1
|
Albertini F, Czerska K, Vazquez M, Andaca I, Bachtiary B, Besson R, Bolsi A, Bogaert A, Choulilitsa E, Hrbacek J, Jakobsen S, Leiser D, Matter M, Mayor A, Meier G, Nanz A, Nenoff L, Oxley D, Siewert D, Rohrer Schnidrig BA, Smolders A, Szweda H, Van Heerden M, Winterhalter C, Lomax AJ, Weber DC. First clinical implementation of a highly efficient daily online adapted proton therapy (DAPT) workflow. Phys Med Biol 2024; 69:215030. [PMID: 39293489 DOI: 10.1088/1361-6560/ad7cbd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/18/2024] [Indexed: 09/20/2024]
Abstract
Objective.This study presents the first clinical implementation of an efficient online daily adaptive proton therapy workflow (DAPT).Approach.The DAPT workflow includes apre-treatment phase,where atemplateand afallback planare optimized on the planning computed tomography (CT). In theonline phase, theadapted planis re-optimized on daily images from an in-room CT. Daily structures are rigidly propagated from the planning CT. Automated Quality Assurance (QA) involves geometric, sanity checks and an independent dose calculation from the machine files. Differences from the template plan are analyzed field-by-field, and clinical plan is assessed by reviewing the achieved clinical goals using a traffic light protocol. If the daily adapted plan fails any QA or clinical goals, the fallback plan is used. In theoffline phasethe delivered dose is recalculated from log-files onto the daily CT, and a gamma analysis is performed (3%/3 mm). The DAPT workflow has been applied to selected adult patients treated in rigid anatomy for the last serie of the treatment between October 2023 and April 2024.Main Results.DAPT treatment sessions averaged around 23 min [range: 15-30 min] and did not exceed the typical 30 minute time slot. Treatment adaptation, including QA and clinical plan assessment, averaged just under 7 min [range: 3:30-16 min] per fraction. All plans passed the online QAs steps. In the offline phase a good agreement with the log-files reconstructed dose was achieved (minimum gamma pass rate of 97.5%). The online adapted plan was delivered for >85% of the fractions. In 92% of total fractions, adapted plans exhibited improved individual dose metrics to the targets and/or organs at risk.Significance.This study demonstrates the successful implementation of an online daily DAPT workflow. Notably, the duration of a DAPT session did not exceed the time slot typically allocated for non-DAPT treatment. As far as we are aware, this is a first clinical implementation of daily online adaptive proton therapy.
Collapse
Affiliation(s)
- F Albertini
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
| | - K Czerska
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
| | - M Vazquez
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
| | - I Andaca
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
| | - B Bachtiary
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
| | - R Besson
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
| | - A Bolsi
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
| | - A Bogaert
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
| | - E Choulilitsa
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
- Department of Physics, ETH Zurich, Zurich, Switzerland
| | - J Hrbacek
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
| | - S Jakobsen
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
| | - D Leiser
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
| | - M Matter
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
| | - A Mayor
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
| | - G Meier
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
| | - A Nanz
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
| | - L Nenoff
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
| | - D Oxley
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
| | - D Siewert
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
| | | | - A Smolders
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
- Department of Physics, ETH Zurich, Zurich, Switzerland
| | - H Szweda
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
| | - M Van Heerden
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
| | - C Winterhalter
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
| | - A J Lomax
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
- Department of Physics, ETH Zurich, Zurich, Switzerland
| | - D C Weber
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
- Department of Radiation Oncology, University Hospital Bern, Bern, Switzerland
| |
Collapse
|
2
|
Félix-Bautista R, Ghesquière-Diérickx L, Ochoa-Parra P, Kelleter L, Echner G, Debus J, Jäkel O, Martišíková M, Gehrke T. Inhomogeneity detection within a head-sized phantom using tracking of charged nuclear fragments in ion beam therapy. Phys Med Biol 2024; 69:225003. [PMID: 39422080 DOI: 10.1088/1361-6560/ad8870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
Objective.The highly conformal carbon-ion radiotherapy is associated with an increased sensitivity of the dose distributions to internal changes in the patient during the treatment course. Hence, monitoring methodologies capable of detecting such changes are of vital importance. We established experimental setup conditions to address the sensitivity of a monitoring approach based on secondary-fragment tracking for detecting clinically motivated air cavity dimensions in a homogeneous head-sized PMMA phantom in 40 mm depth.Approach.The air cavities were positioned within the entrance channel of a treatment field of 50 mm diameter at three lateral positions. The measured secondary-fragment emission profiles were compared to a reference measurement without cavities. The experiments were conducted at the Heidelberg Ion-Beam Therapy Center in Germany at typical doses and dose rates.Main results.Significances above a detectability threshold of 2σfor the larger cavities (20 mm diameter and 4 mm thickness, and 20 mm diameter and 2 mm thickness) across the entire treatment field. The smallest cavity of 10 mm diameter and 2 mm thickness, which is on the lower limit of clinical interest, could not be detected at any position. We also demonstrated that it is feasible to reconstruct the lateral position of the cavity on average within 2.8 mm, once the cavity is detected. This is sufficient for the clinicians to estimate medical effects of such a cavity and to decide about the need for a control imaging CT.Significance.This investigation defines well-controlled reference conditions for the evaluation of the performance of any kind of treatment monitoring method and its capability to detect internal changes within head-sized objects. Four air cavities with volumes between 0.31 cm3and 1.26 cm3were narrowed down around the detectability threshold of this secondary-fragment-based monitoring method.
