1
|
Guo S, Cai Y, Cheng L, Yuan Y, Wang Y, Yu H, Hu Z, Chen D, Yuan H. Ultraflexible Ultrathin 3D/1D Hierarchical Interpenetrating Ni-MOF/CNT Buckypaper Composites: Microstructures and Microwave Absorption Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32713-32726. [PMID: 38860983 DOI: 10.1021/acsami.4c05050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Metal-organic frameworks (MOFs) have attracted attention due to their designable structures. However, recently reported MOF microwave-absorbing materials (MAMs) are dominated by powders. It remains a challenge to design MOF/carbon nanotube (CNT) composite structures that combine the mechanical properties of self-supporting flexibility with excellent microwave absorption. This work involves the hydrothermal approach to grow Ni-MOF of different microstructures in situ on the CNT monofilament by adjusting the molar ratio of nickel ions to organic ligands. Subsequently, an ultraflexible self-supporting Ni-MOF/CNT buckypaper (BP) is obtained by directional gas pressure filtration technology. The BP porous skeleton and the Ni-MOF with a unique porous structure provide effective impedance matching. The CNTs contribute to the conduction loss, the cross-scale heterogeneous interface generated by Ni-MOF/CNT BP provides rich interfacial polarization loss, and the porous structure complicates the microwave propagation path. All factors work together to give Ni-MOF/CNT BP an excellent microwave absorption capacity. The minimum reflection losses of Ni-MOF/CNT BPs decorated with granular-, hollow porous prism-, and porous prism-shaped Ni-MOFs reach -50.8, -57.8, and -43.3 dB, respectively. The corresponding effective absorption bandwidths are 4.5, 6.3, and 4.8 GHz, respectively. Furthermore, BPs show remarkable flexibility as they can be wound hundreds of times around a glass rod with a diameter of 4 mm without structural damage. This work presents a new concept for creating ultraflexible self-supported MOF-based MAMs with hierarchical interpenetrating porous structures, with potential application advantages in the field of flexible electronics.
Collapse
Affiliation(s)
- Siyu Guo
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, P. R. China
| | - Yanzhi Cai
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, P. R. China
| | - Laifei Cheng
- Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P. R. China
| | - Yibing Yuan
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, P. R. China
| | - Yuhan Wang
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, P. R. China
| | - Haiming Yu
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, P. R. China
| | - Zhongyi Hu
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, P. R. China
| | - Dengpeng Chen
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, P. R. China
| | - Hudie Yuan
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, P. R. China
| |
Collapse
|
2
|
Ma Q, Qiang R, Shao Y, Yang X, Xue R, Chen B, Chen Y, Feng S. MOF-derived Co-C composites with 3D star structure for enhanced microwave absorption. J Colloid Interface Sci 2023; 651:106-116. [PMID: 37542886 DOI: 10.1016/j.jcis.2023.07.167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/16/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
The demand of microwave absorption materials (MAMs) with unique morphologies and electromagnetic (EM) balance has become necessary in recent years. Due to the ease of synthesis and tunable structure, metal-organic frameworks (MOFs) are widely used for this special MAMs. In this study, a new three-dimensional hybrid MOF is proposed that is co-doped with six equally branched star morphologies. The Co-C composite has the same six-branched morphology as that of the precursor. When the EM wave is incident, this special structure makes it easier for the EM wave to enter the material vertically due to the expansion of the incident surface, which is effective in adjusting the transmission path of the electron and the reflection and distribution of the EM wave. Because of the special morphology and magneto-dielectric synergy, the Co-C composite shows a minimum reflection loss (RLmin) of -48.5 dB at 11.0 GHz at an absorption thickness of 3.0 mm, with a microwave absorption bandwidth (EAB) of 6.1 GHz. This research provides a practical guidance for preparing the MAMs of special star structure.
