1
|
Baran J, Krzemien W, Parzych S, Raczyński L, Bała M, Coussat A, Chug N, Czerwiński E, Curceanu CO, Dadgar M, Dulski K, Eliyan K, Gajewski J, Gajos A, Hiesmayr BC, Kacprzak K, Kapłon Ł, Klimaszewski K, Korcyl G, Kozik T, Kumar D, Niedźwiecki S, Panek D, Perez Del Rio E, Ruciński A, Sharma S, Shivani, Shopa RY, Skurzok M, Stępień E, Tayefiardebili F, Tayefiardebili K, Wiślicki W, Moskal P. Realistic total-body J-PET geometry optimization: Monte Carlo study. Med Phys 2025. [PMID: 39853786 DOI: 10.1002/mp.17627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/26/2024] [Accepted: 12/28/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Total-body (TB) Positron Emission Tomography (PET) is one of the most promising medical diagnostics modalities, opening new perspectives for personalized medicine, low-dose imaging, multi-organ dynamic imaging or kinetic modeling. The high sensitivity provided by total-body technology can be advantageous for novel tomography methods like positronium imaging, demanding the registration of triple coincidences. Currently, state-of-the-art PET scanners use inorganic scintillators. However, the high acquisition cost reduces the accessibility of TB PET technology. Several efforts are ongoing to mitigate this problem. Among the alternatives, the Jagiellonian PET (J-PET) technology, based on axially arranged plastic scintillator strips, offers a low-cost alternative solution for TB PET. PURPOSE The work aimed to compare five total-body J-PET geometries with plastic scintillators suitable for multi-organ and positronium tomography as a possible next-generation J-PET scanner design. METHODS We present comparative studies of performance characteristics of the cost-effective total-body PET scanners using J-PET technology. We investigated in silico five TB scanner geometries, varying the number of rings, scanner radii, and other parameters. Monte Carlo simulations of the anthropomorphic XCAT phantom, the extended 2-m sensitivity line source and positronium sensitivity phantoms were used to assess the performance of the geometries. Two hot spheres were placed in the lungs and in the liver of the XCAT phantom to mimic the pathological changes. We compared the sensitivity profiles and performed quantitative analysis of the reconstructed images by using quality metrics such as contrast recovery coefficient, background variability and root mean squared error. The studies are complemented by the determination of sensitivity for the positronium lifetime tomography and the relative cost analysis of the studied setups. RESULTS The analysis of the reconstructed XCAT images reveals the superiority of the seven-ring scanners over the three-ring setups. However, the three-ring scanners would be approximately 2-3 times cheaper. The peak sensitivity values for two-gamma vary from 20 to 34 cps/kBq and are dominated by the differences in geometrical acceptance of the scanners. The sensitivity curves for the positronium tomography have a similar shape to the two-gamma sensitivity profiles. The peak values are lower compared to the two-gamma cases, from about 20-28 times, with a maximum value of 1.66 cps/kBq. This can be contrasted with the 50-cm one-layer J-PET modular scanner used to perform the first in-vivo positronium imaging with a sensitivity of 0.06 cps/kBq. CONCLUSIONS The results show the feasibility of multi-organ imaging of all the systems to be considered for the next generation of TB J-PET designs. Among the scanner parameters, the most important ones are related to the axial field-of-view coverage. The two-gamma sensitivity and XCAT image reconstruction analyzes show the advantage of seven-ring scanners. However, the cost of the scintillator materials and SiPMs is more than two times higher for the longer modalities compared to the three-ring solutions. Nevertheless, the relative cost for all the scanners is about 10-4 times lower compared to the cost of the uExplorer. These properties coupled together with J-PET cost-effectiveness and triggerless acquisition mode enabling three-gamma positronium imaging, make the J-PET technology an attractive solution for broad application in clinics.
Collapse
Affiliation(s)
- Jakub Baran
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Wojciech Krzemien
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
- High Energy Physics Division, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Szymon Parzych
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Lech Raczyński
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Mateusz Bała
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Aurélien Coussat
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Neha Chug
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Eryk Czerwiński
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | | | - Meysam Dadgar
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Kamil Dulski
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Kavya Eliyan
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Jan Gajewski
- Cyclotron Centre Bronowice, Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
| | - Aleksander Gajos
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | | | - Krzysztof Kacprzak
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Łukasz Kapłon
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Konrad Klimaszewski
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Grzegorz Korcyl
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Tomasz Kozik
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Deepak Kumar
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Szymon Niedźwiecki
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Dominik Panek
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Elena Perez Del Rio
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Antoni Ruciński
- Cyclotron Centre Bronowice, Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
| | - Sushil Sharma
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Shivani
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Roman Y Shopa
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Magdalena Skurzok
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Ewa Stępień
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Faranak Tayefiardebili
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Keyvan Tayefiardebili
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Wojciech Wiślicki
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Paweł Moskal
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| |
Collapse
|
2
|
Rathod N, Jutidamrongphan W, Bosbach WA, Chen Y, Penner JL, Sari H, Zeimpekis K, Montes AL, Moskal P, Stepien E, Shi K, Rominger A, Seifert R. Total Body PET/CT: Clinical Value and Future Aspects of Quantification in Static and Dynamic Imaging. Semin Nucl Med 2025; 55:98-106. [PMID: 39616013 DOI: 10.1053/j.semnuclmed.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/15/2024]
Abstract
Total body (TB) Positron Emission Tomography (PET) / Computed Tomography (CT) scanners have revolutionized nuclear medicine by enabling whole-body imaging in a single bed position.1 This review assesses the physical and clinical value of TB-PET/CT, with a focus on the advancements in both static and dynamic imaging, as well as the evolving quantification techniques. The significantly enhanced sensitivity of TB scanners can reduce radiation exposure and scan time, offering improved patient comfort and making it particularly useful for pediatric imaging and various other scenarios. Shorter scan times also decrease motion artifacts, leading to higher-quality images and better diagnostic accuracy. Dynamic PET imaging with TB scanners extends these advantages by capturing temporal changes in tracer uptake over time, providing real-time insights into both structural and functional assessment, and promoting the ability to monitor disease progression and treatment response. We also present CT-free attenuation correction methods that utilize the increased sensitivity of TB-PET as a potential improvement for dynamic TB-PET protocols. In static imaging, emerging quantification techniques such as dual-tracer PET using TB scanners allow imaging of two biological pathways, simultaneously, for a more comprehensive assessment of disease. In addition, positronium imaging, a novel technique utilizing positronium lifetime measurements, is introduced as a promising aspect for providing structural information alongside functional quantification. Finally, the potential of expanding clinical applications with the increased sensitivity of TB-PET/CT scanners is discussed.
Collapse
Affiliation(s)
- Narendra Rathod
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| | - Warissara Jutidamrongphan
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Wolfram Andreas Bosbach
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Yizhou Chen
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Jan Luca Penner
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Hasan Sari
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Konstantinos Zeimpekis
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Alejandro López Montes
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Pawel Moskal
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland and Centre for Theranostics, Jagiellonian University, Krakow, Poland
| | - Ewa Stepien
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland and Centre for Theranostics, Jagiellonian University, Krakow, Poland
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Robert Seifert
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| |
Collapse
|
3
|
Moskal P, Baran J, Bass S, Choiński J, Chug N, Curceanu C, Czerwiński E, Dadgar M, Das M, Dulski K, Eliyan KV, Fronczewska K, Gajos A, Kacprzak K, Kajetanowicz M, Kaplanoglu T, Kapłon Ł, Klimaszewski K, Kobylecka M, Korcyl G, Kozik T, Krzemień W, Kubat K, Kumar D, Kunikowska J, Mączewska J, Migdał W, Moskal G, Mryka W, Niedźwiecki S, Parzych S, Del Rio EP, Raczyński L, Sharma S, Shivani S, Shopa RY, Silarski M, Skurzok M, Tayefi F, Ardebili KT, Tanty P, Wiślicki W, Królicki L, Stępień EŁ. Positronium image of the human brain in vivo. SCIENCE ADVANCES 2024; 10:eadp2840. [PMID: 39270027 PMCID: PMC11397496 DOI: 10.1126/sciadv.adp2840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024]
Abstract
Positronium is abundantly produced within the molecular voids of a patient's body during positron emission tomography (PET). Its properties dynamically respond to the submolecular architecture of the tissue and the partial pressure of oxygen. Current PET systems record only two annihilation photons and cannot provide information about the positronium lifetime. This study presents the in vivo images of positronium lifetime in a human, for a patient with a glioblastoma brain tumor, by using the dedicated Jagiellonian PET system enabling simultaneous detection of annihilation photons and prompt gamma emitted by a radionuclide. The prompt gamma provides information on the time of positronium formation. The photons from positronium annihilation are used to reconstruct the place and time of its decay. In the presented case study, the determined positron and positronium lifetimes in glioblastoma cells are shorter than those in salivary glands and those in healthy brain tissues, indicating that positronium imaging could be used to diagnose disease in vivo.