Collapse
Affiliation(s)
- Renato Félix-Bautista
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Research in Radiation Oncology (NCRO), Heidelberg 69120, Germany
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Laura Ghesquière-Diérickx
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Research in Radiation Oncology (NCRO), Heidelberg 69120, Germany
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- Medical Faculty, Heidelberg University, Heidelberg 69120, Germany
| | - Pamela Ochoa-Parra
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Research in Radiation Oncology (NCRO), Heidelberg 69120, Germany
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- Faculty of Physics and Astronomy, Heidelberg University, Heidelberg 69120, Germany
| | - Laurent Kelleter
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Research in Radiation Oncology (NCRO), Heidelberg 69120, Germany
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Gernot Echner
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Research in Radiation Oncology (NCRO), Heidelberg 69120, Germany
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Jürgen Debus
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Research in Radiation Oncology (NCRO), Heidelberg 69120, Germany
- Medical Faculty, Heidelberg University, Heidelberg 69120, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg 69120, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Oliver Jäkel
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Research in Radiation Oncology (NCRO), Heidelberg 69120, Germany
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- Medical Faculty, Heidelberg University, Heidelberg 69120, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg 69120, Germany
| | - Mária Martišíková
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Research in Radiation Oncology (NCRO), Heidelberg 69120, Germany
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Tim Gehrke
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Research in Radiation Oncology (NCRO), Heidelberg 69120, Germany
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg 69120, Germany
| |
Collapse
|
3
|
Mein S, Wuyckens S, Li X, Both S, Carabe A, Vera MC, Engwall E, Francesco F, Graeff C, Gu W, Hong L, Inaniwa T, Janssens G, de Jong B, Li T, Liang X, Liu G, Lomax A, Mackie T, Mairani A, Mazal A, Nesteruk KP, Paganetti H, Pérez Moreno JM, Schreuder N, Soukup M, Tanaka S, Tessonnier T, Volz L, Zhao L, Ding X. Particle arc therapy: Status and potential. Radiother Oncol 2024; 199:110434. [PMID: 39009306 DOI: 10.1016/j.radonc.2024.110434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 06/23/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
There is a rising interest in developing and utilizing arc delivery techniques with charged particle beams, e.g., proton, carbon or other ions, for clinical implementation. In this work, perspectives from the European Society for Radiotherapy and Oncology (ESTRO) 2022 physics workshop on particle arc therapy are reported. This outlook provides an outline and prospective vision for the path forward to clinically deliverable proton, carbon, and other ion arc treatments. Through the collaboration among industry, academic, and clinical research and development, the scientific landscape and outlook for particle arc therapy are presented here to help our community understand the physics, radiobiology, and clinical principles. The work is presented in three main sections: (i) treatment planning, (ii) treatment delivery, and (iii) clinical outlook.
Collapse
Affiliation(s)
- Stewart Mein
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA; Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Sophie Wuyckens
- UCLouvain, Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| | - Xiaoqiang Li
- Department of Radiation Oncology, Corewell Health, William Beaumont University Hospital, Proton Therapy Center, Royal Oak, MI, USA
| | - Stefan Both
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Macarena Chocan Vera
- UCLouvain, Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| | | | | | - Christian Graeff
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany
| | - Wenbo Gu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Liu Hong
- Ion Beam Applications SA, Louvain-la-Neuve, Belgium
| | - Taku Inaniwa
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan; Department of Medical Physics and Engineering, Graduate School of Medicine, Division of Health Sciences, Osaka University, Osaka, Japan
| | | | - Bas de Jong
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | - Taoran Li
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaoying Liang
- Department of Radiation Oncology, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Gang Liu
- Department of Radiation Oncology, Corewell Health, William Beaumont University Hospital, Proton Therapy Center, Royal Oak, MI, USA; Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Antony Lomax
- Centre for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland; ETH, Department of Physics, Zürich, Switzerland
| | - Thomas Mackie
- Department of Human Oncology, University of Wisconsin School of Medicine, Madison, WI, USA
| | - Andrea Mairani
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; National Centre of Oncological Hadrontherapy (CNAO), Medical Physics, Pavia, Italy
| | | | - Konrad P Nesteruk
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, USA; Harvard Medical School, Boston, USA
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, USA; Harvard Medical School, Boston, USA
| | | | | | | | - Sodai Tanaka
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | | | - Lennart Volz
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany
| | - Lewei Zhao
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Xuanfeng Ding
- Department of Radiation Oncology, Corewell Health, William Beaumont University Hospital, Proton Therapy Center, Royal Oak, MI, USA.
| |
Collapse
|
4
|
Tsubouchi T, Beltran CJ, Yagi M, Hamatani N, Takashina M, Shimizu S, Kanai T, Furutani KM. Beam delivery characteristics of the Hitachi carbon ion scanning system at Osaka Heavy Ion Medical Accelerator in Kansai (HIMAK). Med Phys 2024; 51:2239-2250. [PMID: 37877590 DOI: 10.1002/mp.16791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Using the pencil beam raster scanning method employed at most carbon beam treatment facilities, spots can be moved without interrupting the beam, allowing for the delivery of a dose between spots (move dose). This technique is also known as Dose-Driven-Continuous-Scanning (DDCS). To minimize its impact on HIMAK patient dosimetry, there's an upper limit to the move dose. Spots within a layer are grouped into sets, or "break points," allowing continuous irradiation. The beam is turned off when transitioning between sets or at the end of a treatment layer or spill. The control system beam-off is accomplished by turning off the RF Knockout (RFKO) extraction and after a brief delay the High Speed Steering Magnet (HSST) redirects the beam transport away from isocenter to a beam dump. PURPOSE The influence of the move dose and beam on/off control on the dose distribution and irradiation time was evaluated by measurements never before reported and modelled for Hitachi Carbon DDCS. METHOD We conducted fixed-point and scanning irradiation experiments at three different energies, both with and without breakpoints. For fixed-point irradiation, we utilized a 2D array detector and an oscilloscope to measure beam intensity over time. The oscilloscope data enabled us to confirm beam-off and beam-on timing due to breakpoints, as well as the relative timing of the RFKO signal, HSST signal, and dose monitor (DM) signals. From these measurements, we analyzed and modelled the temporal characteristics of the beam intensity. We also developed a model for the spot shape and amplitude at isocenter occurring after the beam-off signal which we called flap dose and its dependence on beam intensity. In the case of scanning irradiation, we measured move doses using the 2D array detector and compared these measurements with our model. RESULT We observed that the most dominant time variation of the beam intensity was at 1 kHz and its harmonic frequencies. Our findings revealed that the derived beam intensity cannot reach the preset beam intensity when each spot belongs to different breakpoints. The beam-off time due to breakpoints was approximately 100 ms, while the beam rise time and fall time (tdecay ) were remarkably fast, about 10 ms and 0.2 ms, respectively. Moreover, we measured the time lag (tdelay ) of approximately 0.2 ms between the RFKO and HSST signals. Since tdelay ≈ tdecay at HIMAK then the HSST is activated after the residual beam intensity, resulting in essentially zero flap dose at isocenter from the HSST. Our measurements of the move dose demonstrated excellent agreement with the modelled move dose. CONCLUSION We conducted the first move dose measurement for a Hitachi Carbon synchrotron, and our findings, considering beam on/off control details, indicate that Hitachi's carbon synchrotron provides a stable beam at HIMAK. Our work suggests that measuring both move dose and flap dose should be part of the commissioning process and possibly using our model in the Treatment Planning System (TPS) for new facilities with treatment delivery control systems with higher beam intensities and faster beam-off control.