Collapse
Affiliation(s)
- Qian Ma
- College of Textiles, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China
| | - Rong Qiang
- College of Textiles, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China; Advanced Textile Equipment Technology Provincial and Ministerial Collaborative Innovation Center, Zhengzhou, Henan 450007, China.
| | - Yulong Shao
- Faculty of Engineering, HUANGHE S&T University, Zhengzhou, Henan 450061, China.
| | - Xiao Yang
- College of Textiles, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China
| | - Rui Xue
- College of Textiles, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China
| | - Bowen Chen
- College of Textiles, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China
| | - Yi Chen
- College of Textiles, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China
| | - Shijiang Feng
- College of Textiles, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China
| |
Collapse
|
3
|
Lin J, Wu Q, Qiao J, Zheng S, Liu W, Wu L, Liu J, Zeng Z. A review on composite strategy of MOF derivatives for improving electromagnetic wave absorption. iScience 2023; 26:107132. [PMID: 37456858 PMCID: PMC10338214 DOI: 10.1016/j.isci.2023.107132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
To address the electromagnetic wave (EMW) pollution issues caused by the development of electronics and wireless communication technology, it is urgent to develop efficient EMW-absorbing materials. With controllable composition, diverse structure, high porosity, and large specific surface area, metal-organic framework (MOF) derivatives have sparked the infinite passion and creativity of researchers in the electromagnetic field. Against the challenges of poor inherent impedance matching and insufficient attenuation capability of pure MOF derivative, designing and developing MOF derivative-based composites by compounding MOF with other materials, such as graphene, CNTs, MXene, and so on, has been an effective strategy for constructing high-efficiency EMW absorbing materials. This review systematically expounds the research progress of MOF derivative-based composite strategies, and discusses the challenges and opportunities faced by MOF derivatives in the field of EMW absorption. This work can provide some good ideas for researchers to design and prepare high-efficiency MOF-based EMW absorbing materials in applications of next-generation electronics and aerospace.
Collapse
Affiliation(s)
- Jingpeng Lin
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, PR China
| | - Qilei Wu
- Science and Technology on Electromagnetic Compatibility Laboratory, China Ship Development and Design Centre, Wuhan 430064, PR China
| | - Jing Qiao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, PR China
| | - Sinan Zheng
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, PR China
| | - Wei Liu
- Institute of Crystal Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518063, PR China
| | - Lili Wu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, PR China
| | - Jiurong Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, PR China
| | - Zhihui Zeng
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, PR China
- Suzhou Research Institute of Shandong University, Suzhou 215123, PR China
| |
Collapse
|
4
|
Mohammadkhani R, Ramezanzadeh M, Fedel M, Ramezanzadeh B, Mahdavian M. PO 43–-Loaded ZIF-8-type Metal–Organic Framework-Decorated Multiwalled Carbon Nanotube Synthesis and Application in Silane Coatings for Achieving a Smart Corrosion Protection Performance. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Rahman Mohammadkhani
- Chemical and Petroleum Engineering Department, Sharif University of Technology, P.O. Box 11155-9465, Tehran 14588-89694, Iran
- Department of Surface Coatings and Corrosion, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran 1665618481, Iran
| | - Mohammad Ramezanzadeh
- Department of Surface Coatings and Corrosion, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran 1665618481, Iran
| | - Michele Fedel
- Department of Industrial Engineering, University of Trento, via Sommarive n. 9, Trento 38123, Italy
| | - Bahram Ramezanzadeh
- Department of Surface Coatings and Corrosion, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran 1665618481, Iran
| | - Mohammad Mahdavian
- Department of Surface Coatings and Corrosion, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran 1665618481, Iran
| |
Collapse
|
5
|
One-dimensional metal-organic frameworks for electrochemical applications. Adv Colloid Interface Sci 2021; 298:102562. [PMID: 34768137 DOI: 10.1016/j.cis.2021.102562] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/21/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
Metal-organic frameworks (MOFs) are as a category of crystalline porous materials. Extensive interest has been devoted to energy storage and energy conversion applications owing to their unique advantages of periodic architecture, high specific surface area, high adsorption, high conductivity, high specific capacitance, and high porosity. One-dimensional (1D) nanostructures have unique surface effects, easily regulated size, good agglutination of the substrate, and other distinct properties amenable to the field of energy storage and conversion. Therefore, 1D nanostructures could further improve the characteristic properties of MOFs, and it is of great importance for practical applications to control the size and morphological characteristics of MOFs. The electrochemical application of 1D MOFs is mainly discussed in this review, including energy storage applications in supercapacitors and batteries and energy conversion applications in catalysis. In addition, various synthesis strategies for 1D MOFs and their architectures are presented.
