1
|
Ghosh S, Dhiman M, Gupta S, Roy P, Lahiri D. Electro-conductive chitosan/graphene bio-nanocomposite scaffold for tissue engineering of the central nervous system. BIOMATERIALS ADVANCES 2023; 154:213596. [PMID: 37672898 DOI: 10.1016/j.bioadv.2023.213596] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/04/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023]
Abstract
Degenerative central nervous system (CNS) disorders and traumatic brain injuries are common nowadays. These may induce the loss of neuronal cells and delicate connections essential for optimal CNS function. The CNS tissue has restricted regeneration ability, hindering the development of effective therapies. Developing cell and tissue instructive materials may bring up new treatment possibilities. In this study, chitosan-graphene nano platelets (GNPs) composite films were developed to regenerate brain cells. This study evaluates the effects of GNP concentration (0.5, 1 and 2 wt%) and their alignment on mechanical, electrical, surface, protein adsorption and biological properties of the regenerative scaffolds. Incorporating and aligning GNPs into chitosan matrix improved all the physical and biological properties. On reinforced scaffolds, HT22 cell morphology mimics pyramidal brain cells, which are responsible for the brain's highly branched neural network. Additionally, the reinforced scaffolds supported Mesenchymal Stem like Cells growth and were biocompatible in vivo. The alignment of GNPs in the chitosan matrix offered the appropriate physicochemical and biological properties to promote adhesion, proliferation and shape morphogenesis of hippocampal HT22 neuronal cells. Overall, this study delineates the enormous potential offered by the GNP-reinforced scaffolds for regeneration of central nervous system, especially the brain.
Collapse
Affiliation(s)
- Souvik Ghosh
- Biomaterials and Multiscale Mechanics Lab, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India; Molecular Endocrinology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Megha Dhiman
- Biomaterials and Multiscale Mechanics Lab, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Sumeet Gupta
- Department of Pharmacy, Maharshi Markandeshwar University (Deemed to Be University), Mullana, Haryana 133207, India
| | - Partha Roy
- Molecular Endocrinology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Debrupa Lahiri
- Biomaterials and Multiscale Mechanics Lab, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
2
|
Li G, Kujawski W, Knozowska K, Kujawa J. Pebax® 2533/PVDF thin film mixed matrix membranes containing MIL-101 (Fe)/GO composite for CO 2 capture. RSC Adv 2022; 12:29124-29136. [PMID: 36320736 PMCID: PMC9555015 DOI: 10.1039/d2ra05095a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
MIL-101 (Fe) and MIL-GO composites were successfully synthesized and used as fillers for the preparation of Pebax® 2533/PVDF thin film MMMs for CO2/N2 separation. The defect-free Pebax® 2533/PVDF thin film MMMs were fabricated by casting the Pebax solution containing fillers on the PVDF support. The presence of GO nanosheets in the reaction solution did not destroy the crystal structure of MIL-101 (Fe). However, the BET surface area and total pore volume of MIL-GO decreased dramatically, comparing with MIL-101 (Fe). The incorporation of MIL-GO-2 into Pebax matrix simultaneously increased the CO2 permeability and the CO2/N2 ideal selectivity of Pebax® 2533/PVDF thin film MMMs mainly owing to the porous structure of MIL-GO-2, and the tortuous diffusion pathways created by GO nanosheets. MMMs containing 9.1 wt% MIL-GO-2 exhibited the highest CO2 permeability equal to 303 barrer (1 barrer = 10-10 cm3 (STP) cm cm-2 s-1 cmHg-1) and the highest CO2/N2 ideal selectivity equal to 24. Pebax-based MMMs containing composite fillers showed higher gas separation performance than the Pebax-based MMMs containing single filler (GO or MOFs). Therefore, the synthesis and utilization of 3D@2D composite filler demonstrated great potential in the preparation of high-performance MMMs for gas separation processes.
Collapse
Affiliation(s)
- Guoqiang Li
- Nicolaus Copernicus University in Toruń, Faculty of Chemistry, 7 Gagarina Street Toruń 87-100 Poland
| | - Wojciech Kujawski
- Nicolaus Copernicus University in Toruń, Faculty of Chemistry, 7 Gagarina Street Toruń 87-100 Poland
| | - Katarzyna Knozowska
- Nicolaus Copernicus University in Toruń, Faculty of Chemistry, 7 Gagarina Street Toruń 87-100 Poland
| | - Joanna Kujawa
- Nicolaus Copernicus University in Toruń, Faculty of Chemistry, 7 Gagarina Street Toruń 87-100 Poland
| |
Collapse
|
3
|
Vashchuk A, Motrunich S, Lishchuk P, Demchenko V, Isaiev M, Iurzhenko M. Thermal conductivity and mechanical properties of epoxy vitrimer nanocomposites reinforced with graphene oxide. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02587-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Abstract
Polyethersulfone (PES) films are widely employed in the construction of membranes where there is a desire to make the surface more hydrophilic. Therefore, UV photo-oxidation was studied in order to oxidize the surface of PES and increase hydrophilicity. UV photo-oxidation using low pressure mercury lamps emitting both 253.7 and 184.9 nm radiation were compared with only 253.7 nm photons. The modified surfaces were characterized using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and water contact angle (WCA) measurements. Both sets of lamps gave similar results, showing an increase of the oxygen concentration up to a saturation level of ca. 29 at.% and a decrease in the WCA, i.e., an increase in hydrophilicity, down to ca. 40°. XPS detected a decrease of sp2 C-C aromatic group bonding and an increase in the formation of C-O, C=O, O=C-O, O=C-OH, O-(C=O)-O, and sulphonate and sulphate moieties. Since little change in surface roughness was observed by AFM, the oxidation of the surface caused the increase in hydrophilicity.