Collapse
Affiliation(s)
- Toshiro Tsubouchi
- Department of Medical Physics, Osaka Heavy Ion Therapy Center, Osaka, Japan
| | - Chris J Beltran
- Department of Carbon Ion Radiotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Radiation Oncology, Division of Medical Physics, Mayo Clinic, Jacksonville, Florida, USA
| | - Masashi Yagi
- Department of Medical Physics, Osaka Heavy Ion Therapy Center, Osaka, Japan
- Department of Carbon Ion Radiotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Noriaki Hamatani
- Department of Medical Physics, Osaka Heavy Ion Therapy Center, Osaka, Japan
| | - Masaaki Takashina
- Department of Medical Physics, Osaka Heavy Ion Therapy Center, Osaka, Japan
| | - Shinichi Shimizu
- Department of Carbon Ion Radiotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tatsuaki Kanai
- Department of Carbon Ion Radiotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keith M Furutani
- Department of Carbon Ion Radiotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Radiation Oncology, Division of Medical Physics, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
5
|
Jeon C, Lee J, Shin J, Cheon W, Ahn S, Jo K, Han Y. Monte Carlo simulation-based patient-specific QA using machine log files for line-scanning proton radiation therapy. Med Phys 2023; 50:7139-7153. [PMID: 37756652 DOI: 10.1002/mp.16747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Quality assurance (QA) is a prerequisite for safe and accurate pencil-beam proton therapy. Conventional measurement-based patient-specific QA (pQA) can only verify limited aspects of patient treatment and is labor-intensive. Thus, a better method is needed to ensure the integrity of the treatment plan. PURPOSE Line scanning, which involves continuous and rapid delivery of pencil beams, is a state-of-the-art proton therapy technique. Machine performance in delivering scanning protons is dependent on the complexity of the beam modulations. Moreover, it contributes to patient treatment accuracy. A Monte Carlo (MC) simulation-based QA method that reflects the uncertainty related to the machine during scanning beam delivery was developed and verified for clinical applications to pQA. METHODS Herein, a tool for particle simulation (TOPAS) for nozzle modeling was used, and the code was commissioned against the measurements. To acquire the beam delivery uncertainty for each plan, patient plans were delivered. Furthermore, log files recorded every 60 μs by the monitors downstream of the nozzle were exported from the treatment control system. The spot positions and monitor unit (MU) counts in the log files were converted to dipole magnet strengths and number of particles, respectively, and entered into the TOPAS. For the 68 clinical cases, MC simulations were performed in a solid water phantom, and two-dimensional (2D) absolute dose distributions at 20-mm depth were measured using an ionization chamber array (Octavius 1500, PTW, Freiburg, Germany). Consequently, the MC-simulated 2D dose distributions were compared with the measured data, and the dose distributions in the pre-treatment QA plan created with RayStation (RaySearch Laboratories, Stockholm, Sweden). Absolute dose comparisons were made using gamma analysis with 3%/3 mm and 2%/2 mm criteria for 47 clinical cases without considering daily machine output variation in the MC simulation and 21 cases with daily output variation, respectively. All cases were analyzed with 90% or 95% of passing rate thresholds. RESULTS For 47 clinical cases not considering daily output variations, the absolute gamma passing rates compared with the pre-treatment QA plan were 99.71% and 96.97%, and the standard deviations (SD) were 0.70% and 3.78% with the 3%/3 mm or 2%/2 mm criteria, respectively. Compared with the measurements, the passing rate of 2%/2 mm gamma criterion was 96.76% with 3.99% of SD. For the 21 clinical cases compared with pre-treatment QA plan data and measurements considering daily output variations, the 2%/2 mm absolute gamma analysis result was 98.52% with 1.43% of SD and 97.67% with 2.72% of SD, respectively. With a 95% passing rate threshold of 2%/2 mm criterion, the false-positive and false-negative were 21.8% and 8.3% for without and with considering output variation, respectively. With a 90% threshold, the false-positive and false-negative reduced to 11.4% and 0% for without and with considering output variation, respectively. CONCLUSIONS A log-file-based MC simulation method for patient QA of line-scanning proton therapy was successfully developed. The proposed method exhibited clinically acceptable accuracy, thereby exhibiting a potential to replace the measurement-based dosimetry QA method with a 90% gamma passing rate threshold when applying the 2%/2 mm criterion.