Collapse
Affiliation(s)
- Paweł Moskal
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Jakub Baran
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Steven Bass
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
- Kitzbühel Centre for Physics, Kitzbühel, Austria
| | | | - Neha Chug
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Catalina Curceanu
- INFN, Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati, Italy
| | - Eryk Czerwiński
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Meysam Dadgar
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Manish Das
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Kamil Dulski
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Kavya V Eliyan
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Katarzyna Fronczewska
- Department of Nuclear Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Aleksander Gajos
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Krzysztof Kacprzak
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Marcin Kajetanowicz
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Tevfik Kaplanoglu
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Łukasz Kapłon
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Konrad Klimaszewski
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - Małgorzata Kobylecka
- Department of Nuclear Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Grzegorz Korcyl
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Tomasz Kozik
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Wojciech Krzemień
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
- High Energy Department, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - Karol Kubat
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Deepak Kumar
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Jolanta Kunikowska
- Department of Nuclear Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Joanna Mączewska
- Department of Nuclear Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Wojciech Migdał
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Gabriel Moskal
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
- Department of Chemical Technology, Faculty of Chemistry of the Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Wiktor Mryka
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Szymon Niedźwiecki
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Szymon Parzych
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Elena P Del Rio
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Lech Raczyński
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - Sushil Sharma
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Shivani Shivani
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Roman Y Shopa
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - Michał Silarski
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Magdalena Skurzok
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Faranak Tayefi
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Keyvan T Ardebili
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Pooja Tanty
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Wojciech Wiślicki
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - Leszek Królicki
- Department of Nuclear Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Ewa Ł Stępień
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| |
Collapse
|
4
|
Steinberger WM, Mercolli L, Breuer J, Sari H, Parzych S, Niedzwiecki S, Lapkiewicz G, Moskal P, Stepien E, Rominger A, Shi K, Conti M. Positronium lifetime validation measurements using a long-axial field-of-view positron emission tomography scanner. EJNMMI Phys 2024; 11:76. [PMID: 39210079 PMCID: PMC11362402 DOI: 10.1186/s40658-024-00678-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Positron emission tomography (PET) traditionally uses coincident annihilation photons emitted from a positron interacting with an electron to localize cancer within the body. The formation of positronium (Ps), a bonded electron-positron pair, has not been utilized in clinical applications of PET due to the need to detect either the emission of a prompt gamma ray or the decay of higher-order coincident events. Assessment of the lifetime of the formed Ps, however, can potentially yield additional diagnostic information of the surrounding tissue because Ps properties vary due to void size and molecular composition. To assess the feasibility of measuring Ps lifetimes with a PET scanner, experiments were performed in a Biograph Vision Quadra (Siemens Healthineers). Quadra is a long-axial field-of-view (LA-FOV) PET scanner capable of producing list-mode data from single interaction events. RESULTS Ortho-Ps (o-Ps) lifetimes were measured for quartz-glass and polycarbonate samples using a22 Na positron source. Results produced o-Ps lifetimes of 1.538 ± 0.036 ns for the quartz glass and 1.927 ± 0.042 ns for the polycarbonate. Both o-Ps lifetimes were determined using a double-exponential fit to the time-difference distribution between the emission of a prompt gamma ray and the annihilation of the correlated positron. The measured values match within a single standard deviation of previously published results. The quartz-glass samples were additional measured with82 Rb ,68 Ga and124 I to validate the lifetime using clinically available sources. A double-exponential fit was initially chosen as a similar methodology to previously published works, however, an exponentially-modified Gaussian distribution fit to each lifetime more-accurately models the data. A Bayesian method was used to estimate the variables of the fit and o-Ps lifetime results are reported using this methodology for the three clinical isotopes: 1.59 ± 0.03 ns for82 Rb , 1.58 ± 0.07 ns for68 Ga and 1.62 ± 0.01 ns for124 I . The impact of scatter and attenuation on the o-Ps lifetime was also assessed by analyzing a water-filled uniform cylinder (20 ϕ × 30 cm3 ) with an added82 Rb solution. Lifetimes were extracted for various regions of the cylinder and while there is a shape difference in the lifetime due to scatter, the extracted o-Ps lifetime of the water, 1.815 ± 0.013 ns, agrees with previously published results. CONCLUSION Overall, the methodology presented in this manuscript demonstrates the repeatability of Ps lifetime measurements with clinically available isotopes in a commercially-available LA-FOV PET scanner. This validation work lays the foundation for future in-vivo patient scans with Quadra.
Collapse
Affiliation(s)
| | - Lorenzo Mercolli
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Hasan Sari
- Siemens Healthineers International AG, Zurich, Switzerland
| | - Szymon Parzych
- Center for Theranostics, Institute of Physics, Jagiellonian University, ul. Lojasiewicza 11, 30-348, Krakow, Poland
| | - Szymon Niedzwiecki
- Center for Theranostics, Institute of Physics, Jagiellonian University, ul. Lojasiewicza 11, 30-348, Krakow, Poland
| | - Gabriela Lapkiewicz
- Center for Theranostics, Institute of Physics, Jagiellonian University, ul. Lojasiewicza 11, 30-348, Krakow, Poland
| | - Pawel Moskal
- Center for Theranostics, Institute of Physics, Jagiellonian University, ul. Lojasiewicza 11, 30-348, Krakow, Poland
| | - Ewa Stepien
- Center for Theranostics, Institute of Physics, Jagiellonian University, ul. Lojasiewicza 11, 30-348, Krakow, Poland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Maurizio Conti
- Siemens Medical Solutions USA, Inc., Knoxville, TN, 37932, USA
| |
Collapse
|
5
|
Huang B, Li T, Arino-Estrada G, Dulski K, Shopa RY, Moskal P, Stepien E, Qi J. SPLIT: Statistical Positronium Lifetime Image Reconstruction via Time-Thresholding. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:2148-2158. [PMID: 38261489 PMCID: PMC11409919 DOI: 10.1109/tmi.2024.3357659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Positron emission tomography (PET) is a widely utilized medical imaging modality that uses positron-emitting radiotracers to visualize biochemical processes in a living body. The spatiotemporal distribution of a radiotracer is estimated by detecting the coincidence photon pairs generated through positron annihilations. In human tissue, about 40% of the positrons form positroniums prior to the annihilation. The lifetime of these positroniums is influenced by the microenvironment in the tissue and could provide valuable information for better understanding of disease progression and treatment response. Currently, there are few methods available for reconstructing high-resolution lifetime images in practical applications. This paper presents an efficient statistical image reconstruction method for positronium lifetime imaging (PLI). We also analyze the random triple-coincidence events in PLI and propose a correction method for random events, which is essential for real applications. Both simulation and experimental studies demonstrate that the proposed method can produce lifetime images with high numerical accuracy, low variance, and resolution comparable to that of the activity images generated by a PET scanner with currently available time-of-flight resolution.
