1
|
Mondal RK, Anurag Anand A, Sen D, Samanta SK. The anti-MRSA resource: a comprehensive archive of anti-MRSA peptides and essential oils. J Biomol Struct Dyn 2025:1-13. [PMID: 39757585 DOI: 10.1080/07391102.2024.2446670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/29/2024] [Indexed: 01/07/2025]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), a major cause of fatalities due to Antimicrobial Resistance (AMR), can act as an opportunistic pathogen despite being part of the normal human flora. MRSA infections, such as skin infections, pneumonia, sepsis, and surgical site infections, have risen significantly, with bloodstream infection cases increasing from 21% in 2016 to 35% in 2020. This surge has prompted research into alternative treatments like nanomaterials, photodynamic therapy, antimicrobial peptides (AMPs), and essential oils (EOs). AMPs and EOs have shown higher success rates compared to other alternatives, gaining significant attention for their effectiveness against MRSA. In this perspective, we have created a database for peptides and EOs that have been discovered to treat MRSA. Manual data curation was done to get related information on each of the anti-MRSA EOs and AMPs from the PubMed articles. This led to the curation of 1789 peptides (1029 unique) and 863 EOs (671 unique) that have been reported against MRSA. This was followed by database creation and the development of tools for sequence analysis and determination of physiochemical properties. This resource has been named 'The Anti-MRSA Resource' or 'TAMRSAR' which we believe will aid in future drug development efforts to combat the diseases caused by MRSA. The database is accessible on any web browser at the URL: https://bblserver.org.in/tamrsar/.
Collapse
Affiliation(s)
- Rajat Kumar Mondal
- Biochemistry and Bioinformatics Laboratory, Department of Applied Sciences, Indian Institute of Information Technology Allahabad (IIIT-A), Prayagraj, Uttar Pradesh, India
| | - Ananya Anurag Anand
- Biochemistry and Bioinformatics Laboratory, Department of Applied Sciences, Indian Institute of Information Technology Allahabad (IIIT-A), Prayagraj, Uttar Pradesh, India
| | - Debarup Sen
- Persistent Systems Ltd., Pune, Maharashtra, India
| | - Sintu Kumar Samanta
- Biochemistry and Bioinformatics Laboratory, Department of Applied Sciences, Indian Institute of Information Technology Allahabad (IIIT-A), Prayagraj, Uttar Pradesh, India
| |
Collapse
|
2
|
Anurag Anand A, Amod A, Anwar S, Sahoo AK, Sethi G, Samanta SK. A comprehensive guide on screening and selection of a suitable AMP against biofilm-forming bacteria. Crit Rev Microbiol 2024; 50:859-878. [PMID: 38102871 DOI: 10.1080/1040841x.2023.2293019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Lately, antimicrobial resistance (AMR) is increasing at an exponential rate making it important to search alternatives to antibiotics in order to combat multi-drug resistant (MDR) bacterial infections. Out of the several antibacterial and antibiofilm strategies being tested, antimicrobial peptides (AMPs) have shown to give better hopes in terms of a long-lasting solution to the problem. To select a desired AMP, it is important to make right use of available tools and databases that aid in identification, classification, and analysis of the physiochemical properties of AMPs. To identify the targets of these AMPs, it becomes crucial to understand their mode-of-action. AMPs can also be used in combination with other antibacterial and antibiofilm agents so as to achieve enhanced efficacy against bacteria and their biofilms. Due to concerns regarding toxicity, stability, and bioavailability, strategizing drug formulation at an early-stage becomes crucial. Although there are few concerns regarding development of bacterial resistance to AMPs, the evolution of resistance to AMPs occurs extremely slowly. This comprehensive review gives a deep insight into the selection of the right AMP, deciding the right target and combination strategy along with the type of formulation needed, and the possible resistance that bacteria can develop to these AMPs.