Collapse
Affiliation(s)
- Chanil Jeon
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Jinhyeop Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Jungwook Shin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health, Rockville, Maryland, USA
| | - Wonjoong Cheon
- Department of Radiation Oncology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sunghwan Ahn
- Department of Radiation Oncology, Samsung Medical Center, Seoul, Republic of Korea
| | - Kwanghyun Jo
- Department of Radiation Oncology, Samsung Medical Center, Seoul, Republic of Korea
| | - Youngyih Han
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Duetschler A, Winterhalter C, Meier G, Safai S, Weber DC, Lomax AJ, Zhang Y. A fast analytical dose calculation approach for MRI-guided proton therapy. Phys Med Biol 2023; 68:195020. [PMID: 37750045 DOI: 10.1088/1361-6560/acf90d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023]
Abstract
Objective.Magnetic resonance (MR) is an innovative technology for online image guidance in conventional radiotherapy and is also starting to be considered for proton therapy as well. For MR-guided therapy, particularly for online plan adaptations, fast dose calculation is essential. Monte Carlo (MC) simulations, however, which are considered the gold standard for proton dose calculations, are very time-consuming. To address the need for an efficient dose calculation approach for MRI-guided proton therapy, we have developed a fast GPU-based modification of an analytical dose calculation algorithm incorporating beam deflections caused by magnetic fields.Approach.Proton beams (70-229 MeV) in orthogonal magnetic fields (0.5/1.5 T) were simulated using TOPAS-MC and central beam trajectories were extracted to generate look-up tables (LUTs) of incremental rotation angles as a function of water-equivalent depth. Beam trajectories are then reconstructed using these LUTs for the modified ray casting dose calculation. The algorithm was validated against MC in water, different materials and for four example patient cases, whereby it has also been fully incorporated into a treatment plan optimisation regime.Main results.Excellent agreement between analytical and MC dose distributions could be observed with sub-millimetre range deviations and differences in lateral shifts <2 mm even for high densities (1000 HU). 2%/2 mm gamma pass rates were comparable to the 0 T scenario and above 94.5% apart for the lung case. Further, comparable treatment plan quality could be achieved regardless of magnetic field strength.Significance.A new method for accurate and fast proton dose calculation in magnetic fields has been developed and successfully implemented for treatment plan optimisation.
Collapse
Affiliation(s)
- Alisha Duetschler
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
- Department of Physics, ETH Zürich, 8092 Zürich, CH, Switzerland
| | - Carla Winterhalter
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
| | - Gabriel Meier
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
| | - Sairos Safai
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
| | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
- Department of Radiation Oncology, University Hospital of Zürich, 8091 Zürich, CH, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, CH, Switzerland
| | - Antony J Lomax
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
- Department of Physics, ETH Zürich, 8092 Zürich, CH, Switzerland
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
| |
Collapse
|
7
|
Bobić M, Lalonde A, Nesteruk KP, Lee H, Nenoff L, Gorissen BL, Bertolet A, Busse PM, Chan AW, Winey BA, Sharp GC, Verburg JM, Lomax AJ, Paganetti H. Large anatomical changes in head-and-neck cancers – a dosimetric comparison of online and offline adaptive proton therapy. Clin Transl Radiat Oncol 2023; 40:100625. [PMID: 37090849 PMCID: PMC10120292 DOI: 10.1016/j.ctro.2023.100625] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Purpose This work evaluates an online adaptive (OA) workflow for head-and-neck (H&N) intensity-modulated proton therapy (IMPT) and compares it with full offline replanning (FOR) in patients with large anatomical changes. Methods IMPT treatment plans are created retrospectively for a cohort of eight H&N cancer patients that previously required replanning during the course of treatment due to large anatomical changes. Daily cone-beam CTs (CBCT) are acquired and corrected for scatter, resulting in 253 analyzed fractions. To simulate the FOR workflow, nominal plans are created on the planning-CT and delivered until a repeated-CT is acquired; at this point, a new plan is created on the repeated-CT. To simulate the OA workflow, nominal plans are created on the planning-CT and adapted at each fraction using a simple beamlet weight-tuning technique. Dose distributions are calculated on the CBCTs with Monte Carlo for both delivery methods. The total treatment dose is accumulated on the planning-CT. Results Daily OA improved target coverage compared to FOR despite using smaller target margins. In the high-risk CTV, the median D98 degradation was 1.1 % and 2.1 % for OA and FOR, respectively. In the low-risk CTV, the same metrics yield 1.3 % and 5.2 % for OA and FOR, respectively. Smaller setup margins of OA reduced the dose to all OARs, which was most relevant for the parotid glands. Conclusion Daily OA can maintain prescription doses and constraints over the course of fractionated treatment, even in cases of large anatomical changes, reducing the necessity for manual replanning in H&N IMPT.