Collapse
|
6
|
Baran J, Borys D, Brzeziński K, Gajewski J, Silarski M, Chug N, Coussat A, Czerwiński E, Dadgar M, Dulski K, Eliyan KV, Gajos A, Kacprzak K, Kapłon Ł, Klimaszewski K, Konieczka P, Kopeć R, Korcyl G, Kozik T, Krzemień W, Kumar D, Lomax AJ, McNamara K, Niedźwiecki S, Olko P, Panek D, Parzych S, Perez Del Rio E, Raczyński L, Simbarashe M, Sharma S, Shivani, Shopa RY, Skóra T, Skurzok M, Stasica P, Stępień EŁ, Tayefi K, Tayefi F, Weber DC, Winterhalter C, Wiślicki W, Moskal P, Ruciński A. Feasibility of the J-PET to monitor the range of therapeutic proton beams. Phys Med 2024; 118:103301. [PMID: 38290179 DOI: 10.1016/j.ejmp.2024.103301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
PURPOSE The aim of this work is to investigate the feasibility of the Jagiellonian Positron Emission Tomography (J-PET) scanner for intra-treatment proton beam range monitoring. METHODS The Monte Carlo simulation studies with GATE and PET image reconstruction with CASToR were performed in order to compare six J-PET scanner geometries. We simulated proton irradiation of a PMMA phantom with a Single Pencil Beam (SPB) and Spread-Out Bragg Peak (SOBP) of various ranges. The sensitivity and precision of each scanner were calculated, and considering the setup's cost-effectiveness, we indicated potentially optimal geometries for the J-PET scanner prototype dedicated to the proton beam range assessment. RESULTS The investigations indicate that the double-layer cylindrical and triple-layer double-head configurations are the most promising for clinical application. We found that the scanner sensitivity is of the order of 10-5 coincidences per primary proton, while the precision of the range assessment for both SPB and SOBP irradiation plans was found below 1 mm. Among the scanners with the same number of detector modules, the best results are found for the triple-layer dual-head geometry. The results indicate that the double-layer cylindrical and triple-layer double-head configurations are the most promising for the clinical application, CONCLUSIONS:: We performed simulation studies demonstrating that the feasibility of the J-PET detector for PET-based proton beam therapy range monitoring is possible with reasonable sensitivity and precision enabling its pre-clinical tests in the clinical proton therapy environment. Considering the sensitivity, precision and cost-effectiveness, the double-layer cylindrical and triple-layer dual-head J-PET geometry configurations seem promising for future clinical application.
Collapse
Affiliation(s)
- Jakub Baran
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland.
| | - Damian Borys
- Silesian University of Technology, Department of Systems Biology and Engineering, Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Gliwice, Poland; Institute of Nuclear Physics Polish Academy of Sciences, 31-342, Kraków, Poland
| | - Karol Brzeziński
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342, Kraków, Poland; Instituto de Física Corpuscular (IFIC), CSIC-UV, Valencia, Spain
| | - Jan Gajewski
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342, Kraków, Poland
| | - Michał Silarski
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Neha Chug
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Aurélien Coussat
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Eryk Czerwiński
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Meysam Dadgar
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Kamil Dulski
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Kavya V Eliyan
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Aleksander Gajos
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Krzysztof Kacprzak
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Łukasz Kapłon
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Konrad Klimaszewski
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Paweł Konieczka
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Renata Kopeć
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342, Kraków, Poland
| | - Grzegorz Korcyl
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Tomasz Kozik
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Wojciech Krzemień
- High Energy Physics Division, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Deepak Kumar
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Antony J Lomax
- Centre for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland; Physics Department, ETH Zürich, Zürich, Switzerland
| | - Keegan McNamara
- Centre for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland; Physics Department, ETH Zürich, Zürich, Switzerland
| | - Szymon Niedźwiecki
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Paweł Olko
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342, Kraków, Poland
| | - Dominik Panek
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Szymon Parzych
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Elena Perez Del Rio
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Lech Raczyński
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Moyo Simbarashe
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Sushil Sharma
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Shivani
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Roman Y Shopa
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Tomasz Skóra
- National Oncology Institute, National Research Institute, Krakow Branch, Krakow, Poland
| | - Magdalena Skurzok
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Paulina Stasica
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342, Kraków, Poland
| | - Ewa Ł Stępień
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Keyvan Tayefi
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Faranak Tayefi
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Damien C Weber
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Radiation Oncology, University Hospital of Zürich, Zürich Switzerland; Centre for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Carla Winterhalter
- Centre for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland; Physics Department, ETH Zürich, Zürich, Switzerland
| | - Wojciech Wiślicki
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Paweł Moskal
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Antoni Ruciński
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342, Kraków, Poland
| |
Collapse
|
7
|
Moskal P, Czerwiński E, Raj J, Bass SD, Beyene EY, Chug N, Coussat A, Curceanu C, Dadgar M, Das M, Dulski K, Gajos A, Gorgol M, Hiesmayr BC, Jasińska B, Kacprzak K, Kaplanoglu T, Kapłon Ł, Klimaszewski K, Konieczka P, Korcyl G, Kozik T, Krzemień W, Kumar D, Moyo S, Mryka W, Niedźwiecki S, Parzych S, Del Río EP, Raczyński L, Sharma S, Choudhary S, Shopa RY, Silarski M, Skurzok M, Stępień EŁ, Tanty P, Ardebili FT, Ardebili KT, Eliyan KV, Wiślicki W. Discrete symmetries tested at 10 -4 precision using linear polarization of photons from positronium annihilations. Nat Commun 2024; 15:78. [PMID: 38167270 PMCID: PMC10761870 DOI: 10.1038/s41467-023-44340-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Discrete symmetries play an important role in particle physics with violation of CP connected to the matter-antimatter imbalance in the Universe. We report the most precise test of P, T and CP invariance in decays of ortho-positronium, performed with methodology involving polarization of photons from these decays. Positronium, the simplest bound state of an electron and positron, is of recent interest with discrepancies reported between measured hyperfine energy structure and theory at the level of 10-4 signaling a need for better understanding of the positronium system at this level. We test discrete symmetries using photon polarizations determined via Compton scattering in the dedicated J-PET tomograph on an event-by-event basis and without the need to control the spin of the positronium with an external magnetic field, in contrast to previous experiments. Our result is consistent with QED expectations at the level of 0.0007 and one standard deviation.
Collapse
Affiliation(s)
- Paweł Moskal
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Eryk Czerwiński
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland.
- Centre for Theranostics, Jagiellonian University, Kraków, Poland.