Collapse
|
5
|
Wang Y, Desroches GJ, Macfarlane RJ. Ordered polymer composite materials: challenges and opportunities. NANOSCALE 2021; 13:426-443. [PMID: 33367442 DOI: 10.1039/d0nr07547g] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polymer nanocomposites containing nanoscale fillers are an important class of materials due to their ability to access a wide variety of properties as a function of their composition. In order to take full advantage of these properties, it is critical to control the distribution of nanofillers within the parent polymer matrix, as this structural organization affects how the two constituent components interact with one another. In particular, new methods for generating ordered arrays of nanofillers represent a key underexplored research area, as emergent properties arising from nanoscale ordering can be used to introduce novel functionality currently inaccessible in random composites. The knowledge gained from developing such methods will provide important insight into the thermodynamics and kinetics associated with nanomaterial and polymer assembly. These insights will not only benefit researchers working on new composite materials, but will also deepen our understanding of soft matter systems in general. In this review, we summarize contemporary research efforts in manipulating nanofiller organization in polymer nanocomposites and highlight future challenges and opportunities for constructing ordered nanocomposite materials.
Collapse
Affiliation(s)
- Yuping Wang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
| | - Griffen J Desroches
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
| | - Robert J Macfarlane
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|
6
|
Yang W, Li L, Zhang B, Yang Q, Zou H, Zheng W, Chen S. Optimization and Preparation of a Gel Polymer Electrolyte Membrane for Supercapacitors. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202000508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wei Yang
- Guangzhou University School of Chemistry and Chemical Engineering 510006 Guangzhou China
| | - Linlin Li
- Guangzhou University School of Chemistry and Chemical Engineering 510006 Guangzhou China
| | - Biao Zhang
- Guangzhou University School of Chemistry and Chemical Engineering 510006 Guangzhou China
| | - Qianyun Yang
- Environmental Monitoring Station of Guangzhou Development Zone 510700 Guangzhou China
| | - Hanbo Zou
- Guangzhou University School of Chemistry and Chemical Engineering 510006 Guangzhou China
| | - Wenzhi Zheng
- Guangzhou University Guangzhou Key Laboratory for New Energy and Green Catalysis 510006 Guangzhou China
| | - Shengzhou Chen
- Guangzhou University School of Chemistry and Chemical Engineering 510006 Guangzhou China
| |
Collapse
|
7
|
Besharat F, Manteghian M, Russo F, Galiano F, Figoli A, Abdollahi M, Lazzeri A. Investigation of electric field‐aligned edge‐oxidized graphene oxide nanoplatelets in polyethersulfone matrix in terms of pure water permeation and dye rejection. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Farzaneh Besharat
- Nanotechnology Group, Engineering Faculty Tarbiat Modares University Tehran Iran
| | | | | | | | | | - Mahdi Abdollahi
- Polymer Reactions Engineering Department, Chemical Engineering Faculty Tarbiat Modares University Tehran Iran
| | - Andrea Lazzeri
- Civil Engineering and Industrial Department University of Pisa Pisa Italy
| |
Collapse
|
8
|
Chauke NM, Moutloali RM, Ramontja J. Development of ZSM-22/Polyethersulfone Membrane for Effective Salt Rejection. Polymers (Basel) 2020; 12:polym12071446. [PMID: 32605204 PMCID: PMC7408022 DOI: 10.3390/polym12071446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 11/16/2022] Open
Abstract
ZSM-22/polyethersulfone membranes were prepared for salt rejection using modelled brackish water. The membranes were fabricated via direct ZSM-22 incorporation into a polymer matrix, thereby inducing the water permeability, hydrophilicity and fouling resistance of the pristine polyethersulfone (PES) membrane. A ZSM-22 zeolite material with a 60 Si/Al ratio, high crystallinity and needle-like morphologies was produced and effectively used as a nanoadditive in the development of ZSM-22/PES membranes with nominal loadings of 0–0.75 wt.%. The characterisation and membrane performance evaluation of the resulting materials with XRD, BET, FTIR, TEM, SEM and contact angle as well as dead-end cell, respectively, showed improved water permeability in comparison with the pristine PES membrane. These ZSM-22/PES membranes were found to be more effective and superior in the processing of modelled brackish water. The salt rejection of the prepared membranes for NaCl and MgCl2 was effective, while they exhibited quite improved water flux and flux recovery ratios in the membrane permeability and anti-fouling test. This indicates that different amounts of ZSM-22 nanoadditives produce widely divergent influences on the performance of the pristine PES membrane. As such, over 55% of salt rejection is observed, which means that the obtained membranes are effective in salt removal from water.
Collapse
Affiliation(s)
- Nyiko M. Chauke
- Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Doornfontein 2028, Johannesburg, South Africa;
- DSI/MINTEK Nanotechnology Innovation Centre-Water Research Node, University of Johannesburg, Doornfontein 2028, Johannesburg, South Africa
| | - Richard M. Moutloali
- Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Doornfontein 2028, Johannesburg, South Africa;
- DSI/MINTEK Nanotechnology Innovation Centre-Water Research Node, University of Johannesburg, Doornfontein 2028, Johannesburg, South Africa
- Correspondence: (R.M.M.); (J.R.); Tel.: +27-(0)-11-559-6885 (R.M.M.); +27-(0)-11-559-6754 (J.R.)
| | - James Ramontja
- Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Doornfontein 2028, Johannesburg, South Africa;
- Correspondence: (R.M.M.); (J.R.); Tel.: +27-(0)-11-559-6885 (R.M.M.); +27-(0)-11-559-6754 (J.R.)
| |
Collapse
|