1
|
Chen X, Li X, Turco S, van Sloun RJG, Mischi M. Ultrasound Viscoelastography by Acoustic Radiation Force: A State-of-the-Art Review. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:536-557. [PMID: 38526897 DOI: 10.1109/tuffc.2024.3381529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Ultrasound elastography (USE) is a promising tool for tissue characterization as several diseases result in alterations of tissue structure and composition, which manifest as changes in tissue mechanical properties. By imaging the tissue response to an applied mechanical excitation, USE mimics the manual palpation performed by clinicians to sense the tissue elasticity for diagnostic purposes. Next to elasticity, viscosity has recently been investigated as an additional, relevant, diagnostic biomarker. Moreover, since biological tissues are inherently viscoelastic, accounting for viscosity in the tissue characterization process enhances the accuracy of the elasticity estimation. Recently, methods exploiting different acquisition and processing techniques have been proposed to perform ultrasound viscoelastography. After introducing the physics describing viscoelasticity, a comprehensive overview of the currently available USE acquisition techniques is provided, followed by a structured review of the existing viscoelasticity estimators classified according to the employed processing technique. These estimators are further reviewed from a clinical usage perspective, and current outstanding challenges are discussed.
Collapse
|
2
|
Bosio G, Destrempes F, Roy Cardinal MH, Cloutier G. Effect of rt-PA on Shear Wave Mechanical Assessment and Quantitative Ultrasound Properties of Blood Clot Kinetics In Vitro. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024; 43:829-840. [PMID: 38205972 DOI: 10.1002/jum.16411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024]
Abstract
OBJECTIVE The consequences associated with blood clots are numerous and are responsible for many deaths worldwide. The assessment of treatment efficacy is necessary for patient follow-up and to detect treatment-resistant patients. The aim of this study was to characterize the effect of treatment on blood clots in vitro using quantitative ultrasound parameters. METHODS Blood from 10 pigs was collected to form three clots per pig in gelatin phantoms. Clots were subjected to 1) no treatment, 2) rt-PA (recombinant tissue plasminogen activator) treatment after 20 minutes of clotting, and 3) rt-PA treatment after 60 minutes of clotting. Clots were weighted before and after the experiment to assess the treatment effect by the mass loss. The clot kinetics was studied over 100 minutes using elastography (Young's modulus, shear wave dispersion, and shear wave attenuation). Homodyne K-distribution (HKD) parameters derived from speckle statistics were also studied during clot formation and dissolving (diffuse-to-total signal power ratio and intensity parameters). RESULTS Treated clots loosed significantly more mass than non-treated ones (P < .005). A significant increase in Young's modulus was observed over time (P < .001), and significant reductions were seen for treated clots at 20 or 60 minutes compared with untreated ones (P < .001). The shear wave dispersion differed for treated clots at 60 minutes versus no treatments (P < .001). The shear wave attenuation decreased over time (P < .001), and was different for clots treated at 20 minutes versus no treatments (P < .031). The HKD intensity parameter varied over time (P < .032), and was lower for clots treated at 20 and 60 minutes than those untreated (P < .001 and P < .02). CONCLUSION The effect of rt-PA treatment could be confirmed by a decrease in Young's modulus and HKD intensity parameter. The shear wave dispersion and shear wave attenuation were sensitive to late and early treatments, respectively. The Young's modulus, shear wave attenuation, and HKD intensity parameter varied over time despite treatment.