| | - Juhi Raj
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Steven D Bass
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
- Kitzbühel Centre for Physics, Kitzbühel, Austria
| | - Ermias Y Beyene
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Neha Chug
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Aurélien Coussat
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | | | - Meysam Dadgar
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Manish Das
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Kamil Dulski
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Aleksander Gajos
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Marek Gorgol
- Institute of Physics, Maria Curie-Skłodowska University, Lublin, Poland
| | | | - Bożena Jasińska
- Institute of Physics, Maria Curie-Skłodowska University, Lublin, Poland
| | - Krzysztof Kacprzak
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Tevfik Kaplanoglu
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Łukasz Kapłon
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Konrad Klimaszewski
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Paweł Konieczka
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Grzegorz Korcyl
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
- Institute of Applied Computer Science, Jagiellonian University, Kraków, Poland
| | - Tomasz Kozik
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Wojciech Krzemień
- High Energy Physics Division, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Deepak Kumar
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Simbarashe Moyo
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Wiktor Mryka
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Szymon Niedźwiecki
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Szymon Parzych
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Elena Pérez Del Río
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Lech Raczyński
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Sushil Sharma
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Shivani Choudhary
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Roman Y Shopa
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Michał Silarski
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Magdalena Skurzok
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Ewa Ł Stępień
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Pooja Tanty
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Faranak Tayefi Ardebili
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Keyvan Tayefi Ardebili
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Kavya Valsan Eliyan
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Wojciech Wiślicki
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| |
Collapse
|
8
|
Dadgar M, Parzych S, Baran J, Chug N, Curceanu C, Czerwiński E, Dulski K, Elyan K, Gajos A, Hiesmayr BC, Kapłon Ł, Klimaszewski K, Konieczka P, Korcyl G, Kozik T, Krzemien W, Kumar D, Niedzwiecki S, Panek D, Perez Del Rio E, Raczyński L, Sharma S, Shivani S, Shopa RY, Skurzok M, Stepień EŁ, Tayefi Ardebili F, Tayefi Ardebili K, Vandenberghe S, Wiślicki W, Moskal P. Comparative studies of the sensitivities of sparse and full geometries of Total-Body PET scanners built from crystals and plastic scintillators. EJNMMI Phys 2023; 10:62. [PMID: 37819578 PMCID: PMC10567620 DOI: 10.1186/s40658-023-00572-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/08/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Alongside the benefits of Total-Body imaging modalities, such as higher sensitivity, single-bed position, low dose imaging, etc., their final construction cost prevents worldwide utilization. The main aim of this study is to present a simulation-based comparison of the sensitivities of existing and currently developed tomographs to introduce a cost-efficient solution for constructing a Total-Body PET scanner based on plastic scintillators. METHODS For the case of this study, eight tomographs based on the uEXPLORER configuration with different scintillator materials (BGO, LYSO), axial field-of-view (97.4 cm and 194.8 cm), and detector configurations (full and sparse) were simulated. In addition, 8 J-PET scanners with different configurations, such as various axial field-of-view (200 cm and 250 cm), different cross sections of plastic scintillator, and multiple numbers of plastic scintillator layers (2, 3, and 4), based on J-PET technology have been simulated by GATE software. Furthermore, Siemens' Biograph Vision has been simulated to compare the results with standard PET scans. Two types of simulations have been performed. The first one with a centrally located source with a diameter of 1 mm and a length of 250 cm, and the second one with the same source inside a water-filled cylindrical phantom with a diameter of 20 cm and a length of 183 cm. RESULTS With regards to sensitivity, among all the proposed scanners, the ones constructed with BGO crystals give the best performance ([Formula: see text] 350 cps/kBq at the center). The utilization of sparse geometry or LYSO crystals significantly lowers the achievable sensitivity of such systems. The J-PET design gives a similar sensitivity to the sparse LYSO crystal-based detectors while having full detector coverage over the body. Moreover, it provides uniform sensitivity over the body with additional gain on its sides and provides the possibility for high-quality brain imaging. CONCLUSION Taking into account not only the sensitivity but also the price of Total-Body PET tomographs, which till now was one of the main obstacles in their widespread clinical availability, the J-PET tomography system based on plastic scintillators could be a cost-efficient alternative for Total-Body PET scanners.
Collapse
Affiliation(s)
- M Dadgar
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland.
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland.
| | - S Parzych
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - J Baran
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - N Chug
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - C Curceanu
- INFN, Laboratori Nazionali di Frascati, Frascati, Italy
| | - E Czerwiński
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - K Dulski
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - K Elyan
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - A Gajos
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - B C Hiesmayr
- Faculty of Physics, University of Vienna, Vienna, Austria
| | - Ł Kapłon
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - K Klimaszewski
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - P Konieczka
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - G Korcyl
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - T Kozik
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
| | - W Krzemien
- High Energy Physics Division, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - D Kumar
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - S Niedzwiecki
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - D Panek
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - E Perez Del Rio
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - L Raczyński
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - S Sharma
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - S Shivani
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - R Y Shopa
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - M Skurzok
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - E Ł Stepień
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Theranostics Center, Jagiellonian University, Kraków, Poland
| | - F Tayefi Ardebili
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - K Tayefi Ardebili
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - S Vandenberghe
- Department of Electronics and Information Systems, MEDISIP, MEDISIP, Ghent University-IBiTech, Ghent, Belgium
| | - W Wiślicki
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - P Moskal
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland.
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland.
- Theranostics Center, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
9
|
Karimi H, Moskal P, Żak A, Stępień EŁ. 3D melanoma spheroid model for the development of positronium biomarkers. Sci Rep 2023; 13:7648. [PMID: 37169794 PMCID: PMC10175546 DOI: 10.1038/s41598-023-34571-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 05/03/2023] [Indexed: 05/13/2023] Open
Abstract
It was recently demonstrated that newly invented positronium imaging may be used for improving cancer diagnostics by providing additional information about tissue pathology with respect to the standardized uptake value currently available in positron emission tomography (PET). Positronium imaging utilizes the properties of positronium atoms, which are built from the electrons and positrons produced in the body during PET examinations. We hypothesized that positronium imaging would be sensitive to the in vitro discrimination of tumor-like three-dimensional structures (spheroids) built of melanoma cell lines with different cancer activities and biological properties. The lifetime of ortho-positronium (o-Ps) was evaluated in melanoma spheroids from two cell lines (WM266-4 and WM115) differing in the stage of malignancy. Additionally, we considered parameters such as the cell number, spheroid size and melanoma malignancy to evaluate their relationship with the o-Ps lifetime. We demonstrate pilot results for o-Ps lifetime measurement in extracellular matrix-free spheroids. With the statistical significance of two standard deviations, we demonstrated that the higher the degree of malignancy and the rate of proliferation of neoplastic cells, the shorter the lifetime of ortho-positronium. In particular, we observed the following indications encouraging further research: (i) WM266-4 spheroids characterized by a higher proliferation rate and malignancy showed a shorter o-Ps lifetime than WM115 spheroids characterized by a lower growth rate. (ii) Both cell lines showed a decrease in the lifetime of o-Ps after spheroid generation on day 8 compared to day 4 in culture, and the mean o-Ps lifetime was longer for spheroids formed from WM115 cells than for those formed from WM266-4 cells, regardless of spheroid age. The results of this study revealed that positronium is a promising biomarker that may be applied in PET diagnostics for the assessment of the degree of cancer malignancy.
Collapse
Affiliation(s)
- Hanieh Karimi
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11 Street, 30-348, Kraków, Poland
- Department of Biochemistry, University of Missouri, Columbia, USA
| | - Paweł Moskal
- Department of Experimental Particle Physics and Applications, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Agata Żak
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Ewa Ł Stępień
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11 Street, 30-348, Kraków, Poland.
- Center for Theranostics, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
10
|
Ivashkin A, Abdurashitov D, Baranov A, Guber F, Morozov S, Musin S, Strizhak A, Tkachev I. Testing entanglement of annihilation photons. Sci Rep 2023; 13:7559. [PMID: 37160981 PMCID: PMC10170125 DOI: 10.1038/s41598-023-34767-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 05/07/2023] [Indexed: 05/11/2023] Open
Abstract
We present a new experimental study of the quantum entanglement of photon pairs produced in positron-electron annihilation at rest. Each annihilation photon has an energy that is five orders of magnitude higher than the energy of photons in optical experiments. It provides a unique opportunity for controlled Compton pre-scattering of initial photons before the polarization measurements. The experimental setup includes a system of Compton polarimeters to measure the angular correlations of annihilation photons in initial and thus prepared pre-scattered states. For the first time, a direct comparison of the polarization correlations of initial and pre-scattered annihilation photons has been carried out. The angular distributions of scattered in polarimeters photons turned out to be the same for both types of events. Moreover, the correlation function in the Bell's inequality is also the same for both states. We discuss the implications of our results for quantum measurement theory and for the quantum-entangled positron emission tomography.
