combined with the wet chemical transfer of graphene successfully prepared a multilayer composite material and an efficient photocatalytic renewable SERS substrate. It has excellent photocatalytic activity against dye molecules.
Collapse
Affiliation(s)
- Zezhou Wang
- School of Mechanical Engineering, North University of China, Taiyuan, Shanxi Province 030051, China
| | - Sha Li
- School of Mechanical Engineering, North University of China, Taiyuan, Shanxi Province 030051, China
| | - Junyuan Wang
- School of Mechanical Engineering, North University of China, Taiyuan, Shanxi Province 030051, China
| | - Yunpeng Shao
- School of Mechanical Engineering, North University of China, Taiyuan, Shanxi Province 030051, China
| | - Linyu Mei
- School of Mechanical Engineering, North University of China, Taiyuan, Shanxi Province 030051, China
| |
Collapse
|
9
|
SHOU W, YANG ST, WANG YL, GUO LH. Preparation of Noble Metal Nanoparticles and Hydrogel Composite Materials and Their Application in Analytical Chemistry. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(21)60097-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Long Y, Li H, Yang X, Yuan Y, Zheng M. Controlling silver morphology on a cramped optical fiber facet via a PVP-assisted silver mirror reaction for SERS fiber probe fabrication. NEW J CHEM 2021. [DOI: 10.1039/d1nj00284h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Controlling the morphology of silver nanoparticles on a cramped and curved optical fiber facet is urgently needed to obtain SERS optical fiber probes with high performance.
Collapse
Affiliation(s)
- Yuting Long
- State Key Laboratory of Silicate Materials for Architectures
- Wuhan University of Technology
- Wuhan
- China
| | - Hong Li
- State Key Laboratory of Silicate Materials for Architectures
- Wuhan University of Technology
- Wuhan
- China
| | - Xinxin Yang
- State Key Laboratory of Silicate Materials for Architectures
- Wuhan University of Technology
- Wuhan
- China
| | - Yufei Yuan
- State Key Laboratory of Silicate Materials for Architectures
- Wuhan University of Technology
- Wuhan
- China
| | - Mengjie Zheng
- State Key Laboratory of Silicate Materials for Architectures
- Wuhan University of Technology
- Wuhan
- China
| |
Collapse
|
11
|
Ortiz-Castillo JE, Gallo-Villanueva RC, Madou MJ, Perez-Gonzalez VH. Anisotropic gold nanoparticles: A survey of recent synthetic methodologies. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213489] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Nanostructured and Spiky Gold Shell Growth on Magnetic Particles for SERS Applications. NANOMATERIALS 2020; 10:nano10112136. [PMID: 33121012 PMCID: PMC7693944 DOI: 10.3390/nano10112136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 11/24/2022]
Abstract
Multifunctional micro- and nanoparticles have potential uses in advanced detection methods, such as the combined separation and detection of biomolecules. Combining multiple tasks is possible but requires the specific tailoring of these particles during synthesis or further functionalization. Here, we synthesized nanostructured gold shells on magnetic particle cores and demonstrated the use of them in surface-enhanced Raman scattering (SERS). To grow the gold shells, gold seeds were bound to silica-coated iron oxide aggregate particles. We explored different functional groups on the surface to achieve different interactions with gold seeds. Then, we used an aqueous cetyltrimethylammonium bromide (CTAB)-based strategy to grow the seeds into spikes. We investigated the influence of the surface chemistry on seed attachment and on further growth of spikes. We also explored different experimental conditions to achieve either spiky or bumpy plasmonic structures on the particles. We demonstrated that the particles showed SERS enhancement of a model Raman probe molecule, 2-mercaptopyrimidine, on the order of 104. We also investigated the impact of gold shell morphology—spiky or bumpy—on SERS enhancements and on particle stability over time. We found that spiky shells lead to greater enhancements, however their high aspect ratio structures are less stable and morphological changes occur more quickly than observed with bumpy shells.