Collapse
Affiliation(s)
- Ananya Anurag Anand
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, India
| | - Ayush Amod
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, India
| | - Sarfraz Anwar
- Department of Bioinformatics, University of Allahabad, Prayagraj, India
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sintu Kumar Samanta
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, India
| |
Collapse
|
3
|
Singh A, Amod A, Mulpuru V, Mishra N, Sahoo AK, Samanta SK. Finding Novel AMPs Secreted from the Human Microbiome as Potent Antibacterial and Antibiofilm Agents and Studying Their Synergistic Activity with Ag NCs. ACS APPLIED BIO MATERIALS 2023; 6:3674-3682. [PMID: 37603700 DOI: 10.1021/acsabm.3c00302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Due to the enhanced resistance of bacteria to antibiotics, researchers always try to find effective alternatives to treat drug-resistant bacterial infections. In this context, we have explored antimicrobial peptides (AMPs), which are a broad class of small peptide molecules, and investigated their efficacy as potent antibacterial and antibiofilm agents. AMPs can cause cell death either through disruption of the cell membrane or by inhibiting vital intracellular functions, by binding to RNA, DNA, or intracellular components upon transversion through the cell membrane. We attempted to find potent intracellular cationic AMPs that can demonstrate antibacterial activity through interaction with DNA. As a source of AMPs, we have utilized those that are secreted from the human microbiome with the anticipation that these will be non-toxic in nature. Out of the total 1087 AMPs, 27 were screened on the basis of amino acid length and efficacy to cross the cell membrane barrier. From the list of 27 peptides, 4 candidates were selected through the docking score of these peptides with the DNA binding domain of H2A proteins. Further, the molecular dynamics simulation analysis demonstrated that 2 AMPs, i.e., peptides 7 and 25, are having considerable membrane permeation and DNA binding ability. Further, the in vitro analysis indicated that both peptides 7 and 25 could exhibit potent antibacterial and antibiofilm activities. In order to further enhance the antibiofilm potency, the above AMPs were used as supplements to silver nanoclusters (Ag NCs) to get synergistic activity. The synergistic activity of Ag NCs was found to be significantly increased with both the above AMPs.
Collapse
Affiliation(s)
- Anirudh Singh
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad 211012, Uttar Pradesh, India
| | - Ayush Amod
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad 211012, Uttar Pradesh, India
| | - Viswajit Mulpuru
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad 211012, Uttar Pradesh, India
| | - Nidhi Mishra
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad 211012, Uttar Pradesh, India
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad 211012, Uttar Pradesh, India
| | - Sintu Kumar Samanta
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad 211012, Uttar Pradesh, India
| |
Collapse
|
4
|
Mishra A, Maurya SK, Singh A, Siddique H, Samanta SK, Mishra N. Neolamarckia cadamba (Roxb.) Bosser (Rubiaceae) extracts: promising prospects for anticancer and antibacterial potential through in vitro and in silico studies. Med Oncol 2023; 40:99. [PMID: 36808013 DOI: 10.1007/s12032-023-01971-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/06/2023] [Indexed: 02/23/2023]
Abstract
Neolamarckia cadamba is an Indian traditional medicinal plant having various therapeutic potentials. In the present study, we did solvent-based extraction of Neolamarckia cadamba leaves. The extracted samples were screened against liver cancer cell line (HepG2) and bacteria (Escherichia coli). MTT cytotoxic assay was performed for in vitro analysis of extracted samples against the HepG2 cell lines and the normal human prostate PNT2 cell line. Chloroform extract of Neolamarckia cadamba leaves showed better activity with IC50 value 69 μg/ml. DH5α strain of Escherichia coli (E. coli) was cultured in Luria Bertani (LB) broth media and minimum inhibitory concentration (MIC) and Minimum bactericidal concentration (MBC) were calculated. Solvent extract chloroform showed better activity in MTT analysis and antibacterial screening and it was taken for characterization of phytocomposition by Fourier transform infrared (FTIR) and gas chromatography mass spectrometry (GC-MS). The identified phytoconstituents were docked with potential targets of liver cancer and E. coli. The phytochemical 1-(5-Hydroxy-6-hydroxymethyl-tetrahydropyran-2-yl)-5-methyl-1H-pyrimidine-2,4-dione shows highest docking score against the targets PDGFRA (PDB ID: 6JOL) and Beta-ketoacyl synthase 1(PDB ID: 1FJ4) and their stability was further confirmed by molecular dynamics simulation studies.
Collapse
Affiliation(s)
- Anamika Mishra
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, India
| | - Santosh Kumar Maurya
- Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Anirudh Singh
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, India
| | - Hifzur Siddique
- Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Sintu Kumar Samanta
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, India
| | - Nidhi Mishra
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, India.