Collapse
Affiliation(s)
| | | | - Alexander Baranov
- Institute for Nuclear Research RAS, Moscow, 117312, Russia
- National Research Nuclear University MEPhI, Moscow, 115409, Russia
| | - Fedor Guber
- Institute for Nuclear Research RAS, Moscow, 117312, Russia
| | - Sergey Morozov
- Institute for Nuclear Research RAS, Moscow, 117312, Russia
| | - Sultan Musin
- Institute for Nuclear Research RAS, Moscow, 117312, Russia
- Moscow Institute of Physics and Technology, Moscow, 141701, Russia
| | - Alexander Strizhak
- Institute for Nuclear Research RAS, Moscow, 117312, Russia
- Moscow Institute of Physics and Technology, Moscow, 141701, Russia
| | - Igor Tkachev
- Institute for Nuclear Research RAS, Moscow, 117312, Russia
| |
Collapse
|
11
|
Lane SA, Slater JM, Yang GY. Image-Guided Proton Therapy: A Comprehensive Review. Cancers (Basel) 2023; 15:cancers15092555. [PMID: 37174022 PMCID: PMC10177085 DOI: 10.3390/cancers15092555] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Image guidance for radiation therapy can improve the accuracy of the delivery of radiation, leading to an improved therapeutic ratio. Proton radiation is able to deliver a highly conformal dose to a target due to its advantageous dosimetric properties, including the Bragg peak. Proton therapy established the standard for daily image guidance as a means of minimizing uncertainties associated with proton treatment. With the increasing adoption of the use of proton therapy over time, image guidance systems for this modality have been changing. The unique properties of proton radiation present a number of differences in image guidance from photon therapy. This paper describes CT and MRI-based simulation and methods of daily image guidance. Developments in dose-guided radiation, upright treatment, and FLASH RT are discussed as well.
Collapse
Affiliation(s)
- Shelby A Lane
- James M. Slater, MD Proton Treatment and Research Center, Loma Linda University, Loma Linda, CA 92354, USA
| | - Jason M Slater
- James M. Slater, MD Proton Treatment and Research Center, Loma Linda University, Loma Linda, CA 92354, USA
| | - Gary Y Yang
- James M. Slater, MD Proton Treatment and Research Center, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
12
|
Moskal P, Kubicz E, Grudzień G, Czerwiński E, Dulski K, Leszczyński B, Niedźwiecki S, Stępień EŁ. Developing a novel positronium biomarker for cardiac myxoma imaging. EJNMMI Phys 2023; 10:22. [PMID: 36959477 PMCID: PMC10036702 DOI: 10.1186/s40658-023-00543-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/10/2023] [Indexed: 03/25/2023] Open
Abstract
PURPOSE Cardiac myxoma (CM), the most common cardiac tumor in adults, accounts for 50-75% of benign cardiac tumors. The diagnosis of CM is often elusive, especially in young stroke survivors and transthoracic echocardiography (TTE) is the initial technique for the differential diagnostics of CM. Less invasive cardiac computed tomography (CT) and magnetic resonance imaging (MRI) are not available for the majority of cardiac patients. Here, a robust imaging approach, ortho-Positronium (o-Ps) imaging, is presented to determine cardiac myxoma extracted from patients undergoing urgent cardiac surgery due to unexpected atrial masses. We aimed to assess if the o-Ps atom, produced copiously in intramolecular voids during the PET imaging, serves as a biomarker for CM diagnosing. METHODS Six perioperative CM and normal (adipose) tissue samples from patients, with primary diagnosis confirmed by the histopathology examination, were examined using positron annihilation lifetime spectroscopy (PALS) and micro-CT. Additionally, cell cultures and confocal microscopy techniques were used to picture cell morphology and origin. RESULTS We observed significant shortening in the mean o-Ps lifetime in tumor with compare to normal tissues: an average value of 1.92(02) ns and 2.72(05) ns for CM and the adipose tissue, respectively. Microscopic differences between tumor samples, confirmed in histopathology examination and micro-CT, did not influenced the major positronium imaging results. CONCLUSIONS Our findings, combined with o-Ps lifetime analysis, revealed the novel emerging positronium imaging marker (o-PS) for cardiovascular imaging. This method opens the new perspective to facilitate the quantitative in vivo assessment of intracardiac masses on a molecular (nanoscale) level.
Collapse
Affiliation(s)
- Paweł Moskal
- Department of Experimental Particle Physics and Applications, Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland.
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland.
- Center for Theranostics, Jagiellonian University, Kraków, Poland.
| | - Ewelina Kubicz
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland.
- Center for Theranostics, Jagiellonian University, Kraków, Poland.
- Department of Medical Physics, Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland.
| | - Grzegorz Grudzień
- Department of Cardiovascular Surgery and Transplantology, John Paul II Hospital, Kraków, Poland
- Department of Cardiovascular Surgery and Transplantology, Jagiellonian University Medical College, Kraków, Poland
| | - Eryk Czerwiński
- Department of Experimental Particle Physics and Applications, Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Kamil Dulski
- Department of Experimental Particle Physics and Applications, Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Bartosz Leszczyński
- Department of Medical Physics, Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Szymon Niedźwiecki
- Department of Experimental Particle Physics and Applications, Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Ewa Ł Stępień
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland.
- Center for Theranostics, Jagiellonian University, Kraków, Poland.
- Department of Medical Physics, Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland.
| |
Collapse
|
13
|
Alberts I, Sari H, Mingels C, Afshar-Oromieh A, Pyka T, Shi K, Rominger A. Long-axial field-of-view PET/CT: perspectives and review of a revolutionary development in nuclear medicine based on clinical experience in over 7000 patients. Cancer Imaging 2023; 23:28. [PMID: 36934273 PMCID: PMC10024603 DOI: 10.1186/s40644-023-00540-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/25/2023] [Indexed: 03/20/2023] Open
Abstract
Recently introduced long-axial field-of-view (LAFOV) PET/CT systems represent one of the most significant advancements in nuclear medicine since the advent of multi-modality PET/CT imaging. The higher sensitivity exhibited by such systems allow for reductions in applied activity and short duration scans. However, we consider this to be just one small part of the story: Instead, the ability to image the body in its entirety in a single FOV affords insights which standard FOV systems cannot provide. For example, we now have the ability to capture a wider dynamic range of a tracer by imaging it over multiple half-lives without detrimental image noise, to leverage lower radiopharmaceutical doses by using dual-tracer techniques and with improved quantification. The potential for quantitative dynamic whole-body imaging using abbreviated protocols potentially makes these techniques viable for routine clinical use, transforming PET-reporting from a subjective analysis of semi-quantitative maps of radiopharmaceutical uptake at a single time-point to an accurate and quantitative, non-invasive tool to determine human function and physiology and to explore organ interactions and to perform whole-body systems analysis. This article will share the insights obtained from 2 years' of clinical operation of the first Biograph Vision Quadra (Siemens Healthineers) LAFOV system. It will also survey the current state-of-the-art in PET technology. Several technologies are poised to furnish systems with even greater sensitivity and resolution than current systems, potentially with orders of magnitude higher sensitivity. Current barriers which remain to be surmounted, such as data pipelines, patient throughput and the hindrances to implementing kinetic analysis for routine patient care will also be discussed.