Collapse
|
13
|
Zhang L, Zhu T, Yang C, Jang HY, Jang HJ, Liu L, Park S. Synthesis of Monolayer Gold Nanorings Sandwich Film and Its Higher Surface-Enhanced Raman Scattering Intensity. NANOMATERIALS 2020; 10:nano10030519. [PMID: 32183019 PMCID: PMC7153256 DOI: 10.3390/nano10030519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/03/2020] [Accepted: 03/08/2020] [Indexed: 01/05/2023]
Abstract
Most previous studies relating to surface-enhanced Raman spectroscopy (SERS) signal enhancement were focused on the interaction between the light and the substrate in the x-y axis. 3D SERS substrates reported in the most of previous papers could contribute partial SERS enhancement via z axis, but the increases of the surface area were the main target for those reports. However, the z axis is also useful in achieving improved SERS intensity. In this work, hot spots along the z axis were specifically created in a sandwich nanofilm. Sandwich nanofilms were prepared with self-assembly and Langmuir-Blodgett techniques, and comprised of monolayer Au nanorings sandwiched between bottom Ag mirror and top Ag cover films. Monolayer Au nanorings were formed by self-assembly at the interface of water and hexane, followed by Langmuir-Blodgett transfer to a substrate with sputtered Ag mirror film. Their hollow property allows the light transmitted through a cover film. The use of a Ag cover layer of tens nanometers in thickness was critical, which allowed light access to the middle Au nanorings and the bottom Ag mirror, resulting in more plasmonic resonance and coupling along perpendicular interfaces (z-axis). The as-designed sandwich nanofilms could achieve an overall ~8 times SERS signals amplification compared to only the Au nanorings layer, which was principally attributed to enhanced electromagnetic fields along the created z-axis. Theoretical simulations based on finite-difference time-domain (FDTD) method showed consistent results with the experimental ones. This study points out a new direction to enhance the SERS intensity by involving more hot spots in z-axis in a designer nanostructure for high-performance molecular recognition and detection.
Collapse
Affiliation(s)
- Liqiu Zhang
- Department of Chemistry & Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Korea; (H.Y.J.); (H.-J.J.)
- College of Biological, Chemical Sciences and Engineering & Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, China;
- Correspondence: (L.Z.); (S.P.)
| | - Tiying Zhu
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (T.Z.); (C.Y.)
| | - Cheng Yang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (T.Z.); (C.Y.)
| | - Ho Young Jang
- Department of Chemistry & Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Korea; (H.Y.J.); (H.-J.J.)
| | - Hee-Jeong Jang
- Department of Chemistry & Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Korea; (H.Y.J.); (H.-J.J.)
| | - Lichun Liu
- College of Biological, Chemical Sciences and Engineering & Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, China;
| | - Sungho Park
- Department of Chemistry & Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Korea; (H.Y.J.); (H.-J.J.)
- Correspondence: (L.Z.); (S.P.)
| |
Collapse
|
14
|
Ranc V, Chaloupková Z. Perspectives of DCDR-GERS in the analysis of amino acids. Analyst 2020; 145:7701-7708. [DOI: 10.1039/d0an01564d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Graphene-enhanced Raman scattering (GERS) has attracted increasing attention from many scientists in recent years as a novel and potentially strong analytical technique since its discovery in 2010.
Collapse
Affiliation(s)
- Václav Ranc
- Regional Centre of Advanced Technologies and Materials
- Palacky University Olomouc
- 771 46 Olomouc
- Czech Republic
| | - Zuzana Chaloupková
- Regional Centre of Advanced Technologies and Materials
- Palacky University Olomouc
- 771 46 Olomouc
- Czech Republic
| |
Collapse
|
15
|
Wang M, Hoff A, Doebler JE, Emory SR, Bao Y. Dumbbell-Like Silica Coated Gold Nanorods and Their Plasmonic Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16886-16892. [PMID: 31710809 DOI: 10.1021/acs.langmuir.9b03133] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Silica coated gold nanorods (GNRs@SiO2) with dumbbell-like morphology allowing dual functionalization in an individual nanostructure have attracted great attention for applications such as sensing and biological imaging. We report a detailed study on the feasibility of controlling the morphology of silica coating on GNRs. The morphology of the silica shell can be either cylindrical or dumbbell shaped. With constant GNR concentration, the ratio of hexadecyltrimethylammonium bromide (CTAB) and tetraethylorthosilicate (TEOS) concentrations is the key to determine the amount of available TEOS for silica deposition on the GNR since the TEOS will diffuse toward the surface of GNRs. The effect of morphologies on surface-enhanced Raman scattering (SERS) performance was also investigated, and we found that the dumbbell morphology of silica coated gold nanorods has the most significant SERS enhancement. Our study is significant in terms of the capability to control the dumbbell morphology of silica coated gold nanorods, which can eventually broaden the application of these plasmonic nanomaterials.