| |
Collapse
|
5
|
Singh A, Amod A, Pandey P, Bose P, Pingali MS, Shivalkar S, Varadwaj P, Sahoo A, Samanta S. Bacterial biofilm infections, their resistance to antibiotics therapy and current treatment strategies. Biomed Mater 2022; 17. [PMID: 35105823 DOI: 10.1088/1748-605x/ac50f6] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/01/2022] [Indexed: 11/11/2022]
Abstract
Nearly 80% of human chronic infections are caused due to bacterial biofilm formation. This is the most leading cause for failure of medical implants resulting in high morbidity and mortality. In addition, biofilms are also known to cause serious problems in food industry. Biofilm impart enhanced antibiotic resistance and become recalcitrant to host immune responses leading to persistent and recurrent infections. It makes the clinical treatment for biofilm infections very difficult. Reduced penetration of antibiotic molecules through EPS, mutation of the target site, accumulation of antibiotic degrading enzymes, enhanced expression of efflux pump genes are the probable causes for antibiotics resistance. Accordingly, strategies like administration of topical antibiotics and combined therapy of antibiotics with antimicrobial peptides are considered for alternate options to overcome the antibiotics resistance. A number of other remediation strategies for both biofilm inhibition and dispersion of established biofilm have been developed. The metallic nanoparticles and their oxides have recently gained a tremendous thrust as antibiofilm therapy for their unique features. This present comprehensive review gives the understanding of antibiotic resistance mechanisms of biofilm and provides an overview of various currently available biofilm remediation strategies, focusing primarily on the applications of metallic nanoparticles and their oxides.
Collapse
Affiliation(s)
- Anirudh Singh
- Indian Institute of Information Technology Allahabad, Allahabad, UP, India, Allahabad, Uttar Pradesh, 211012, INDIA
| | - Ayush Amod
- Indian Institute of Information Technology Allahabad, UP, India, Allahabad, Uttar Pradesh, 211012, INDIA
| | | | - Pranay Bose
- KIIT University, Bhubaneswar, Odisha, India, Bhubaneswar, Orissa, 751024, INDIA
| | - M Shivapriya Pingali
- Indian Institute of Information Technology Allahabad, UP, India, Allahabad, Uttar Pradesh, 211012, INDIA
| | - Saurabh Shivalkar
- Applied Sciences, IIIT Allahabad, UP, India, Allahabad, 211012, INDIA
| | - Pritish Varadwaj
- Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, India, Allahabad, Uttar Pradesh, 211012, INDIA
| | - Amaresh Sahoo
- Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, UP, India, Allahabad, Uttar Pradesh, 211012, INDIA
| | - Sintu Samanta
- Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, India, Allahabad, Uttar Pradesh, 211012, INDIA
| |
Collapse
|
6
|
Singh A, Rani K, Tandon V, Sahoo AK, Samanta SK. Ag NCs as a potent antibiofilm agent against pathogenic Pseudomonas aeruginosa and Acinetobacter baumannii and drug-resistant Bacillus subtilis by affecting chemotaxis and flagellar assembly pathway genes. Biomater Sci 2022; 10:6778-6790. [DOI: 10.1039/d2bm01399a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ag NCs can mediate biofilm degradation through the regulation of bacterial chemotaxis and flagellar assembly pathway genes.
Collapse
Affiliation(s)
- Anirudh Singh
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad-211012, India
| | - Komal Rani
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067, India
| | - Vibha Tandon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067, India
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad-211012, India
| | - Sintu Kumar Samanta
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad-211012, India
| |
Collapse
|
7
|
Ferraboschi P, Ciceri S, Grisenti P. Applications of Lysozyme, an Innate Immune Defense Factor, as an Alternative Antibiotic. Antibiotics (Basel) 2021; 10:1534. [PMID: 34943746 PMCID: PMC8698798 DOI: 10.3390/antibiotics10121534] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 12/18/2022] Open
Abstract
Lysozyme is a ~14 kDa protein present in many mucosal secretions (tears, saliva, and mucus) and tissues of animals and plants, and plays an important role in the innate immunity, providing protection against bacteria, viruses, and fungi. Three main different types of lysozymes are known: the c-type (chicken or conventional type), the g-type (goose type), and the i-type (invertebrate type). It has long been the subject of several applications due to its antimicrobial properties. The problem of antibiotic resistance has stimulated the search for new molecules or new applications of known compounds. The use of lysozyme as an alternative antibiotic is the subject of this review, which covers the results published over the past two decades. This review is focused on the applications of lysozyme in medicine, (the treatment of infectious diseases, wound healing, and anti-biofilm), veterinary, feed, food preservation, and crop protection. It is available from a wide range of sources, in addition to the well-known chicken egg white, and its synergism with other compounds, endowed with antimicrobial activity, are also summarized. An overview of the modified lysozyme applications is provided in the form of tables.