Collapse
Affiliation(s)
- Ian Alberts
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Hasan Sari
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Clemens Mingels
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Thomas Pyka
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland.
| |
Collapse
|
14
|
Parodi K, Yamaya T, Moskal P. Experience and new prospects of PET imaging for ion beam therapy monitoring. Z Med Phys 2023; 33:22-34. [PMID: 36446691 PMCID: PMC10068545 DOI: 10.1016/j.zemedi.2022.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/11/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022]
Abstract
Pioneering investigations on the usage of positron-emission-tomography (PET) for the monitoring of ion beam therapy with light (protons, helium) and heavier (stable and radioactive neon, carbon and oxygen) ions started shortly after the first realization of planar and tomographic imaging systems, which were able to visualize the annihilation of positrons resulting from irradiation induced or implanted positron emitting nuclei. And while the first clinical experience was challenged by the utilization of instrumentation directly adapted from nuclear medicine applications, new detectors optimized for this unconventional application of PET imaging are currently entering the phase of (pre)clinical testing for more reliable monitoring of treatment delivery during irradiation. Moreover, recent advances in detector technologies and beam production open several new exciting opportunities which will not only improve the performance of PET imaging under the challenging conditions of in-beam applications in ion beam therapy, but will also likely expand its field of application. In particular, the combination of PET and Compton imaging can enable the most efficient utilization of all possible radiative emissions for both stable and radioactive ion beams, while positronium lifetime imaging may enable probing new features of the underlying tumour and normal tissue environment. Thereby, PET imaging will not only provide means for volumetric reconstruction of the delivered treatment and in-vivo verification of the beam range, but can also shed new insights for biological optimization of the treatment or treatment response assessment.
Collapse
Affiliation(s)
- Katia Parodi
- Ludwig-Maximilians-Universität München, Lehrstuhl für Experimental Physik - Medizinische Physik, Garching b. München, Germany.
| | - Taiga Yamaya
- National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Pawel Moskal
- M. Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland; Center for Theranostics, Jagiellonian University, Krakow, Poland
| |
Collapse
|
15
|
Multi-photon time-of-flight MLEM application for the positronium imaging in J-PET. BIO-ALGORITHMS AND MED-SYSTEMS 2022. [DOI: 10.2478/bioal-2022-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract
We develop a positronium imaging method for the Jagiellonian PET (J-PET) scanners based on the time-of-flight maximum likelihood expectation maximisation (TOF MLEM). The system matrix elements are calculated on-the-fly for the coincidences comprising two annihilation and one de-excitation photons that originate from the ortho-positronium (o-Ps) decay. Using the Geant4 library, a Monte Carlo simulation was conducted for four cylindrical 22Na sources of β+ decay with diverse o-Ps mean lifetimes, placed symmetrically inside the two JPET prototypes. The estimated time differences between the annihilation and the positron emission were aggregated into histograms (one per voxel), updated by the weights of the activities reconstructed by TOF MLEM. The simulations were restricted to include only the o-Ps decays into back-to-back photons, allowing a linear fitting model to be employed for the estimation of the mean lifetime from each histogram built in the log scale. To suppress the noise, the exclusion of voxels with activity below 2% – 10% of the peak was studied. The estimated o-Ps mean lifetimes were consistent with the simulation and distributed quasi -uniformly at high MLEM iterations. The proposed positronium imaging technique can be further upgraded to include various correction factors, as well as be modified according to realistic o-Ps decay models.
Collapse
|
16
|
Feasibility study of positronium application for blood clots structural characteristics. BIO-ALGORITHMS AND MED-SYSTEMS 2022. [DOI: 10.2478/bioal-2022-0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract
Positron-electron annihilation in living organisms occurs in about 30% via the formation of a metastable ortho-positronium atom that annihilates into two 511 keV photons in tissues because of the pick-off and conversion processes. Positronium (Ps) annihilation lifetime and intensities can be used to determine the size and quantity of defects in a material’s microstructure, such as voids or pores in the range of nanometers. This is particularly true for blood clots. Here we present pilot investigations of positronium properties in fibrin clots. The studies are complemented by the use of SEM Edax and micro-computed tomography (µCT) to evaluate the extracted thrombotic material’s properties. µCT is a versatile characterization method offering in situ and in operando possibilities and is a qualitative diagnostic tool. With µCT the presence of pores, cracks, and structural errors can be verified, and hence the 3D inner structure of samples can be investigated.
Collapse
|
17
|
Borys D, Baran J, Brzezinski KW, Gajewski J, Chug N, Coussat A, Czerwiński E, Dadgar M, Dulski K, Eliyan KV, Gajos A, Kacprzak K, Kapłon Ł, Klimaszewski K, Konieczka P, Kopec R, Korcyl G, Kozik T, Krzemień W, Kumar D, Lomax AJ, McNamara K, Niedźwiecki S, Olko P, Panek D, Parzych S, Del Río EP, Raczyński L, Sharma S, Shivani S, Shopa RY, Skóra T, Skurzok M, Stasica P, Stępień E, Tayefi Ardebili K, Tayefi F, Weber DC, Winterhalter C, Wiślicki W, Moskal P, Rucinski A. ProTheRaMon - a GATE simulation framework for proton therapy range monitoring using PET imaging. Phys Med Biol 2022; 67:224002. [PMID: 36137551 DOI: 10.1088/1361-6560/ac944c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE This paper reports on the implementation and shows examples of the use of the ProTheRaMon framework for simulating the delivery of proton therapy treatment plans and range monitoring using positron emission tomography (PET). ProTheRaMon offers complete processing of proton therapy treatment plans, patient CT geometries, and intra-treatment PET imaging, taking into account therapy and imaging coordinate systems and activity decay during the PET imaging protocol specific to a given proton therapy facility. We present the ProTheRaMon framework and illustrate its potential use case and data processing steps for a patient treated at the Cyclotron Centre Bronowice (CCB) proton therapy center in Krakow, Poland. APPROACH The ProTheRaMon framework is based on GATE Monte Carlo software, the CASToR reconstruction package and in-house developed Python and bash scripts. The framework consists of five separated simulation and data processing steps, that can be further optimized according to the user's needs and specific settings of a given proton therapy facility and PET scanner design. MAIN RESULTS ProTheRaMon is presented using example data from a patient treated at CCB and the J-PET scanner to demonstrate the application of the framework for proton therapy range monitoring. The output of each simulation and data processing stage is described and visualized. SIGNIFICANCE We demonstrate that the ProTheRaMon simulation platform is a high-performance tool, capable of running on a computational cluster and suitable for multi-parameter studies, with databases consisting of large number of patients, as well as different PET scanner geometries and settings for range monitoring in a clinical environment. Due to its modular structure, the ProTheRaMon framework can be adjusted for different proton therapy centers and/or different PET detector geometries. It is available to the community via github.