Collapse
Affiliation(s)
- Maggie Wang
- Department of Chemistry , Western Washington University , Bellingham , Washington 98225 , United States
| | - Alexandra Hoff
- Department of Chemistry , Western Washington University , Bellingham , Washington 98225 , United States
| | - Joseph E Doebler
- Department of Chemistry , Western Washington University , Bellingham , Washington 98225 , United States
| | - Steven R Emory
- Department of Chemistry , Western Washington University , Bellingham , Washington 98225 , United States
| | - Ying Bao
- Department of Chemistry , Western Washington University , Bellingham , Washington 98225 , United States
| |
Collapse
|
16
|
Liu J, Si T, Zhang L, Zhang Z. Mussel-Inspired Fabrication of SERS Swabs for Highly Sensitive and Conformal Rapid Detection of Thiram Bactericides. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1331. [PMID: 31533241 PMCID: PMC6781073 DOI: 10.3390/nano9091331] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/11/2022]
Abstract
As an important sort of dithiocarbamate bactericide, thiram has been widely used for fruits, vegetables and mature crops to control various fungal diseases; however, the thiram residues in the environment pose a serious threat to human health. In this work, silver nanoparticles (AgNPs) were grown in-situ on cotton swab (CS) surfaces, based on the mussel-inspired polydopamine (PDA) molecule and designed as highly sensitive surface-enhanced Raman scattering (SERS) swabs for the conformal rapid detection of bactericide residues. With this strategy, the obtained CS@PDA@AgNPs swabs demonstrated highly sensitive and reproducible Raman signals toward Nile blue A (NBA) probe molecules, and the detection limit was as low as 1.0 × 10-10 M. More critically, these CS@PDA@AgNPs swabs could be served as flexible SERS substrates for the conformal rapid detection of thiram bactericides from various fruit surfaces through a simple swabbing approach. The results showed that the detection limit of thiram residues from pear, grape and peach surfaces was approximately down to the level of 0.12 ng/cm2, 0.24 ng/cm2 and 0.15 ng/cm2 respectively, demonstrating a high sensitivity and excellent reliability toward dithiocarbamate bactericides. Not only could these SERS swabs significantly promote the collection efficiency of thiram residues from irregular shaped matrices, but they could also greatly enhance the analytical sensitivity and reliability, and would have great potential for the on-site detection of residual bactericides in the environment and in bioscience fields.
Collapse
Affiliation(s)
- Jun Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- School of Light Industry Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Tiantian Si
- Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Lingzi Zhang
- Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Zhiliang Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
- Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
17
|
Rovati D, Albini B, Galinetto P, Grisoli P, Bassi B, Pallavicini P, Dacarro G, Taglietti A. High Stability Thiol-Coated Gold Nanostars Monolayers with Photo-Thermal Antibacterial Activity and Wettability Control. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1288. [PMID: 31505833 PMCID: PMC6781089 DOI: 10.3390/nano9091288] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 11/19/2022]
Abstract
The adhesion and proliferation of bacteria on abiotic surfaces pose challenges in both health care and industrial applications. Gold nanostars (GNSs) monolayers grafted on glass have demonstrated to exert antibacterial action due to their photo-thermal features. Here, these GNS layers were further functionalized using thiols monolayers, in order to impart different wettability to the surfaces and thus adding a feature that could help to fight bacterial proliferation. Thiol that has different functional groups was used and the thiol-protected surfaces were characterized by means of UV-vis spectroscopy, contact angles, SEM and surface enhanced Raman spectroscopy (SERS). We verified that (i) coating with the proper thiol allows us to impart high hydrophilicity or hydrophobicity to the surfaces (with contact angle values ranging from 10 to 120°); (ii) GNS monolayers are strongly stabilized by functionalization with thiols, with shelf stability increasing from a few weeks to more than three months and (iii) photo-thermal features and subsequent antibacterial effects caused by hyperthermia are not changed by thiols layers, allowing us to kill at least 99.99% of representative bacterial strains.