Collapse
|
8
|
Zhao J, Wu X, Xing Y, Li Y, Chen Z. Technical note: A method to evaluate the effect of scanning beam delivery error on 3D dose and its utilization on carbon ion radiotherapy for prostate cancer. Med Phys 2023; 50:1228-1236. [PMID: 36416094 DOI: 10.1002/mp.16109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To establish a method for evaluating the effect of scanning ion beam delivery error on three-dimensional (3D) dose reconstructed on patients' CT based on log file. MATERIALS AND METHODS This study used the MATLAB program to reconstruct the 3D dose on the patient's CT based on the log file (Doselog ) for treatment delivery accuracy check. In addition, differences between the parameters in the log file and the treatment plan, such as the spot position, spot size, and particle number, were analyzed, as well as their effects on the dose distribution. The accuracy of the dose reconstruction algorithm was verified by comparing dose from TPS (DoseTPS ) and the dose recalculated based on the treatment plan (Doserec ). Twenty treatment plans of ten prostate cancer patients received carbon ion therapy, and their corresponding 160 log files were selected for analysis and treatment delivery accuracy check. The regions with dose higher than 10% of the maximum dose were selected and 2 mm/2% criteria were used for global gamma analysis. Multiple linear regression was used to evaluate the relation between dose deviation and delivery errors. RESULTS For the algorithm accuracy verification, the mean relative dose difference is 1.02% ± 0.12%. For prostate cancer patients treated in our facility using carbon ion radiotherapy, the average passing rate of the gamma analysis between the Doselog and the DoseTPS was 95.3%. The dose deviation caused by the difference in the spot position and the number of particles was smaller than that caused by the spot size deviation. CONCLUSION This study established a 3D dose verification method based on log files to evaluate the accuracy of daily delivered treatment doses. In our facility, the daily delivered dose accuracy of carbon ion therapy for prostate cancer was mainly affected by the spot size deviation in terms of the machine delivery part.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Clinical Research Center for Radiation Oncology, Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Xianwei Wu
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Ying Xing
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Yongqiang Li
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Zhi Chen
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
9
|
McNamara K, Schiavi A, Borys D, Brzezinski K, Gajewski J, Kopeć R, Rucinski A, Skóra T, Makkar S, Hrbacek J, Weber DC, Lomax AJ, Winterhalter C. GPU accelerated Monte Carlo scoring of positron emitting isotopes produced during proton therapy for PET verification. Phys Med Biol 2022; 67. [PMID: 36541512 DOI: 10.1088/1361-6560/aca515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022]
Abstract
Objective.Verification of delivered proton therapy treatments is essential for reaping the many benefits of the modality, with the most widely proposedin vivoverification technique being the imaging of positron emitting isotopes generated in the patient during treatment using positron emission tomography (PET). The purpose of this work is to reduce the computational resources and time required for simulation of patient activation during proton therapy using the GPU accelerated Monte Carlo code FRED, and to validate the predicted activity against the widely used Monte Carlo code GATE.Approach.We implement a continuous scoring approach for the production of positron emitting isotopes within FRED version 5.59.9. We simulate treatment plans delivered to 95 head and neck patients at Centrum Cyklotronowe Bronowice using this GPU implementation, and verify the accuracy using the Monte Carlo toolkit GATE version 9.0.Main results.We report an average reduction in computational time by a factor of 50 when using a local system with 2 GPUs as opposed to a large compute cluster utilising between 200 to 700 CPU threads, enabling simulation of patient activity within an average of 2.9 min as opposed to 146 min. All simulated plans are in good agreement across the two Monte Carlo codes. The two codes agree within a maximum of 0.95σon a voxel-by-voxel basis for the prediction of 7 different isotopes across 472 simulated fields delivered to 95 patients, with the average deviation over all fields being 6.4 × 10-3σ.Significance.The implementation of activation calculations in the GPU accelerated Monte Carlo code FRED provides fast and reliable simulation of patient activation following proton therapy, allowing for research and development of clinical applications of range verification for this treatment modality using PET to proceed at a rapid pace.
Collapse
Affiliation(s)
- Keegan McNamara
- Centre for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland.,Physics Department, ETH Zürich, Zürich, Switzerland
| | - Angelo Schiavi
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Rome, Italy
| | - Damian Borys
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland.,Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
| | - Karol Brzezinski
- Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
| | - Jan Gajewski
- Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
| | - Renata Kopeć
- Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
| | - Antoni Rucinski
- Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
| | - Tomasz Skóra
- Department of Radiotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, Kraków Branch, Kraków, Poland
| | - Shubhangi Makkar
- Centre for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland.,Physics Department, ETH Zürich, Zürich, Switzerland
| | - Jan Hrbacek
- Centre for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Damien C Weber
- Centre for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland.,Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Switzerland.,Department of Radiation Oncology, University Hospital of Zürich, Switzerland
| | - Antony J Lomax
- Centre for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland.,Physics Department, ETH Zürich, Zürich, Switzerland
| | - Carla Winterhalter
- Centre for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland.,Physics Department, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
10
|
Zhang G, Zhou L, Han Z, Zhao W, Peng H. SWFT-Net: a deep learning framework for efficient fine-tuning spot weights towards adaptive proton therapy. Phys Med Biol 2022; 67. [PMID: 36541496 DOI: 10.1088/1361-6560/aca517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022]
Abstract
Objective. One critical task for adaptive proton therapy is how to perform spot weight re-tuning and reoptimize plan, both of which are time-consuming and labor intensive. We proposed a deep learning framework (SWFT-Net) to speed up such a task, a starting point for us to move towards online adaptive proton therapy.Approach. For a H&N patient case, a reference intensity modulated proton therapy plan was generated. For data augmentation, spot weights were modified to generate three datasets (DS10, DS30, DS50), corresponding to different levels of weight adjustment. For each dataset, the samples were split into the training and testing groups at a ratio of 8:2 (6400 for training, 1706 for testing). To ease the difficulty of machine learning, the residuals of dose maps and spot weights (i.e. difference relative to a reference) were used as inputs and outputs, respectively. Quantitative analyses were performed in terms of normalized root mean square error (NRMSE) of spot weights, Gamma passing rate and dose difference within the PTV.Main results. The SWFT-Net is able to generate an adapted plan in less than a second with a NVIDIA GeForce RTX 3090 GPU. For the 1706 samples in the testing dataset, the NRMSE is 0.41% (DS10), 1.05% (DS30) and 2.04% (DS50), respectively. Cold/hot spots in the dose maps after adaptation are observed. The mean relative dose difference is 0.64% (DS10), 0.92% (DS30) and 0.88% (DS50), respectively. For all three datasets, the mean Gamma passing rate is consistently over 95% for both 1 mm/1% and 3 mm/3% settings.Significance. The proposed SWFT-Net is a promising tool to help realize adaptive proton therapy. It can be used as an alternative tool to other spot fine-tuning optimization algorithms, likely demonstrating superior performance in terms of speed, accuracy, robustness and minimum human interaction. This study lays down a foundation for us to move further incorporating other factors such as daily anatomical changes and propagated PTVs, and develop a truly online adaptive workflow in proton therapy.