Collapse
Affiliation(s)
- Damian Borys
- Department of Systems Biology and Engineering, Silesian University of Technology, ul. Akademicka 16, Gliwice, 44-100, POLAND
| | - Jakub Baran
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Karol W Brzezinski
- Institute of Nuclear Physics Polish Academy of Science, Radzikowskiego 152, Krakow, Krakow, Malopolska, 31-342, POLAND
| | - Jan Gajewski
- Institute of Nuclear Physics Polish Academy of Science, Radzikowskiego 152, Krakow, Krakow, Malopolska, 31-342, POLAND
| | - Neha Chug
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, 30-348, POLAND
| | - Aurelien Coussat
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Eryk Czerwiński
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Meysam Dadgar
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Kamil Dulski
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Kavya Valsan Eliyan
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Aleksander Gajos
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Krzysztof Kacprzak
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Łukasz Kapłon
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University in Krakow, Lojasiewicza 11, Krakow, Malopolskie, 31-007, POLAND
| | - Konrad Klimaszewski
- National Centre for Nuclear Research, 7 Andrzeja Sołtana str., Otwock, 05-400, POLAND
| | - Paweł Konieczka
- Department of Complex Systems, National Centre for Nuclear Research, 7 Andrzeja Sołtana str., Otwock, 05-400, POLAND
| | - Renata Kopec
- Institute of Nuclear Physics Polish Academy of Science, Radzikowskiego 152, Krakow, 31-342, POLAND
| | - Grzegorz Korcyl
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Tomasz Kozik
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Wojciech Krzemień
- National Centre for Nuclear Research, 7 Andrzeja Sołtana str., Otwock, 05-400, POLAND
| | - Deepak Kumar
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Antony John Lomax
- Department of Radiation Medicine, Paul Scherrer Institute, CH-5232 Villigen PSI, Villigen, 5232, SWITZERLAND
| | - Keegan McNamara
- Center for Proton Therapy, Paul Scherrer Institute PSI, Forschungsstrasse 111, Villigen, Aargau, 5232, SWITZERLAND
| | - Szymon Niedźwiecki
- Institute of Physics, Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Pawel Olko
- PAN, Institute of Nuclear Physics Polish Academy of Science, ul Radzikowskiego 152, Krakow, Kraków, 31-342, POLAND
| | - Dominik Panek
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Szymon Parzych
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Elena Pérez Del Río
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Lech Raczyński
- National Centre for Nuclear Research, 7 Andrzeja Sołtana str., Otwock, 05-400, POLAND
| | - Sushil Sharma
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Shivani Shivani
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Roman Y Shopa
- National Centre for Nuclear Research, 7 Andrzeja Sołtana str., Otwock, 05-400, POLAND
| | - Tomasz Skóra
- Radiotherapy, Maria Sklodowska-Curie National Research Institute of Oncology in Warsaw, Krakow Branch, Walerego Eljasza, Radzikowskiego 152, Kraków, 31-342, POLAND
| | - Magdalena Skurzok
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Paulina Stasica
- Institute of Nuclear Physics Polish Academy of Science, Radzikowskiego 152, Krakow, PL 31-342, POLAND
| | - Ewa Stępień
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Keyvan Tayefi Ardebili
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Faranak Tayefi
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Damien Charles Weber
- Center for Proton Therapy, Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, SWITZERLAND
| | - Carla Winterhalter
- Paul Scherrer Institute PSI, Forschungsstrasse 111, Villigen, Aargau, 5232, SWITZERLAND
| | - Wojciech Wiślicki
- National Centre for Nuclear Research, 7 Andrzeja Sołtana str., Otwock, 05-400, POLAND
| | - Pawel Moskal
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Antoni Rucinski
- Institute of Nuclear Physics PAS, Radzikowskiego 152, Krakow, 31-342, POLAND
| |
Collapse
|
18
|
Sarrut D, Arbor N, Baudier T, Borys D, Etxebeste A, Fuchs H, Gajewski J, Grevillot L, Jan S, Kagadis GC, Kang HG, Kirov A, Kochebina O, Krzemien W, Lomax A, Papadimitroulas P, Pommranz C, Roncali E, Rucinski A, Winterhalter C, Maigne L. The OpenGATE ecosystem for Monte Carlo simulation in medical physics. Phys Med Biol 2022; 67:10.1088/1361-6560/ac8c83. [PMID: 36001985 PMCID: PMC11149651 DOI: 10.1088/1361-6560/ac8c83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/24/2022] [Indexed: 11/12/2022]
Abstract
This paper reviews the ecosystem of GATE, an open-source Monte Carlo toolkit for medical physics. Based on the shoulders of Geant4, the principal modules (geometry, physics, scorers) are described with brief descriptions of some key concepts (Volume, Actors, Digitizer). The main source code repositories are detailed together with the automated compilation and tests processes (Continuous Integration). We then described how the OpenGATE collaboration managed the collaborative development of about one hundred developers during almost 20 years. The impact of GATE on medical physics and cancer research is then summarized, and examples of a few key applications are given. Finally, future development perspectives are indicated.
Collapse
Affiliation(s)
- David Sarrut
- Université de Lyon; CREATIS; CNRS UMR5220; Inserm U1294; INSA-Lyon; Université Lyon 1, Léon Bérard cancer center, Lyon, France
| | - Nicolas Arbor
- Université de Strasbourg, IPHC, CNRS, UMR7178, F-67037 Strasbourg, France
| | - Thomas Baudier
- Université de Lyon; CREATIS; CNRS UMR5220; Inserm U1294; INSA-Lyon; Université Lyon 1, Léon Bérard cancer center, Lyon, France
| | - Damian Borys
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Ane Etxebeste
- Université de Lyon; CREATIS; CNRS UMR5220; Inserm U1294; INSA-Lyon; Université Lyon 1, Léon Bérard cancer center, Lyon, France
| | - Hermann Fuchs
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Medical University of Vienna, Department of Radiation Oncology, Vienna, Vienna, Währinger Gürtel 18-20, A-1090 Wien, Austria
| | - Jan Gajewski
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | | | - Sébastien Jan
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), F-91401 Orsay, France
| | - George C Kagadis
- 3DMI Research Group, Department of Medical Physics, School of Medicine, University of Patras, Patras, Greece
| | - Han Gyu Kang
- National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Assen Kirov
- Memorial Sloan Kettering Cancer, New York, NY 10021, United States of America
| | - Olga Kochebina
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), F-91401 Orsay, France
| | - Wojciech Krzemien
- High Energy Physics Division, National Centre for Nuclear Research, Otwock-Świerk, Poland
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Lojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40 St, 31 501 Krakow, Poland
| | - Antony Lomax
- Center for Proton Therapy, PSI, Switzerland
- Department of Physics, ETH Zurich, Switzerland
| | | | - Christian Pommranz
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Roentgenweg 13, D-72076 Tuebingen, Germany
- Institute for Astronomy and Astrophysics, Eberhard Karls University Tuebingen, Sand 1, D-72076 Tuebingen, Germany
| | - Emilie Roncali
- University of California Davis, Departments of Biomedical Engineering and Radiology, Davis, CA 95616, United States of America
| | - Antoni Rucinski
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | - Carla Winterhalter
- Center for Proton Therapy, PSI, Switzerland
- Department of Physics, ETH Zurich, Switzerland
| | - Lydia Maigne
- Université Clermont Auvergne, Laboratoire de Physique de Clermont, CNRS, UMR 6533, F-63178 Aubière, France
| |
Collapse
|
19
|
Compton imaging for medical applications. Radiol Phys Technol 2022; 15:187-205. [PMID: 35867197 DOI: 10.1007/s12194-022-00666-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 12/18/2022]
Abstract
Compton imaging exploits inelastic scattering, known as Compton scattering, using a Compton camera consisting of a scatterer detector in the front layer and an absorber detector in the back layer. This method was developed for astronomy, and in recent years, research and development for environmental and medical applications has been actively conducted. Compton imaging can discriminate gamma rays over a wide energy range from several hundred keV to several MeV. Therefore, it is expected to be applied to the simultaneous imaging of multiple nuclides in nuclear medicine and prompt gamma ray imaging for range verification in particle therapy. In addition, multiple gamma coincidence imaging is expected to be realized, which allows the source position to be determined from a single coincidence event using nuclides that emit multiple gamma rays simultaneously, such as nuclides that emit a single gamma ray simultaneously with positron decay. This review introduces various efforts toward the practical application of Compton imaging in the medical field, including in vivo studies, and discusses its prospects.
Collapse
|
20
|
Adler SS, Seidel J, Choyke PL. Advances in Preclinical PET. Semin Nucl Med 2022; 52:382-402. [PMID: 35307164 PMCID: PMC9038721 DOI: 10.1053/j.semnuclmed.2022.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/18/2022]
Abstract
The classical intent of PET imaging is to obtain the most accurate estimate of the amount of positron-emitting radiotracer in the smallest possible volume element located anywhere in the imaging subject at any time using the least amount of radioactivity. Reaching this goal, however, is confounded by an enormous array of interlinked technical issues that limit imaging system performance. As a result, advances in PET, human or animal, are the result of cumulative innovations across each of the component elements of PET, from data acquisition to image analysis. In the report that follows, we trace several of these advances across the imaging process with a focus on small animal PET.
