1
|
Cell Viability Study of ZnCuInS/ZnS–TPPS4 Conjugates against Different Cell Lines as a Promising Fluorescent Probe. ORGANICS 2023. [DOI: 10.3390/org4010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
In the present work, we report a simple synthetic strategy for fabricating ZnCuInS/ZnS–TPPS4 conjugates and study its cytotoxicity as a promising material for imaging and phototherapy applications. The quaternary QDs were synthesized using eco-friendly materials such as glutathione and water as a solvent, while the anionic 10,15,20-(4-sulphonatophenyl) porphyrin (TPPS4) was synthesized via the acidification of a meso-tetraphenylporphyrin precursor. Interest in TPPS4 results from its high-water dispersity, stability, and ability to generate singlet oxygen. Conjugation of ZnCuInS/ZnS QDs with TPPS4 was performed by titrating porphyrin with different amounts of ZnCuInS/ZnS QDs while keeping all other experimental parameters constant. Comparative analysis of the conjugate to the bare QDs and porphyrin revealed enhanced spectral and photophysical properties. Comparative cytotoxicity assays were performed for TPPS4 and ZnCuInS/ZnS–TPPS4 conjugates in BHK21, Hela, A549, Hek 293 and B16-F10 Nex 2 cell lines using the MTT cell viability assay. The results showed negligible in vitro cytotoxicity indicating the conjugate is an excellent and biocompatible candidate for imaging and phototherapy applications.
Collapse
|
2
|
Elkony Y, Ali M, Ebrahim S, Adel R. High Photoluminescence Polyindole/CuInS Quantum Dots for Pb Ions Sensor. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02300-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractPolyindole is considered an excellent conducting polymer with interested properties for different applications. A novel polyindole (PIn)/CuInS (CIS)/ZnS quantum dots (QDs) nanocomposite was synthesized via in situ polymerization of PIn in presence of CIS/ZnS QDs. By investigating the effect of CIS/ZnS QDs on optical properties of PIn, it was found that the optical band gaps of PIn, CIS/ZnS QDs, and PIn/CIS/ZnS QDs nanocomposite were 3.24 eV, 4.68 eV and 3.44 eV, respectively. From the luminance spectra, it was observed that emission peaks of PIn at 442 and 468 nm are independent of the excitation wavelength with the highest intensity at excitation wavelength of 380 nm. However, the luminance spectrum of PIn/CIS/ZnS QDs nanocomposite exhibited a quenching peak for CIS/ZnS QDs while the intensity of PIn peak was enhanced. High resolution of transmission electron microscope image of CIS/ZnS QDs revealed nanocrystals with a size of 3–4.5 nm and lattice space of 0.2 nm. PIn/CIS/ZnS QDs nanocomposite as the fluorescent probe was employed for sensing different concentrations of Pb2+ from 5 to 50 ppb. The reaction between PIn/CIS/ZnS QDs and Pb2+ was slightly quenched and fixed after 90 min. The emission peak was reduced gradually with increasing concentration of lead via photo-induced electron transfer or ion exchange mechanism. The value of correlation coefficient (R2) was 0.99, the sensitivity was 0.0041 ppb−1 and limit of detection value was 4.48 ppb.
Collapse
|
3
|
Yuan Z, Yang L, Han D, Sun G, Zhu C, Wang Y, Wang Q, Artemyev M, Tang J. Synthesis and Optical Properties of In 2S 3-Hosted Colloidal Zn-Cu-In-S Nanoplatelets. ACS OMEGA 2021; 6:18939-18947. [PMID: 34337233 PMCID: PMC8320147 DOI: 10.1021/acsomega.1c02180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
High-efficiency photoluminescence quaternary hexagon Zn-Cu-In-S (ZCIS) nanoplatelets (NPls) have been synthesized by a two-step cation exchange method, which starts with the In2S3 NPls followed by the addition of Cu and Zn. It is the first time that In2S3 NPls are used as templates to synthesize ZCIS NPls. In this paper, the reaction temperature of In2S3 is essential for the formation of NPls. The photoluminescence wavelength of NPls can be tuned by adjusting the temperature of Cu addition. To enhance the stability of the resulting NPls and to improve their optical properties, we introduced Zn2+ and obtained ZCIS NPls by cation exchange on the surface. It is worth noting that the obtained ZCIS NPls show a shorter fluorescence lifetime than other ternary copper sulfide-based NPls. This work provides a new way to synthesize high-efficiency, nontoxic, and no byproduct ZCIS NPls.