Collapse
Affiliation(s)
- Guoliang Zhang
- Department of Medical Physics, School of Physics and Technology, Wuhan University, 430072, People's Republic of China
| | - Long Zhou
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020, People's Republic of China
| | - Zeng Han
- Department of Medical Physics, School of Physics and Technology, Wuhan University, 430072, People's Republic of China
| | - Wei Zhao
- School of Physics, Beihang University, Beijing, 100191, People's Republic of China
| | - Hao Peng
- Department of Medical Physics, School of Physics and Technology, Wuhan University, 430072, People's Republic of China.,Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States of America
| |
Collapse
|
11
|
Paganetti H, Botas P, Sharp GC, Winey B. Adaptive proton therapy. Phys Med Biol 2021; 66:10.1088/1361-6560/ac344f. [PMID: 34710858 PMCID: PMC8628198 DOI: 10.1088/1361-6560/ac344f] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/28/2021] [Indexed: 12/25/2022]
Abstract
Radiation therapy treatments are typically planned based on a single image set, assuming that the patient's anatomy and its position relative to the delivery system remains constant during the course of treatment. Similarly, the prescription dose assumes constant biological dose-response over the treatment course. However, variations can and do occur on multiple time scales. For treatment sites with significant intra-fractional motion, geometric changes happen over seconds or minutes, while biological considerations change over days or weeks. At an intermediate timescale, geometric changes occur between daily treatment fractions. Adaptive radiation therapy is applied to consider changes in patient anatomy during the course of fractionated treatment delivery. While traditionally adaptation has been done off-line with replanning based on new CT images, online treatment adaptation based on on-board imaging has gained momentum in recent years due to advanced imaging techniques combined with treatment delivery systems. Adaptation is particularly important in proton therapy where small changes in patient anatomy can lead to significant dose perturbations due to the dose conformality and finite range of proton beams. This review summarizes the current state-of-the-art of on-line adaptive proton therapy and identifies areas requiring further research.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Pablo Botas
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Foundation 29 of February, Pozuelo de Alarcón, Madrid, Spain
| | - Gregory C Sharp
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brian Winey
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
12
|
Nenoff L, Matter M, Charmillot M, Krier S, Uher K, Weber DC, Lomax AJ, Albertini F. Experimental validation of daily adaptive proton therapy. Phys Med Biol 2021; 66. [PMID: 34587589 DOI: 10.1088/1361-6560/ac2b84] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/29/2021] [Indexed: 11/12/2022]
Abstract
Anatomical changes during proton therapy require rapid treatment plan adaption to mitigate the associated dosimetric impact. This in turn requires a highly efficient workflow that minimizes the time between imaging and delivery. At the Paul Scherrer Institute, we have developed an online adaptive workflow, which is specifically designed for treatments in the skull-base/cranium, with the focus set on simplicity and minimizing changes to the conventional workflow. The dosimetric and timing performance of this daily adaptive proton therapy (DAPT) workflow has been experimentally investigated using an in-house developed DAPT software and specifically developed anthropomorphic phantom. After a standard treatment preparation, which includes the generation of a template plan, the treatment can then be adapted each day, based on daily imaging acquired on an in-room CT. The template structures are then rigidly propagated to this CT and the daily plan is fully re-optimized using the same field arrangement, DVH constraints and optimization settings of the template plan. After a dedicated plan QA, the daily plan is delivered. To minimize the time between imaging and delivery, clinically integrated software for efficient execution of all online adaption steps, as well as tools for comprehensive and automated QA checks, have been developed. Film measurements of an end-to-end validation of a multi-fraction DAPT treatment showed high agreement to the calculated doses. Gamma pass rates with a 3%/3 mm criteria were >92% when comparing the measured dose to the template plan. Additionally, a gamma pass rate >99% was found comparing measurements to the Monte Carlo dose of the daily plans reconstructed from the logfile, accumulated over the delivered fractions. With this, we experimentally demonstrate that the described adaptive workflow can be delivered accurately in a timescale similar to a standard delivery.
Collapse
Affiliation(s)
- Lena Nenoff
- Paul Scherrer Institute, Center for Proton Therapy, Switzerland.,Department of Physics, ETH Zurich, Switzerland
| | - Michael Matter
- Paul Scherrer Institute, Center for Proton Therapy, Switzerland.,Department of Physics, ETH Zurich, Switzerland
| | | | - Serge Krier
- Department of Physics, ETH Zurich, Switzerland
| | - Klara Uher
- Department of Physics, ETH Zurich, Switzerland
| | - Damien Charles Weber
- Paul Scherrer Institute, Center for Proton Therapy, Switzerland.,Department of Radiation Oncology, University Hospital Zurich, Switzerland.,Department of Radiation Oncology, University Hospital Bern, Switzerland
| | - Antony John Lomax
- Paul Scherrer Institute, Center for Proton Therapy, Switzerland.,Department of Physics, ETH Zurich, Switzerland
| | | |
Collapse
|
13
|
Lalonde A, Bobić M, Winey B, Verburg J, Sharp GC, Paganetti H. Anatomic changes in head and neck intensity-modulated proton therapy: Comparison between robust optimization and online adaptation. Radiother Oncol 2021; 159:39-47. [PMID: 33741469 PMCID: PMC8205952 DOI: 10.1016/j.radonc.2021.03.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND/PURPOSE Setup variations and anatomical changes can severely affect the quality of head and neck intensity-modulated proton therapy (IMPT) treatments. The impact of these changes can be alleviated by increasing the plan's robustness a priori, or by adapting the plan online. This work compares these approaches in the context of head and neck IMPT. MATERIALS/METHODS A representative cohort of 10 head and neck squamous cell carcinoma (HNSCC) patients with daily cone-beam computed tomography (CBCT) was evaluated. For each patient, three IMPT plans were created: 1- a classical robust optimization (cRO) plan optimized on the planning CT, 2- an anatomical robust optimization (aRO) plan additionally including the two first daily CBCTs and 3- a plan optimized without robustness constraints, but online-adapted (OA) daily, using a constrained spot intensity re-optimization technique only. RESULTS The cumulative dose following OA fulfilled the clinical objective of both the high-risk and low-risk clinical target volumes (CTV) coverage in all 10 patients, compared to 8 for aRO and 4 for cRO. aRO did not significantly increase the dose to most organs at risk compared to cRO, although the integral dose was higher. OA significantly reduced the integral dose to healthy tissues compared to both robust methods, while providing equivalent or superior target coverage. CONCLUSION Using a simple spot intensity re-optimization, daily OA can achieve superior target coverage and lower dose to organs at risk than robust optimization methods.