Collapse
Affiliation(s)
- Guillaume Bosio
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
- Institute of Biomedical Engineering, University of Montreal, Montreal, Quebec, Canada
| | - François Destrempes
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
| | - Marie-Hélène Roy Cardinal
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
| | - Guy Cloutier
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
- Institute of Biomedical Engineering, University of Montreal, Montreal, Quebec, Canada
- Department of Radiology, Radio-Oncology and Nuclear Medicine, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Bosio G, Destrempes F, Yazdani L, Roy Cardinal MH, Cloutier G. Resonance, Velocity, Dispersion, and Attenuation of Ultrasound-Induced Shear Wave Propagation in Blood Clot In Vitro Models. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024; 43:535-551. [PMID: 38108551 DOI: 10.1002/jum.16387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/19/2023]
Abstract
OBJECTIVE Improve the characterization of mechanical properties of blood clots. Parameters derived from shear wave (SW) velocity and SW amplitude spectra were determined for gel phantoms and in vitro blood clots. METHODS Homogeneous phantoms and phantoms with gel or blood clot inclusions of different diameters and mechanical properties were analyzed. SW amplitude spectra were used to observe resonant peaks. Parameters derived from those resonant peaks were related to mimicked blood clot properties. Three regions of interest were tested to analyze where resonances occurred the most. For blood experiments, 20 samples from different pigs were analyzed over time during a 110-minute coagulation period using the Young modulus, SW frequency dispersion, and SW attenuation. RESULTS The mechanical resonance was manifested by an increase in the number of SW spectral peaks as the inclusion diameter was reduced (P < .001). In blood clot inclusions, the Young modulus increased over time during coagulation (P < .001). Descriptive spectral parameters (frequency peak, bandwidth, and distance between resonant peaks) were linearly correlated with clot elasticity values (P < .001) with R2 = .77 for the frequency peak, .60 for the bandwidth, and .48 for the distance between peaks. The SW dispersion and SW attenuation reflecting the viscous behavior of blood clots decreased over time (P < .001), mainly in the early stage of coagulation (first minutes). CONCLUSION The confined soft inclusion configuration favored SW mechanical resonances potentially challenging the computation of spectral-based parameters, such as the SW attenuation. The impact of resonances can be reduced by properly selecting the region of interest for data analysis.
Collapse
Affiliation(s)
- Guillaume Bosio
- Institute of Biomedical Engineering, University of Montreal, Montreal, Quebec, Canada
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
| | - François Destrempes
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
| | - Ladan Yazdani
- Institute of Biomedical Engineering, University of Montreal, Montreal, Quebec, Canada
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
| | - Marie-Hélène Roy Cardinal
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
| | - Guy Cloutier
- Institute of Biomedical Engineering, University of Montreal, Montreal, Quebec, Canada
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montreal, Quebec, Canada
- Department of Radiology, Radio-Oncology and Nuclear Medicine, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Biswas D, Heo J, Sang P, Dey P, Han K, Ko JH, Won SM, Son D, Suh M, Kim HS, Ok JG, Park HJ, Baac HW. Micro-ultrasonic Assessment of Early Stage Clot Formation and Whole Blood Coagulation Using an All-Optical Ultrasound Transducer and Adaptive Signal Processing Algorithm. ACS Sens 2022; 7:2940-2950. [PMID: 36107765 DOI: 10.1021/acssensors.2c00875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Abnormal formation of solid thrombus inside a blood vessel can cause thrombotic morbidity and mortality. This necessitates early stage diagnosis, which requires quantitative assessment with a small volume, for effective therapy with low risk to unwanted development of various diseases. We propose a micro-ultrasonic diagnosis using an all-optical ultrasound-based spectral sensing (AOUSS) technique for sensitive and quantitative characterization of early stage and whole blood coagulation. The AOUSS technique detects and analyzes minute viscoelastic variations of blood at a micro-ultrasonic spot (<100 μm) defined by laser-generated focused ultrasound (LGFU). This utilizes (1) a uniquely designed optical transducer configuration for frequency-spectral matching and wideband operation (6 dB widths: 7-32 MHz and d.c. ∼ 46 MHz, respectively) and (2) an empirical mode decomposition (EMD)-based signal process particularly adapted to nonstationary LGFU signals backscattered from the spot. An EMD-derived spectral analysis enables one to assess viscoelastic variations during the initiation of fibrin formation, which occurs at a very early stage of blood coagulation (1 min) with high sensitivity (frequency transition per storage modulus increment = 8.81 MHz/MPa). Our results exhibit strong agreement with those obtained by conventional rheometry (Pearson's R > 0.95), which are also confirmed by optical microscopy. The micro-ultrasonic and high-sensitivity detection of AOUSS poses a potential clinical significance, serving as a screening modality to diagnose early stage clot formation (e.g., as an indicator for hypercoagulation of blood) and stages of blood-to-clot transition to check a potential risk for development into thrombotic diseases.