Collapse
Affiliation(s)
- Ze Yuan
- Institute
of Hybrid Materials, National Center of International Joint Research
for Hybrid Materials Technology, National Base of International Science
& Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, People’s Republic of China
| | - Lanlan Yang
- Institute
of Hybrid Materials, National Center of International Joint Research
for Hybrid Materials Technology, National Base of International Science
& Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, People’s Republic of China
| | - Dongni Han
- Institute
of Hybrid Materials, National Center of International Joint Research
for Hybrid Materials Technology, National Base of International Science
& Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, People’s Republic of China
| | - Guorong Sun
- Institute
of Hybrid Materials, National Center of International Joint Research
for Hybrid Materials Technology, National Base of International Science
& Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, People’s Republic of China
| | - Chenyu Zhu
- Institute
of Hybrid Materials, National Center of International Joint Research
for Hybrid Materials Technology, National Base of International Science
& Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, People’s Republic of China
| | - Yao Wang
- Institute
of Hybrid Materials, National Center of International Joint Research
for Hybrid Materials Technology, National Base of International Science
& Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, People’s Republic of China
| | - Qiao Wang
- Institute
of Hybrid Materials, National Center of International Joint Research
for Hybrid Materials Technology, National Base of International Science
& Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, People’s Republic of China
| | - Mikhail Artemyev
- Research
Institute for Physical Chemical Problems of the Belarusian State University, Minsk 220006, Belarus
| | - Jianguo Tang
- Institute
of Hybrid Materials, National Center of International Joint Research
for Hybrid Materials Technology, National Base of International Science
& Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, People’s Republic of China
| |
Collapse
|
4
|
Prudnikau A, Shiman DI, Ksendzov E, Harwell J, Bolotina EA, Nikishau PA, Kostjuk SV, Samuel IDW, Lesnyak V. Design of cross-linked polyisobutylene matrix for efficient encapsulation of quantum dots. NANOSCALE ADVANCES 2021; 3:1443-1454. [PMID: 36132870 PMCID: PMC9418506 DOI: 10.1039/d0na01012j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/19/2021] [Indexed: 05/08/2023]
Abstract
Photoluminescent quantum dots (QDs) are a prominent example of nanomaterials used in practical applications, especially in light-emitting and light-converting devices. Most of the current applications of QDs require formation of thin films or their incorporation in solid matrices. The choice of an appropriate host material capable of preventing QDs from degradation and developing a process of uniform incorporation of QDs in the matrix have become essential scientific and technological challenges. In this work, we developed a method of uniform incorporation of Cu-Zn-In-S (CZIS) QDs into a highly protective cross-linked polyisobutylene (PIB) matrix with high chemical resistance and low gas permeability. Our approach involves the synthesis of a methacrylate-terminated three-arm star-shaped PIB oligomeric precursor capable of quick formation of a robust 3D polymer network upon exposure to UV-light, as well as the design of a special ligand introducing short PIB chains onto the surface of the QDs, thus providing compatibility with the matrix. The obtained cross-linked QDs-in-polymer composites underwent a complex photostability test in air and under vacuum as well as a chemical stability test. These tests found that CZIS QDs in a cross-linked PIB matrix demonstrated excellent photo- and chemical stability when compared to identical QDs in widely used polyacrylate-based matrices. These results make the composites developed excellent materials for the fabrication of robust, stable and durable transparent light conversion layers.
Collapse
Affiliation(s)
- Anatol Prudnikau
- Physical Chemistry, TU Dresden Zellescher Weg 19 01069 Dresden Germany
| | - Dmitriy I Shiman
- Research Institute for Physical Chemical Problems of the Belarusian State University Leningradskaya Str. 14 220006 Minsk Belarus
| | - Evgenii Ksendzov
- Physical Chemistry, TU Dresden Zellescher Weg 19 01069 Dresden Germany
- Research Institute for Physical Chemical Problems of the Belarusian State University Leningradskaya Str. 14 220006 Minsk Belarus
| | - Jonathon Harwell
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St. Andrews North Haugh St Andrews Fife KY16 9SS UK
| | - Ekaterina A Bolotina
- Physical Chemistry, TU Dresden Zellescher Weg 19 01069 Dresden Germany