Collapse
Affiliation(s)
- Patrizia Ferraboschi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via C. Saldini 50, 20133 Milano, Italy;
| | - Samuele Ciceri
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milano, Italy;
| | | |
Collapse
|
8
|
Gangwar J, Sebastian JK. Unlocking the potential of biosynthesized zinc oxide nanoparticles for degradation of synthetic organic dyes as wastewater pollutants. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:3286-3310. [PMID: 34850728 DOI: 10.2166/wst.2021.430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The azo dyes released into water from different industries are accumulating in the water bodies and bioaccumulating within living systems thereby affecting environmental health. This is a major concern in developing countries where stringent regulations are not followed for the discharge of industrial waste into water bodies. This has led to the accumulation of various pollutants including dyes. As these developing countries also face acute water shortages and due to the lack of cost-effective systems to remove these pollutants, it is essential to remove these toxic dyes from water bodies, eradicate dyes, or generate fewer toxic derivatives. The photocatalysis mechanism of degradation of azo dyes has gained importance due to its eco-friendly and non-toxic roles in the environment. The zinc nanoparticles act as photocatalysts in combination with plant extracts. Plant-based nanoparticles over the years have shown the potential to degrade dyes efficiently. This is carried out by adjusting the dye and nanoparticle concentrations and combinations of nanoparticles. Our review article considers increasing the efficiency of degradation of dyes using zinc oxide (ZnO) nanoparticles and understanding the photocatalytic mechanisms in the degradation of dyes and the toxic effects of these dyes and nanoparticles in different tropic levels.
Collapse
Affiliation(s)
- Jaya Gangwar
- Department of Life Sciences, Christ University, Bangalore, Karnataka, India E-mail:
| | | |
Collapse
|
9
|
Versatile Fluorescent Carbon Dots from Citric Acid and Cysteine with Antimicrobial, Anti-biofilm, Antioxidant, and AChE Enzyme Inhibition Capabilities. J Fluoresc 2021; 31:1705-1717. [PMID: 34424483 DOI: 10.1007/s10895-021-02798-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
Nanostructured fluorescent particles derived from natural molecules were prepared by a green synthesis technique employing a microwave method. The precursors citric acid (CA) and cysteine (Cys) were used in the preparation of S- and N-doped Cys carbon dots (Cys CDs). Synthesis was completed in 3 min. The graphitic structure revealed by XRD analysis of Cys CDs dots had good water dispersity, with diameters in the range of 2-20 nm determined by TEM analysis. The isoelectric point of the S, N-doped CDs was pH value for 5.2. The prepared Cys CDs displayed excellent fluorescence intensity with a high quantum yield of 75.6 ± 2.1%. Strong antimicrobial capability of Cys CDs was observed with 12.5 mg/mL minimum bactericidal concentration (MBC) against gram-positive and gram-negative bacteria with the highest antimicrobial activity obtained against Staphylococcus aureus. Furthermore, Cys CDs provided total biofilm eradication and inhibition abilities against Pseudomonas aeruginosa at 25 mg/mL concentration. Cys CDs are promising antioxidant materials with 1.3 ± 0.1 μmol Trolox equivalent/g antioxidant capacity. Finally, Cys CDs were also shown to inhibit the acetylcholinesterase (AChE) enzyme, which is used in the treatment of Alzheimer's disease, even at the low concentration of 100 μg/mL.
Collapse
|
10
|
Ghirardello M, Ramos-Soriano J, Galan MC. Carbon Dots as an Emergent Class of Antimicrobial Agents. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1877. [PMID: 34443713 PMCID: PMC8400628 DOI: 10.3390/nano11081877] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 01/15/2023]
Abstract
Antimicrobial resistance is a recognized global challenge. Tools for bacterial detection can combat antimicrobial resistance by facilitating evidence-based antibiotic prescribing, thus avoiding their overprescription, which contributes to the spread of resistance. Unfortunately, traditional culture-based identification methods take at least a day, while emerging alternatives are limited by high cost and a requirement for skilled operators. Moreover, photodynamic inactivation of bacteria promoted by photosensitisers could be considered as one of the most promising strategies in the fight against multidrug resistance pathogens. In this context, carbon dots (CDs) have been identified as a promising class of photosensitiser nanomaterials for the specific detection and inactivation of different bacterial species. CDs possess exceptional and tuneable chemical and photoelectric properties that make them excellent candidates for antibacterial theranostic applications, such as great chemical stability, high water solubility, low toxicity and excellent biocompatibility. In this review, we will summarize the most recent advances on the use of CDs as antimicrobial agents, including the most commonly used methodologies for CD and CD/composites syntheses and their antibacterial properties in both in vitro and in vivo models developed in the last 3 years.
Collapse
Affiliation(s)
- Mattia Ghirardello
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Javier Ramos-Soriano
- Centro de Investigaciones Científicas Isla de La Cartuja, Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain;
| | - M. Carmen Galan
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| |
Collapse
|