Collapse
Affiliation(s)
- Deblina Biswas
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.,School of Bioengineering and Food Technology, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Jeongmin Heo
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Pilgyu Sang
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Prasanta Dey
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kayoung Han
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Department of Biomedical Engineering, Department of Intelligent Precision Healthcare Convergence (IPHC), Biomedical Institute of Convergence (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jong Hwan Ko
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sang Min Won
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Donghee Son
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Minah Suh
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Department of Biomedical Engineering, Department of Intelligent Precision Healthcare Convergence (IPHC), Biomedical Institute of Convergence (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jong G Ok
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Hui Joon Park
- Department of Organic and Nano Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyoung Won Baac
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
5
|
Zemzemi C, Phillips M, Vela DC, Hilvert NA, Racadio JM, Bader KB, Haworth KJ, Holland CK. Effect of Thrombin and Incubation Time on Porcine Whole Blood Clot Elasticity and Recombinant Tissue Plasminogen Activator Susceptibility. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1567-1578. [PMID: 35644763 PMCID: PMC9247038 DOI: 10.1016/j.ultrasmedbio.2022.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/07/2022] [Accepted: 04/03/2022] [Indexed: 06/15/2023]
Abstract
Deep vein thrombosis is a major source of morbidity and mortality worldwide. Catheter-directed thrombolytics are the frontline approach for vessel recanalization, though fibrinolytic efficacy is limited for stiff, chronic thrombi. Although thrombin has been used in preclinical models to induce thrombosis, the effect on lytic susceptibility and clot stiffness is unknown. The goal of this study was to explore the effect of bovine thrombin concentration and incubation time on lytic susceptibility and stiffness of porcine whole blood clots in vitro. Porcine whole blood was allowed to coagulate at 37°C in glass pipets primed with 2.5 or 15 U/mL thrombin for 15 to 120 min. Lytic susceptibility to recombinant tissue plasminogen activator (rt-PA, alteplase) over a range of concentrations (3.15-107.00 µg/mL) was evaluated using percentage clot mass loss. The Young's moduli and degrees of retraction of the clots were estimated using ultrasound-based single-track-location shear wave elasticity and B-mode imaging, respectively. Percentage mass loss decreased and clot stiffness increased with the incubation period. Clots formed with 15 U/mL and incubated for 2 h exhibited properties similar to those of highly retracted clots: Young's modulus of 2.39 ± 0.36 kPa and percentage mass loss of 8.69 ± 2.72% when exposed to 3.15 µg/mL rt-PA. The histological differences between thrombin-induced porcine whole blood clots in vitro and thrombi in vivo are described.
Collapse
Affiliation(s)
- Chadi Zemzemi
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA.
| | - Matthew Phillips
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Deborah C Vela
- Cardiovascular Pathology, Texas Heart Institute, Houston, Texas, USA
| | - Nicole A Hilvert
- Department of Radiology and Medical Imaging, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - John M Racadio
- Department of Radiology and Medical Imaging, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kenneth B Bader
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| | - Kevin J Haworth
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| | - Christy K Holland
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
6
|
Costa-Júnior JFS, Parcero GC, Machado JC. Shear Elastic Coefficient of Normal and Fibrinogen-Deficient Clotting Plasma Obtained with a Sphere-Motion-Based Acoustic-Radiation-Force Approach. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:111-123. [PMID: 34674885 DOI: 10.1016/j.ultrasmedbio.2021.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Blood coagulation is a process involving several chemical reactions governed by coagulation factors, during which the shear elastic coefficient, μ, varies as the medium transitions from liquid to gel phase. This work used ultrasound to measure μ during the clotting of human plasma samples by tracking the motion of a glass sphere located inside a cuvette filled with the plasma. A 2.03 MHz ultrasonic system generated an impulsive acoustic radiation force acting on the sphere, and a 4.89 MHz pulse-echo ultrasonic system tracked the sphere displacement induced by that force. Measurements of μ were determined by fitting a μ-dependent theoretical model to the motion waveform of the sphere immersed in clotting normal plasma and plasma samples with fibrinogen (FI) concentrations of 1.2 (FI-deficiency) and 3.6 (FI-normal) g/L. For normal plasma, μ started at 14.22 Pa and increased rapidly until 2 min, then slowly until it reached 210.23 Pa at 35 min after the clotting process started. A similar trend was exhibited in plasma samples with FI concentrations of 1.2 and 3.6 g/L, with μ reaching 120.55 and 679.42 Pa, respectively. A theoretical model, related to the kinetics of clot-structure formation, describes the time changes of μ for the clotting plasma samples. The sphere-motion-based acoustic-radiation-force approach allowed us to measure the shear elastic coefficient during the coagulation process of plasma samples with normal and deficient FI concentrations. Our results suggest that the method used in this study is capable of being used to detect bleeding disorders.