Collapse
Affiliation(s)
- Davide Rovati
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Benedetta Albini
- Department of Physics, University of Pavia, Via Bassi 6, 27100 Pavia, Italy
| | - Pietro Galinetto
- Department of Physics, University of Pavia, Via Bassi 6, 27100 Pavia, Italy
| | - Pietro Grisoli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| | - Barbara Bassi
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | | | - Giacomo Dacarro
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Angelo Taglietti
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
18
|
Li B, Wang T, Su Q, Wu X, Dong P. Fabrication of Au Nanorods by the Oblique Angle Deposition Process for Trace Detection of Methamphetamine with Surface-Enhanced Raman Scattering. SENSORS 2019; 19:s19173742. [PMID: 31470612 PMCID: PMC6749386 DOI: 10.3390/s19173742] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/14/2019] [Accepted: 08/20/2019] [Indexed: 01/12/2023]
Abstract
Oblique angle deposition (OAD) is a simple, low cost, effective, and maskless nanofabrication process. It can offer a reliable method for the mass fabrication of uniform metal nanorods which can be used as the surface-enhanced Raman scattering (SERS) substrate with an excellent enhancing performance. Up to now, Ag nanorods SERS substrates have been extensively studied. However, Ag is chemically active and easy to oxidize under atmospheric conditions. Comparatively, Au is chemically stable and has better biocompatibility than Ag. In this paper, we in detail, studied the electromechanical (EM) field distribution simulation, fabrication, and application of Au nanorods (AuNRs) on trace detection of methamphetamine. According to the finite-difference time-domain (FDTD) calculation results, the maximum EM intensity can be obtained with the length of AuNRs to be 800 nm and the tilting angle of AuNRs to be 71° respectively. The aligned Au nanorod array substrate was fabricated by the OAD process. The two key process parameters, deposition angle, and deposition rate were optimized by experiments, which were 86° and 2 Å/s, respectively. Using 1,2-bis (4-pyridyl) ethylene (BPE) as the probe molecule, the limit of detection (LOD) was characterized to be 10−11 M. The AuNRs were also used to detect methamphetamine. The LOD can be down to M (i.e., 14.92 pg/ml), which meet the requirements of the on-site rapid detection of the methamphetamine in human urine (500 ng/ml).
Collapse
Affiliation(s)
- Baini Li
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China
| | - Tianran Wang
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China
| | - Qingqing Su
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China
| | - Xuezhong Wu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China
| | - Peitao Dong
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China.
| |
Collapse
|
19
|
SERS-Active Substrate with Collective Amplification Design for Trace Analysis of Pesticides. NANOMATERIALS 2019; 9:nano9050664. [PMID: 31035555 PMCID: PMC6566408 DOI: 10.3390/nano9050664] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/12/2022]
Abstract
Health risks posed by the exposure to trace amounts of pesticide residue in agricultural products have gained a lot of concerns, due to their neurotoxic nature. The applications of surface-enhanced Raman Scattering (SERS) as a detection technique have consistently shown its potential as a rapid and sensitive means with minimal sample preparation. In this study, gold nanoparticles (Au NPs) in elliptical shapes were collected into a layer of ordered zirconia concave pores. The porous zirconia layer (pZrO2) was then deposited with Au NPs, denoted as Au NPs (x)/pZrO2, where x indicates the deposition thickness of Au NPs in nm. In the concave structure of pZrO2, Au-ZrO2 and Au-Au interactions provide a synergistic and physical mechanism of SERS, which is anticipated to collect and amplify SERS signals and thereafter improve the enhancement factor (EF) of Au NPs/pZrO2. By taking Rhodamine 6G (R6G) as the test molecule, EF of Au NPs/pZrO2 might reach to 7.0 × 107. Au NPs (3.0)/pZrO2 was then optimized and competent to detect pesticides, e.g., phosmet and carbaryl at very low concentrations, corresponding to the maximum residue limits of each, i.e., 0.3 ppm and 0.2 ppm, respectively. Au NPs (3.0)/pZrO2 also showed the effectiveness of distinguishing between phosmet and carbaryl under mixed conditions. Due to the strong affinities of the phosphoric groups and sulfur in phosmet to the Au NPs (3.0)/pZrO2, the substrate exhibited selective detection to this particular pesticide. In this study, Au NPs (3.0)/pZrO2 has thus demonstrated trace detection of residual pesticides, due to the substrate design that intended to provide collective amplification of SERS.