Collapse
|
6
|
Liu W, Que W, Shen X, Yin R, Xu X, Zheng D, Feng J, Dai X, Niu X, Wu F, Shi W, Cao X. Unlocking active metal site of Ti-MOF for boosted heterogeneous catalysis via a facile coordinative reconstruction. NANOTECHNOLOGY 2021; 33:025401. [PMID: 34619665 DOI: 10.1088/1361-6528/ac2dc6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Constructing sophisticated hollow structure and exposing more metal sites in metal-organic frameworks (MOFs) can not only enhance their catalytic performance but also endow them with new functions. Herein, we present a facile coordinative reconstruction strategy to transform Ti-MOF polyhedron into nanosheet-assembled hollow structure with a large amount of exposed metal sites. Importantly, the reconstruction process relies on the esterification reaction between the organic solvent, i.e. ethanol and the carboxylic acid ligand, allowing the conversion of MOF without the addition of any other modulators and/or surfactants. Moreover, the surface and internal structure of the reconstructed MOF can be well tuned via altering the conversion time. Impressively, the reconstructed MOF exhibits ∼5.1-fold rate constant compared to the pristine one in an important desulfurization reaction for clean fuels production, i.e. the oxidation of dibenzothiophene.
Collapse
Affiliation(s)
- Wenxian Liu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Wenbin Que
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xuhai Shen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Ruilian Yin
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xilian Xu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Dong Zheng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Jinxiu Feng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xiaojing Dai
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xinxin Niu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Fangfang Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Wenhui Shi
- Center for Membrane Separation and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xiehong Cao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
7
|
Zhao H, Wang F, Cui L, Xu X, Han X, Du Y. Composition Optimization and Microstructure Design in MOFs-Derived Magnetic Carbon-Based Microwave Absorbers: A Review. NANO-MICRO LETTERS 2021; 13:208. [PMID: 34633562 PMCID: PMC8505592 DOI: 10.1007/s40820-021-00734-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/08/2021] [Indexed: 05/19/2023]
Abstract
Magnetic carbon-based composites are the most attractive candidates for electromagnetic (EM) absorption because they can terminate the propagation of surplus EM waves in space by interacting with both electric and magnetic branches. Metal-organic frameworks (MOFs) have demonstrated their great potential as sacrificing precursors of magnetic metals/carbon composites, because they provide a good platform to achieve high dispersion of magnetic nanoparticles in carbon matrix. Nevertheless, the chemical composition and microstructure of these composites are always highly dependent on their precursors and cannot promise an optimal EM state favorable for EM absorption, which more or less discount the superiority of MOFs-derived strategy. It is hence of great importance to develop some accompanied methods that can regulate EM properties of MOFs-derived magnetic carbon-based composites effectively. This review comprehensively introduces recent advancements on EM absorption enhancement in MOFs-derived magnetic carbon-based composites and some available strategies therein. In addition, some challenges and prospects are also proposed to indicate the pending issues on performance breakthrough and mechanism exploration in the related field.
Collapse
Affiliation(s)
- Honghong Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Fengyuan Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Liru Cui
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Xianzhu Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Xijiang Han
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| | - Yunchen Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| |
Collapse
|
8
|
Recent advances in metal-organic frameworks/membranes for adsorption and removal of metal ions. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116226] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Ou H, Xie Q, Yang Q, Zhou J, Zeb A, Lin X, Chen X, Reddy RCK, Ma G. Cobalt-based metal–organic frameworks as functional materials for battery applications. CrystEngComm 2021. [DOI: 10.1039/d1ce00638j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Research progress on cobalt-based metal–organic frameworks as functional materials for battery applications has been presented.
Collapse
Affiliation(s)
- Hong Ou
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education
- School of Chemistry
- South China Normal University
- Guangzhou 510006
| | - Qiongyi Xie
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education
- School of Chemistry
- South China Normal University
- Guangzhou 510006
| | - Qingyun Yang
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education
- School of Chemistry
- South China Normal University
- Guangzhou 510006
| | - Jianen Zhou
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education
- School of Chemistry
- South China Normal University
- Guangzhou 510006
| | - Akif Zeb
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education
- School of Chemistry
- South China Normal University
- Guangzhou 510006
| | - Xiaoming Lin
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education
- School of Chemistry
- South China Normal University
- Guangzhou 510006
| | - Xinli Chen
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education
- School of Chemistry
- South China Normal University
- Guangzhou 510006
| | - R. Chenna Krishna Reddy
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education
- School of Chemistry
- South China Normal University
- Guangzhou 510006
| | - Guozheng Ma
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education
- School of Chemistry
- South China Normal University
- Guangzhou 510006
| |
Collapse
|