Collapse
Affiliation(s)
- José Francisco Silva Costa-Júnior
- Brazilian Air Force Academy, Pirassununga, Brazil; Biomedical Engineering Program-COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | - João Carlos Machado
- Biomedical Engineering Program-COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Post-Graduation Program on Surgical Sciences, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Li H, Flé G, Bhatt M, Qu Z, Ghazavi S, Yazdani L, Bosio G, Rafati I, Cloutier G. Viscoelasticity Imaging of Biological Tissues and Single Cells Using Shear Wave Propagation. FRONTIERS IN PHYSICS 2021; 9. [DOI: 10.3389/fphy.2021.666192] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Changes in biomechanical properties of biological soft tissues are often associated with physiological dysfunctions. Since biological soft tissues are hydrated, viscoelasticity is likely suitable to represent its solid-like behavior using elasticity and fluid-like behavior using viscosity. Shear wave elastography is a non-invasive imaging technology invented for clinical applications that has shown promise to characterize various tissue viscoelasticity. It is based on measuring and analyzing velocities and attenuations of propagated shear waves. In this review, principles and technical developments of shear wave elastography for viscoelasticity characterization from organ to cellular levels are presented, and different imaging modalities used to track shear wave propagation are described. At a macroscopic scale, techniques for inducing shear waves using an external mechanical vibration, an acoustic radiation pressure or a Lorentz force are reviewed along with imaging approaches proposed to track shear wave propagation, namely ultrasound, magnetic resonance, optical, and photoacoustic means. Then, approaches for theoretical modeling and tracking of shear waves are detailed. Following it, some examples of applications to characterize the viscoelasticity of various organs are given. At a microscopic scale, a novel cellular shear wave elastography method using an external vibration and optical microscopy is illustrated. Finally, current limitations and future directions in shear wave elastography are presented.
Collapse
|
8
|
Liu HC, Abbasi M, Ding YH, Roy T, Capriotti M, Liu Y, Fitzgerald S, Doyle KM, Guddati M, Urban MW, Brinjikji W. Characterizing blood clots using acoustic radiation force optical coherence elastography and ultrasound shear wave elastography. Phys Med Biol 2021; 66:035013. [PMID: 33202384 PMCID: PMC7880883 DOI: 10.1088/1361-6560/abcb1e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thromboembolism in a cerebral blood vessel is associated with high morbidity and mortality. Mechanical thrombectomy (MT) is one of the emergenc proceduresperformed to remove emboli. However, the interventional approaches such as aspiration catheters or stent retriever are empirically selected. An inappropriate selection of surgical devices can influence the success rate during embolectomy, which can lead to an increase in brain damage. There has been growing interest in the study of clot composition and using a priori knowledge of clot composition to provide guidance for an appropriate treatment strategy for interventional physicians. Developing imaging tools which can allow interventionalists to understand clot composition could affect management and device strategy. In this study, we investigated how clots of different compositions can be characterized by using acoustic radiation force optical coherence elastography (ARF-OCE) and compared with ultrasound shear wave elastography (SWE). Five different clots compositions using human blood were fabricated into cylindrical forms from fibrin-rich (21% red blood cells, RBCs) to RBC-rich (95% RBCs). Using the ARF-OCE and SWE, we characterized the wave velocities measured in the time-domain. In addition, the semi-analytical finite element model was used to explore the relationship between the phase velocities with various frequency ranges and diameters of the clots. The study demonstrated that the wave group velocities generally decrease as RBC content increases in ARF-OCE and SWE. The correlation of the group velocities from the OCE and SWE methods represented a good agreement as RBC composition is larger than 39%. Using the phase velocity dispersion analysis applied to ARF-OCE data, we estimated the shear wave velocities decoupling the effects of the geometry and material properties of the clots. The study demonstrated that the composition of the clots can be characterized by elastographic methods using ARF-OCE and SWE, and OCE demonstrated better ability to discriminate between clots of different RBC compositions, compared to the ultrasound-based approach, especially in clots with low RBC compositions.
