1
|
Wan T, Yang C, Zhao X, Han Q, Zhang Z, Li J, Du X, Sun D. Coordinated Co-NC/CoFe dual active centre embedded three-dimensional ordered macroporous framework as bifunctional catalyst for efficient and stable zinc-air batteries. NANOTECHNOLOGY 2022; 33:155404. [PMID: 34952529 DOI: 10.1088/1361-6528/ac4663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Developing efficient and stable multifunctional electrocatalyst is very important for zinc-air batteries in practical. Herein, semiconductive spinel CuFe2O4supported Co-N co-doped carbon (Co-NC) and CoFe alloy nanoparticles were proposed. In this strategy, the three-dimensional ordered macroporous CuFe2O4support provides rich channels for mass transmission, revealling good corrosion-resistance and durability at the same time. ZIF-67 derived Co-NC decoration improves the conductivity of the catalyst. Further, the uniformly distributed Co-NC and CoFe nanoparticles (C/CF) dramatically promote the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) performance. Accordingly, C/CF@CuFe2O4catalyst shows remarkable bifunctional electrocatalytic activity, with an ORR half-wave potential of 0.86 V, and an OER over-potential of 0.46 V at 10 mA cm-2. The zinc-air battery using this catalyst exhibits a power density of 95.5 mW cm-2and a durable cyclability for over 170 h at a current density of 10 mA cm-2, which implies a great potential in practical application.
Collapse
Affiliation(s)
- Tongtao Wan
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Chenhui Yang
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Ximeng Zhao
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Qinglin Han
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Zisheng Zhang
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Jingde Li
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Xiaohang Du
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Daolai Sun
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| |
Collapse
|
2
|
Li C, Xu W, Ye L, Liu J, Wang F. Hydrothermal-Induced Formation of Well-Defined Hollow Carbons with Curvature-Activated N-C Sites for Zn-Air Batteries. Chemistry 2021; 27:6247-6253. [PMID: 33496039 DOI: 10.1002/chem.202005112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Indexed: 11/05/2022]
Abstract
Metal-free carbons have been regarded as one of the promising materials alternatives to precious-metal catalysts for oxygen reduction reaction (ORR) due to their high activity and stability. In this paper, well-defined N-doped hollow carbons (NHCs) are firstly synthesized by using an ammonia-based hydrothermal synthesis that is environmentally friendly and suitable for mass production in industry and a commercial black carbon as raw material. Moreover, the shell thickness of the NHCs can be easily tuned by this hydrothermal strategy. Zn-air battery test results reveal shell thickness-dependent activity and durability for ORR over the NHCs, which exceeds that obtained by commercial Pt/C (20 wt %). The enhanced battery performance can be attributed to the curvature-activated N-C moieties on the hollow carbon surface, which served as the main active sites for ORR as evidenced by DFT calculations. The proposed approach may open a way for designing curved hollow carbons with high graphitization degree and dopant nitrogen level for metal-air batteries or fuel cells.
Collapse
Affiliation(s)
- Chunxiao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for, Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wanli Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for, Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Liangwen Ye
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for, Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jingjun Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for, Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Feng Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for, Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|