Collapse
|
20
|
Fabrication, Characterization, and Application of Large-Scale Uniformly Hybrid Nanoparticle-Enhanced Raman Spectroscopy Substrates. MICROMACHINES 2019; 10:mi10050282. [PMID: 31035552 PMCID: PMC6562888 DOI: 10.3390/mi10050282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 12/13/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) substrates with high sensitivity and reproducibility are highly desirable for high precision and even molecular-level detection applications. Here, large-scale uniformly hybrid nanoparticle-enhanced Raman spectroscopy (NERS) substrates with high reproducibility and controllability were developed. Using oxygen plasma treatment, large-area and uniformly rough polystyrene sphere (URPS) arrays in conjunction with 20 nm Au films (AuURPS) were fabricated for SERS substrates. Au nanoparticles and clusters covered the surface of the URPS arrays, and this increased the Raman signal. In the detection of malachite green (MG), the fabricated NERS substrates have high reproducibility and sensitivity. The enhancement factor (EF) of Au nanoparticles and clusters was simulated by finite-difference time-domain (FDTD) simulations and the EF was more than 104. The measured EF of our developed substrate was more than 108 with a relative standard deviation as low as 6.64%–13.84% over 15 points on the substrate. The minimum limit for the MG molecules reached 50 ng/mL. Moreover, the Raman signal had a good linear relationship with the logarithmic concentration of MG, as it ranged from 50 ng/mL to 5 μg/mL. The NERS substrates proposed in this work may serve as a promising detection scheme in chemical and biological fields.
Collapse
|
21
|
Feng X, Li C, Liang A, Luo Y, Jiang Z. Doped N/Ag Carbon Dot Catalytic Amplification SERS Strategy for Acetamiprid Coupled Aptamer with 3,3'-Dimethylbiphenyl-4,4'-diamine Oxidizing Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E480. [PMID: 30934552 PMCID: PMC6474095 DOI: 10.3390/nano9030480] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 12/17/2022]
Abstract
The as-prepared co-doped N/Ag carbon dot (CDNAg) has strong catalysis of H₂O₂ oxidation of 3,3'-dimethylbiphenyl-4,4'-diamine (DBD). It forms an oxidation product (DBDox) with surface-enhanced Raman scattering (SERS) activity at 1605 cm-1 in the silver nanosol substrate, and a CDNAg catalytic amplification with SERS analytical platform can be structured based on aptamer (Apt) with the DBD oxidizing reaction. For example, the aptamer (Apt) of acetamiprid (ACT) can be adsorbed on the surface of CDNAg, resulting in inhibited catalytic activity, the reduced generation of DBDox, and a weakened SERS intensity. When the target molecule ACT was added, it formed a stable Apt-ACT complex and free CDNAg that restored catalytic activity and linearly enhanced the SERS signal. Based on this, we proposed a new quantitative SERS analysis method for the determination of 0.01⁻1.5 μg ACT with a detection limit of 0.006 μg/L.
Collapse
Affiliation(s)
- Xiaozhen Feng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China.
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China.
| | - Chongning Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China.
| | - Aihui Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China.
| | - Yanghe Luo
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China.
- School of Food and Bioengineering, Hezhou University, Hezhou 542899, China.
| | - Zhiliang Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China.
| |
Collapse
|
22
|
Surface-Enhanced Raman Spectroscopy on Self-Assembled Au Nanoparticles Arrays for Pesticides Residues Multiplex Detection under Complex Environment. NANOMATERIALS 2019; 9:nano9030426. [PMID: 30871181 PMCID: PMC6473963 DOI: 10.3390/nano9030426] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 01/21/2023]
Abstract
The high reproducibility of trace detection in complex systems is very hard but crucial to analytical technology and science. Here, we present a surface-enhanced Raman scattering (SERS) platform made by large-scale self-assembly of Au nanoparticle (NP) arrays at the cyclohexane/water interface and its use for pesticides residues trace detection. The analyte molecules spontaneously localize into the Au NPs’ nanogaps during the self-assembly process, yielding excellent Raman signal enhancement by surface effects, and possibly both by the concentration of the analytes into the array and by plasmonic hot-spot formation. Transmission electron microscopy (TEM) images demonstrate a good uniformity of interparticle distances (2–3 nm) in the Au NP arrays. SERS experiments on crystal violet (CV) molecules demonstrated that the relative standard deviations (RSD) of the band intensities at 1173, 1376, and 1618 cm−1 were 6.3%, 6.4%, and 6.9%, respectively, indicating high reproducibility of the substrate. Furthermore, we demonstrate that two pesticides dissolved in organic and aqueous phases could be simultaneously detected, suggesting an excellent selectivity and universality of this method for multiplex detection. Our SERS platform opens vast possibilities for repeatability and sensitivity detection of targets in various complex fields.
Collapse
|