Collapse
Affiliation(s)
- Hsiao-Chuan Liu
- Department of Radiology, Mayo Clinic, Minnesota, 200 First St SW, Rochester, MN 55905, United States of America
- Author to whom any correspondence should be addressed
| | - Mehdi Abbasi
- Department of Radiology, Mayo Clinic, Minnesota, 200 First St SW, Rochester, MN 55905, United States of America
| | - Yong Hong Ding
- Department of Radiology, Mayo Clinic, Minnesota, 200 First St SW, Rochester, MN 55905, United States of America
| | - Tuhin Roy
- Department of Civil Engineering, North Carolina State University, Raleigh, NC 27695, United States of America
| | - Margherita Capriotti
- Department of Radiology, Mayo Clinic, Minnesota, 200 First St SW, Rochester, MN 55905, United States of America
| | - Yang Liu
- Department of Radiology, Mayo Clinic, Minnesota, 200 First St SW, Rochester, MN 55905, United States of America
| | - Seán Fitzgerald
- Department of Radiology, Mayo Clinic, Minnesota, 200 First St SW, Rochester, MN 55905, United States of America
- Department of Physiology, National University of Ireland Galway, Galway, Ireland
| | - Karen M Doyle
- Department of Physiology, National University of Ireland Galway, Galway, Ireland
| | - Murthy Guddati
- Department of Civil Engineering, North Carolina State University, Raleigh, NC 27695, United States of America
| | - Matthew W Urban
- Department of Radiology, Mayo Clinic, Minnesota, 200 First St SW, Rochester, MN 55905, United States of America
- Department of Physiology and Biomedical Engineering, Mayo Clinic in Rochester, Minnesota, 200 First St SW, Rochester, MN 55905, United States of America
| | - Waleed Brinjikji
- Department of Radiology, Mayo Clinic, Minnesota, 200 First St SW, Rochester, MN 55905, United States of America
| |
Collapse
|
9
|
Hobson EC, Li W, Juliar BA, Putnam AJ, Stegemann JP, Deng CX. Resonant acoustic rheometry for non-contact characterization of viscoelastic biomaterials. Biomaterials 2021; 269:120676. [PMID: 33485213 DOI: 10.1016/j.biomaterials.2021.120676] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 11/26/2022]
Abstract
Resonant Acoustic Rheometry (RAR) is a new, non-contact technique to characterize the mechanical properties of soft and viscoelastic biomaterials, such as hydrogels, that are used to mimic the extracellular matrix in tissue engineering. RAR uses a focused ultrasound pulse to generate a microscale perturbation at the sample surface and tracks the ensuing surface wave using pulse-echo ultrasound. The frequency spectrum of the resonant surface waves is analyzed to extract viscoelastic material properties. In this study, RAR was used to characterize fibrin, gelatin, and agarose hydrogels. Single time point measurements of gelled samples with static mechanical properties showed that RAR provided consistent quantitative data and measured intrinsic material characteristics independent of ultrasound parameters. RAR was also used to longitudinally track dynamic changes in viscoelastic properties over the course of fibrin gelation, revealing distinct phase and material property transitions. Application of RAR was verified using finite element modeling and the results were validated against rotational shear rheometry. Importantly, RAR circumvents some limitations of conventional rheology methods and can be performed in a high-throughput manner using conventional labware. Overall, these studies demonstrate that RAR can be a valuable tool to noninvasively quantify the viscoelastic mechanical properties of soft hydrogel biomaterials.