Collapse
Affiliation(s)
- Arthur Lalonde
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, USA.
| | - Mislav Bobić
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, USA; ETH Zürich, Zürich, Switzerland
| | - Brian Winey
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, USA
| | - Joost Verburg
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, USA
| | - Gregory C Sharp
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, USA
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, USA
| |
Collapse
|
14
|
Nenoff L, Matter M, Amaya EJ, Josipovic M, Knopf AC, Lomax AJ, Persson GF, Ribeiro CO, Visser S, Walser M, Weber DC, Zhang Y, Albertini F. Dosimetric influence of deformable image registration uncertainties on propagated structures for online daily adaptive proton therapy of lung cancer patients. Radiother Oncol 2021; 159:136-143. [PMID: 33771576 DOI: 10.1016/j.radonc.2021.03.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE A major burden of introducing an online daily adaptive proton therapy (DAPT) workflow is the time and resources needed to correct the daily propagated contours. In this study, we evaluated the dosimetric impact of neglecting the online correction of the propagated contours in a DAPT workflow. MATERIAL AND METHODS For five NSCLC patients with nine repeated deep-inspiration breath-hold CTs, proton therapy plans were optimised on the planning CT to deliver 60 Gy-RBE in 30 fractions. All repeated CTs were registered with six different clinically used deformable image registration (DIR) algorithms to the corresponding planning CT. Structures were propagated rigidly and with each DIR algorithm and reference structures were contoured on each repeated CT. DAPT plans were optimised with the uncorrected, propagated structures (propagated DAPT doses) and on the reference structures (ideal DAPT doses), non-adapted doses were recalculated on all repeated CTs. RESULTS Due to anatomical changes occurring during the therapy, the clinical target volume (CTV) coverage of the non-adapted doses reduces on average by 9.7% (V95) compared to an ideal DAPT doses. For the propagated DAPT doses, the CTV coverage was always restored (average differences in the CTV V95 < 1% compared to the ideal DAPT doses). Hotspots were always reduced with any DAPT approach. CONCLUSION For the patients presented here, a benefit of online DAPT was shown, even if the daily optimisation is based on propagated structures with some residual uncertainties. However, a careful (offline) structure review is necessary and corrections can be included in an offline adaption.
Collapse
Affiliation(s)
- Lena Nenoff
- Paul Scherrer Institute, Center for Proton Therapy, Switzerland; Department of Physics, ETH Zurich, Switzerland.
| | - Michael Matter
- Paul Scherrer Institute, Center for Proton Therapy, Switzerland; Department of Physics, ETH Zurich, Switzerland
| | | | - Mirjana Josipovic
- Department of Oncology, Rigshospitalet Copenhagen University Hospital, Denmark
| | - Antje-Christin Knopf
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Antony John Lomax
- Paul Scherrer Institute, Center for Proton Therapy, Switzerland; Department of Physics, ETH Zurich, Switzerland
| | - Gitte F Persson
- Department of Oncology, Rigshospitalet Copenhagen University Hospital, Denmark; Department of Oncology, Herlev-Gentofte Hospital Copenhagen University Hospital, Denmark; Department of Clinical Medicine, Faculty of Medical Sciences, University of Copenhagen, Denmark
| | - Cássia O Ribeiro
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Sabine Visser
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Marc Walser
- Paul Scherrer Institute, Center for Proton Therapy, Switzerland
| | - Damien Charles Weber
- Paul Scherrer Institute, Center for Proton Therapy, Switzerland; Department of Radiation Oncology, University Hospital Zurich, Switzerland; Department of Radiation Oncology, University Hospital Bern, Switzerland
| | - Ye Zhang
- Paul Scherrer Institute, Center for Proton Therapy, Switzerland
| | | |
Collapse
|
15
|
Liu C, Ho MW, Park J, Hsi WC, Liang X, Li Z, Song Y, Feng H, Zhang Y. Fast MCsquare-Based Independent Dose Verification Platform for Pencil Beam Scanning Proton Therapy. Technol Cancer Res Treat 2021; 20:15330338211033076. [PMID: 34338058 PMCID: PMC8326813 DOI: 10.1177/15330338211033076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 05/17/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022] Open
Abstract
PURPOSE To commission MCsquare (a multi-cores CPU-based dose calculation engine) for pencil beam scanning (PBS) proton therapy, integrate it into RayStation treatment plan system (TPS) to create a dedicated platform for fast independent dose verification. METHOD A MCsquare-based independent dose verification platform (MC2InRS) was developed to realize automatic dose re-calculation for clinical use, including data preparation, dose calculation, 2D/3D gamma analysis. MCsquare was commissioned based on in-air lateral dose profiles, integrated depth dose, and the absolute dose of different beam energies for Proteus®ONE. MC2InRS was validated with measurement data using various targets and depths in a water phantom. This study also investigated 15 clinical cases to demonstrate the feasibility and effectiveness of MC2InRS platform in clinic practice. RESULTS Between simulation and measurement, the distal range differences at 80% (R80) and 20% (R20) dose levels for each energy were below 0.05 mm, and 0.1 mm, respectively, and the absolute dose differences were below 0.5%. 29 out of 36 QA planes reached a 100% gamma passing rate (GPR) for 2%/2mm criteria, and a minimum of 98.3% gamma was obtained in water phantom between simulation and measurement. For the 15 clinical cases investigated, the average 2D GPR (2%/2mm) was 95.4%, 99.3% for MCsquare vs. measurement, MCsquare vs. TPS, respectively. The average 3D GPR (2%/2mm) was 98.9%, 95.3% for MCsquare vs. TPS in water, and computed tomography (CT), respectively. CONCLUSION MC2InRS, a fast, independent dose verification platform, has been developed to perform dose verification with high accuracy and efficiency for Pencil Bream Scanning (PBS). Its potential to be applied in routine clinical practice has also been discussed.