- Research Institute for Physical Chemical Problems of the Belarusian State University Leningradskaya Str. 14 220006 Minsk Belarus
- Department of Chemistry, Belarusian State University Leningradskaya Str. 14 220006 Minsk Belarus
| | - Pavel A Nikishau
- Research Institute for Physical Chemical Problems of the Belarusian State University Leningradskaya Str. 14 220006 Minsk Belarus
| | - Sergei V Kostjuk
- Research Institute for Physical Chemical Problems of the Belarusian State University Leningradskaya Str. 14 220006 Minsk Belarus
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University 119991 Moscow Russia
- Department of Chemistry, Belarusian State University Leningradskaya Str. 14 220006 Minsk Belarus
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St. Andrews North Haugh St Andrews Fife KY16 9SS UK
| | - Vladimir Lesnyak
- Physical Chemistry, TU Dresden Zellescher Weg 19 01069 Dresden Germany
| |
Collapse
|
5
|
Adel R, Ebrahim S, Shokry A, Soliman M, Khalil M. Nanocomposite of CuInS/ZnS and Nitrogen-Doped Graphene Quantum Dots for Cholesterol Sensing. ACS OMEGA 2021; 6:2167-2176. [PMID: 33521456 PMCID: PMC7841935 DOI: 10.1021/acsomega.0c05416] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/31/2020] [Indexed: 05/05/2023]
Abstract
In this paper, nitrogen graphene quantum dots (N-GQDs) and copper indium sulfide/zinc sulfide (CIS/ZnS) QDs were synthesized via facile hydrothermal and aqueous solution routes, respectively. Herein, a fluorescent nanocomposite has been synthesized between N-GQDs and CIS/ZnS QDs in an aqueous phase. This nanocomposite was characterized by photoluminescence, Raman, and ultraviolet-visible (UV-vis) spectroscopies, high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD). This fluorescent nanocomposite was developed as a highly sensitive, selective nonenzymatic cholesterol optical biosensor in 0.312-5 mM cholesterol. HRTEM micrographs confirmed the preparation of CIS/ZnS QDs and N-GQDs with average diameters of 3 and 5 nm, respectively. The as-prepared NG/CIS/ZnS QD nanocomposite had a high sensitivity for cholesterol with a wide linear range of concentration of 0.312-5 mM with an excellent correlation coefficient (R 2) of 0.9688 and limit of detection (LOD) of 0.222 mM.
Collapse
Affiliation(s)
- Rania Adel
- Materials
Science Department, Institute of Graduate
Studies and Research, Alexandria University, P.O. Box, 163 Horreya Avenue, 21526 Alexandria, Egypt
| | - Shaker Ebrahim
- Materials
Science Department, Institute of Graduate
Studies and Research, Alexandria University, P.O. Box, 163 Horreya Avenue, 21526 Alexandria, Egypt
| | - Azza Shokry
- Department
of Environmental Studies, Institute of Graduate
Studies and Research, Alexandria University, P.O. Box, 163 Horreya Avenue, 21526 Alexandria, Egypt
| | - Moataz Soliman
- Materials
Science Department, Institute of Graduate
Studies and Research, Alexandria University, P.O. Box, 163 Horreya Avenue, 21526 Alexandria, Egypt
| | - Marwa Khalil
- Nanotechnology
and Composite Materials Department, Institute
of New Materials and Advanced Technology, City of Scientific Research
and Technological Applications (SRTA-City), New Borg El Arab City, P.O. Box, 21934 Alexandria, Egypt
| |
Collapse
|
6
|
Long Z, Zhang W, Tian J, Chen G, Liu Y, Liu R. Recent research on the luminous mechanism, synthetic strategies, and applications of CuInS2 quantum dots. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01228a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We discuss the synthesis and luminescence mechanisms of CuInS2 QDs, the strategies to improve their luminous performance and their potential application in light-emitting devices, solar energy conversion, and the biomedical field.
Collapse
Affiliation(s)
- Zhiwei Long
- National Engineering Research Center for Rare Earth Materials
- General Research Institute for Nonferrous Metals
- Grirem Advanced Materials Co. Ltd
- Beijing
- P. R China
| | - Wenda Zhang
- National Engineering Research Center for Rare Earth Materials
- General Research Institute for Nonferrous Metals
- Grirem Advanced Materials Co. Ltd
- Beijing
- P. R China
| | - Junhang Tian
- National Engineering Research Center for Rare Earth Materials
- General Research Institute for Nonferrous Metals
- Grirem Advanced Materials Co. Ltd
- Beijing
- P. R China
| | - Guantong Chen
- National Engineering Research Center for Rare Earth Materials
- General Research Institute for Nonferrous Metals
- Grirem Advanced Materials Co. Ltd
- Beijing
- P. R China
| | - Yuanhong Liu
- National Engineering Research Center for Rare Earth Materials
- General Research Institute for Nonferrous Metals
- Grirem Advanced Materials Co. Ltd
- Beijing
- P. R China
| | - Ronghui Liu
- National Engineering Research Center for Rare Earth Materials
- General Research Institute for Nonferrous Metals
- Grirem Advanced Materials Co. Ltd
- Beijing
- P. R China
| |
Collapse
|