Collapse
Affiliation(s)
- Eric C Hobson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Weiping Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Benjamin A Juliar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Andrew J Putnam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Jan P Stegemann
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48105, USA.
| | - Cheri X Deng
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
10
|
Liu Y, Reddy AS, Cockrum J, Ajulufoh MC, Zheng Y, Shih AJ, Pandey AS, Savastano LE. Standardized Fabrication Method of Human-Derived Emboli with Histologic and Mechanical Quantification for Stroke Research. J Stroke Cerebrovasc Dis 2020; 29:105205. [PMID: 33066901 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105205] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/01/2020] [Accepted: 07/23/2020] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND As access to patient emboli is limited, embolus analogs (EAs) have become critical to the research of large vessel occlusion (LVO) stroke and the development of thrombectomy technology. To date, techniques for fabricating standardized human blood-derived EAs are limited in the variety of compositions, and the mechanical properties relevant to thrombectomy are not quantified. METHODS EAs were made by mixing human banked red blood cells (RBCs), plasma, and platelet concentrate in 10 different volumetric percentage combinations to mimic the broad range of patient emboli causing LVO strokes. The samples underwent histologic analysis and tensile testing to mimic the pulling action of thrombectomy devices, and were compared to patient emboli. RESULTS EAs had histologic compositions of 0-96% RBCs, 0.78%-92% fibrin, and 2.1%-22% platelets, which can be correlated with the ingredients using a regression model. At fracture, EAs elongated from 81% to 136%, and the ultimate tensile stress ranged from 16 to 949 kPa. These EAs' histologic compositions and tensile properties showed great similarity to those of emboli retrieved from LVO stroke patients, indicating the validity of such EA fabrication methods. EAs with lower RBC and higher fibrin contents are more extensible and can withstand higher tensile stress. CONCLUSIONS EAs fabricated and tested using the proposed new methods provide a platform for stroke research and pre-clinical development of thrombectomy devices.
Collapse
Affiliation(s)
- Yang Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA.
| | - Adithya S Reddy
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA.
| | - Joshua Cockrum
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA.
| | | | - Yihao Zheng
- Mechanical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA.
| | - Albert J Shih
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA.
| | - Aditya S Pandey
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA.
| | - Luis E Savastano
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA; Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
11
|
Bhatt M, Moussu MAC, Chayer B, Destrempes F, Gesnik M, Allard L, Tang A, Cloutier G. Reconstruction of Viscosity Maps in Ultrasound Shear Wave Elastography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:1065-1078. [PMID: 30990181 DOI: 10.1109/tuffc.2019.2908550] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Change in viscoelastic properties of biological tissues may often be symptomatic of a dysfunction that can be correlated to tissue pathology. Shear wave elastography is an imaging method mainly used to assess stiffness but with the potential to measure viscoelasticity of biological tissues. This can enable tissue characterization; and thus, can be used as a marker to improve diagnosis of pathological lesions. In this study, a frequency-shift method based framework is presented for the reconstruction of viscosity by analyzing the spectral properties of acoustic radiation force-induced shear waves. The aim of the study was to investigate the feasibility of viscosity reconstruction maps in homogeneous as well as heterogeneous samples. Experiments were performed in four in vitro phantoms, two ex vivo porcine liver samples, two ex vivo fatty duck liver samples, and one in vivo fatty goose liver. Successful viscosity maps were reconstructed in homogeneous and heterogeneous phantoms with embedded mechanical inclusions having different geometries. Quantitative values of viscosity obtained for two porcine liver tissues, two fatty duck liver samples, and one goose fatty liver were (mean ± SD) 0.61 ± 0.21, 0.52 ± 0.35; 1.28 ± 0.54, 1.36 ± 0.73, and 1.67 ± 0.70 Pa.s, respectively.