Collapse
Affiliation(s)
- Chunbo Liu
- School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui, China
- University of Florida Health Proton Therapy Institute, Jacksonville, FL, USA
| | - Meng Wei Ho
- University of Florida Health Proton Therapy Institute, Jacksonville, FL, USA
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA
| | - Jiyeon Park
- University of Florida Health Proton Therapy Institute, Jacksonville, FL, USA
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA
| | - Wen Chien Hsi
- University of Florida Health Proton Therapy Institute, Jacksonville, FL, USA
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA
| | - Xiaoying Liang
- University of Florida Health Proton Therapy Institute, Jacksonville, FL, USA
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA
| | - Zuofeng Li
- University of Florida Health Proton Therapy Institute, Jacksonville, FL, USA
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA
| | - Yuntao Song
- School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui, China
- Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Hansheng Feng
- Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Yawei Zhang
- University of Florida Health Proton Therapy Institute, Jacksonville, FL, USA
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
16
|
Jagt TZ, Breedveld S, van Haveren R, Heijmen BJM, Hoogeman MS. Online-adaptive versus robust IMPT for prostate cancer: How much can we gain? Radiother Oncol 2020; 151:228-233. [PMID: 32777242 DOI: 10.1016/j.radonc.2020.07.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/24/2020] [Accepted: 07/23/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND/PURPOSE Intensity-modulated proton therapy (IMPT) is highly sensitive to anatomical variations which can cause inadequate target coverage during treatment. Available mitigation techniques include robust treatment planning and online-adaptive IMPT. This study compares a robust planning strategy to two online-adaptive IMPT strategies to determine the benefit of online adaptation. MATERIALS/METHODS We derived the robustness settings and safety margins needed to yield adequate target coverage (V95%≥98%) for >90% of 11 patients in a prostate cancer cohort (88 repeat CTs). For each patient, we also adapted a non-robust prior plan using a simple restoration and a full adaptation method. The restoration uses energy-adaptation followed by a fast spot-intensity re-optimization. The full adaptation uses energy-adaptation followed by the addition of new spots and a range-robust spot-intensity optimization. Dose was prescribed as 55 Gy(RBE) to the low-dose target (lymph nodes and seminal vesicles) with a boost to 74 Gy(RBE) to the high-dose target (prostate). Daily patient set-up was simulated using implanted intra-prostatic markers. RESULTS Margins of 4 and 8 mm around the high- and low-dose target regions, a 6 mm setup error and a 3% range error were found to obtain adequate target coverage for all repeat CTs of 10/11 patients (94.3% of all 88 repeat CTs). Both online-adaptive strategies yielded V95%≥98% and better OAR sparing in 11/11 patients. Median OAR improvements up to 11%-point and 16%-point were observed when moving from robust planning to respectively restoration and full adaption. CONCLUSION Both full plan adaptation and simple dose restoration can increase OAR sparing besides better conforming to the target criteria compared to robust treatment planning.
Collapse
Affiliation(s)
- Thyrza Z Jagt
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Sebastiaan Breedveld
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Rens van Haveren
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Ben J M Heijmen
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Mischa S Hoogeman
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands; Department of Medical Physics & Informatics, HollandPTC, Delft, The Netherlands.
| |
Collapse
|
17
|
Nenoff L, Matter M, Jarhall AG, Winterhalter C, Gorgisyan J, Josipovic M, Persson GF, Munck af Rosenschold P, Weber DC, Lomax AJ, Albertini F. Daily Adaptive Proton Therapy: Is it Appropriate to Use Analytical Dose Calculations for Plan Adaption? Int J Radiat Oncol Biol Phys 2020; 107:747-755. [DOI: 10.1016/j.ijrobp.2020.03.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/26/2020] [Accepted: 03/27/2020] [Indexed: 12/25/2022]
|
18
|
Albertini F, Matter M, Nenoff L, Zhang Y, Lomax A. Online daily adaptive proton therapy. Br J Radiol 2020; 93:20190594. [PMID: 31647313 PMCID: PMC7066958 DOI: 10.1259/bjr.20190594] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/15/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022] Open
Abstract
It is recognized that the use of a single plan calculated on an image acquired some time before the treatment is generally insufficient to accurately represent the daily dose to the target and to the organs at risk. This is particularly true for protons, due to the physical finite range. Although this characteristic enables the generation of steep dose gradients, which is essential for highly conformal radiotherapy, it also tightens the dependency of the delivered dose to the range accuracy. In particular, the use of an outdated patient anatomy is one of the most significant sources of range inaccuracy, thus affecting the quality of the planned dose distribution. A plan should be ideally adapted as soon as anatomical variations occur, ideally online. In this review, we describe in detail the different steps of the adaptive workflow and discuss the challenges and corresponding state-of-the art developments in particular for an online adaptive strategy.
Collapse
Affiliation(s)
| | | | | | - Ye Zhang
- Paul Scherrer Institute, Center for Proton Therapy, Switzerland
| | | |
Collapse
|