Collapse
|
12
|
Ivlev DA, Shirinli SN, Guria KG, Uzlova SG, Guria GT. Control of fibrinolytic drug injection via real-time ultrasonic monitoring of blood coagulation. PLoS One 2019; 14:e0211646. [PMID: 30811424 PMCID: PMC6392241 DOI: 10.1371/journal.pone.0211646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/17/2019] [Indexed: 12/02/2022] Open
Abstract
In the present study, we investigated the capabilities of a novel ultrasonic approach for real-time control of fibrinolysis under flow conditions. Ultrasonic monitoring was performed in a specially designed experimental in vitro system. Fibrinolytic agents were automatically injected at ultrasonically determined stages of the blood clotting. The following clots dissolution in the system was investigated by means of ultrasonic monitoring. It was shown, that clots resistance to fibrinolysis significantly increases during the first 5 minutes since the formation of primary micro-clots. The efficiency of clot lysis strongly depends on the concentration of the fibrinolytic agent as well as the delay of its injection moment. The ultrasonic method was able to detect the coagulation at early stages, when timely pharmacological intervention can still prevent the formation of macroscopic clots in the experimental system. This result serves as evidence that ultrasonic methods may provide new opportunities for real-time monitoring and the early pharmacological correction of thrombotic complications in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | - Georgy Th. Guria
- National Research Center for Hematology, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- * E-mail:
| |
Collapse
|
13
|
Mercado-Shekhar KP, Kleven RT, Aponte Rivera H, Lewis R, Karani KB, Vos HJ, Abruzzo TA, Haworth KJ, Holland CK. Effect of Clot Stiffness on Recombinant Tissue Plasminogen Activator Lytic Susceptibility in Vitro. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:2710-2727. [PMID: 30268531 PMCID: PMC6551517 DOI: 10.1016/j.ultrasmedbio.2018.08.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 08/01/2018] [Accepted: 08/10/2018] [Indexed: 05/05/2023]
Abstract
The lytic recombinant tissue plasminogen activator (rt-PA) is the only drug approved by the Food and Drug Administration for treating ischemic stroke. Less than 40% of patients with large vessel occlusions who are treated with rt-PA have improved blood flow. However, up to 6% of all patients receiving rt-PA develop intracerebral hemorrhage. Predicting the efficacy of rt-PA treatment a priori could help guide therapeutic decision making, such that rt-PA is administered only to those individuals who would benefit from this treatment. Clot composition and structure affect the lytic efficacy of rt-PA and have an impact on elasticity. However, the relationship between clot elasticity and rt-PA lytic susceptibility has not been adequately investigated. The goal of this study was to quantify the relationship between clot elasticity and rt-PA susceptibility in vitro. Human and porcine highly retracted and mildly retracted clots were fabricated in glass pipettes. The rt-PA lytic susceptibility was evaluated in vitro using the percent clot mass loss. The Young's moduli of the clots were estimated using ultrasound-based single-track-location shear wave elasticity imaging. The percent mass loss in mildly retracted porcine and human clots (28.9 ± 6.1% and 45.2 ± 7.1%, respectively) was significantly higher (p < 0.05) than in highly retracted porcine and human clots (10.9 ± 2.1% and 25.5 ± 10.0%, respectively). Furthermore, the Young's moduli of highly retracted porcine and human clots (5.33 ± 0.92 and 3.21 ± 1.97 kPa, respectively) were significantly higher (p < 0.05) than those of mildly retracted porcine and human clots (2.66 ± 0.55 and 0.79 ± 0.21 kPa, respectively). The results revealed an inverse relationship between the percent clot mass loss and Young's modulus. These findings motivate continued investigation of ultrasound-based methods to assess clot stiffness in order to predict rt-PA thrombolytic efficacy.
Collapse
Affiliation(s)
- Karla P Mercado-Shekhar
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA.
| | - Robert T Kleven
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| | - Hermes Aponte Rivera
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ryden Lewis
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kunal B Karani
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Hendrik J Vos
- Department of Biomedical Engineering, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Todd A Abruzzo
- Department of Radiology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Kevin J Haworth
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| | - Christy K Holland
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|