Collapse
Affiliation(s)
- Stephen S Adler
- Frederick National Laboratory for Cancer Research, Frederick, MD; Molecular Imaging Branch, National Cancer Institute, Bethesda MD
| | - Jurgen Seidel
- Contractor to Frederick National Laboratory for Cancer Research, Leidos biodical Research, Inc., Frederick, MD; Molecular Imaging Branch, National Cancer Institute, Bethesda MD
| | - Peter L Choyke
- Molecular Imaging Branch, National Cancer Institute, Bethesda MD.
| |
Collapse
|
21
|
Bergami M, Santana ALD, Charry Martinez J, Reyes A, Coutinho K, Varella MTDN. Multicomponent Quantum Mechanics/Molecular Mechanics Study of Hydrated Positronium. J Phys Chem B 2022; 126:2699-2714. [PMID: 35377644 DOI: 10.1021/acs.jpcb.1c10124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We propose a model for solvated positronium (Ps) atoms in water, based on the sequential quantum mechanics/molecular mechanics (s-QM/MM) protocol. We developed a Lennard-Jones force field to account for Ps-water interactions in the MM step. The repulsive term was obtained from a previously reported model for the solvated electron, while the dispersion constant was derived from the Slater-Kirkwood formula. The force field was employed in classical Monte Carlo (MC) simulations to generate Ps-solvent configurations in the NpT ensemble, while the quantum properties were computed with the any-particle molecular orbital method in the subsequent QM step. Our approach is general, as it can be applied to other liquids and materials. One basically needs to describe the solvated electron in the environment of interest to obtain the Ps solvation model. The thermodynamical properties computed from the MC simulations point out similarities between the solvation of Ps and noble gas atoms, hydrophobic solutes that form clathrate structures. We performed convergence tests for the QM step, with particular attention to the choice of basis set and expansion centers for the positronic and electronic subsystems. Our largest model was composed of the Ps atom and 22 water molecules in the QM region, corresponding to the first solvation shell, surrounded by 128 molecules described as point charges. The mean electronic and positronic vertical detachment energies were (4.73 ± 0.04) eV and (5.33 ± 0.04) eV, respectively. The latter estimates were computed with Koopmans' theorem corrected by second-order self-energies, for a set of statistically uncorrelated MC configurations. While the Hartree-Fock wave functions do not properly account for the annihilation rates, they were useful for numerical tests, pointing out that annihilation is more sensitive to the choice of basis sets and expansion centers than the detachment energies. We further explored a model with reduced solute cavity size by changing the Ps-solvent force field. Although the pick-off annihilation lifetimes were affected by the cavity size, essentially the same conclusions were drawn from both models.
Collapse
Affiliation(s)
- Mateus Bergami
- Instituto de Física, Universidade de São Paulo, Rua do Matão 1371 CP 66318, CEP 05508-090 São Paulo, SP, Brazil
| | - Andre L D Santana
- Instituto de Física, Universidade de São Paulo, Rua do Matão 1371 CP 66318, CEP 05508-090 São Paulo, SP, Brazil
| | - Jorge Charry Martinez
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Andres Reyes
- Department of Chemistry, Universidad Nacional de Colombia, Av. Cra. 30 #45-03, 111321 Bogotá, Colombia
| | - Kaline Coutinho
- Instituto de Física, Universidade de São Paulo, Rua do Matão 1371 CP 66318, CEP 05508-090 São Paulo, SP, Brazil
| | - Márcio T do N Varella
- Instituto de Física, Universidade de São Paulo, Rua do Matão 1371 CP 66318, CEP 05508-090 São Paulo, SP, Brazil
| |
Collapse
|
22
|
Shibuya K, Saito H, Tashima H, Yamaya T. Using inverse Laplace transform in positronium lifetime imaging. Phys Med Biol 2022; 67. [PMID: 35008076 DOI: 10.1088/1361-6560/ac499b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/10/2022] [Indexed: 11/11/2022]
Abstract
Positronium (Ps) lifetime imaging is gaining attention to bring out additional biomedical information from positron emission tomography (PET). The lifetime of Psin vivocan change depending on the physical and chemical environments related to some diseases. Due to the limited sensitivity, Ps lifetime imaging may require merging some voxels for statistical accuracy. This paper presents a method for separating the lifetime components in the voxel to avoid information loss due to averaging. The mathematics for this separation is the inverse Laplace transform (ILT), and the authors examined an iterative numerical ILT algorithm using Tikhonov regularization, namely CONTIN, to discriminate a small lifetime difference due to oxygen saturation. The separability makes it possible to merge voxels without missing critical information on whether they contain abnormally long or short lifetime components. The authors conclude that ILT can compensate for the weaknesses of Ps lifetime imaging and extract the maximum amount of information.
Collapse
Affiliation(s)
- Kengo Shibuya
- Institute of Physics, Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan.,Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Haruo Saito
- Institute of Physics, Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | - Hideaki Tashima
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Taiga Yamaya
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
23
|
Total-body PET. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00118-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
24
|
Abstract
Abstract
In this review article, we present arguments demonstrating that the advent of high sensitivity total-body PET systems and the invention of the method of positronium imaging, open realistic perspectives for the application of positronium as a biomarker for in-vivo assessment of the degree of hypoxia. Hypoxia is a state or condition, in which the availability of oxygen is not sufficient to support physiological processes in tissue and organs. Positronium is a metastable atom formed from electron and positron which is copiously produced in the intramolecular spaces in the living organisms undergoing positron emission tomography (PET). Properties of positronium, such as e.g., lifetime, depend on the size of intramolecular spaces and the concentration in them of oxygen molecules. Therefore, information on the partial pressure of oxygen (pO2) in the tissue may be derived from the positronium lifetime measurement. The partial pressure of oxygen differs between healthy and cancer tissues in the range from 10 to 50 mmHg. Such differences of pO2 result in the change of ortho-positronium lifetime e.g., in water by about 2–7 ps. Thus, the application of positronium as a biomarker of hypoxia requires the determination of the mean positronium lifetime with the resolution in the order of 2 ps. We argue that such resolution is in principle achievable for organ-wise positronium imaging with the total-body PET systems.
Collapse
Affiliation(s)
- Paweł Moskal
- M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University , Krakow , Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University , Kraków , Poland
- Theranostics Center, Jagiellonian University , Kraków , Poland
| | - Ewa Ł. Stępień
- M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University , Krakow , Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University , Kraków , Poland
- Theranostics Center, Jagiellonian University , Kraków , Poland
| |
Collapse
|
25
|
Abstract
Abstract
In this partial review and partial attempt at vision of what may be the future of dedicated brain PET scanners, the key implementations of the PET technique, we postulate that we are still on a development path and there is still a lot to be done in order to develop optimal brain imagers. Optimized for particular imaging tasks and protocols, and also mobile, that can be used outside the PET center, in addition to the expected improvements in sensitivity and resolution. For this multi-application concept to be more practical, flexible, adaptable designs are preferred. This task is greatly facilitated by the improved TOF performance that allows for more open, adjustable, limited angular coverage geometries without creating image artifacts. As achieving uniform very high resolution in the whole body is not practical due to technological limits and high costs, hybrid systems using a moderate-resolution total body scanner (such as J-PET) combined with a very high performing brain imager could be a very attractive approach. As well, as using magnification inserts in the total body or long-axial length imagers to visualize selected targets with higher resolution. In addition, multigamma imagers combining PET with Compton imaging should be developed to enable multitracer imaging.
Collapse
|
26
|
Stępień EŁ, Rząca C, Moskal P. Novel biomarker and drug delivery systems for theranostics – extracellular vesicles. BIO-ALGORITHMS AND MED-SYSTEMS 2021. [DOI: 10.1515/bams-2021-0183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
Extracellular vesicles (EVs) are nano- and micro-sized double-layered membrane entities derived from most cell types and released into biological fluids. Biological properties (cell-uptake, biocompatibility), and chemical (composition, structure) or physical (size, density) characteristics make EVs a good candidate for drug delivery systems (DDS). Recent advances in the field of EVs (e.g., scaling-up production, purification) and developments of new imaging methods (total-body positron emission tomography [PET]) revealed benefits of radiolabeled EVs in diagnostic and interventional medicine as a potential DDs in theranostics.
Collapse
Affiliation(s)
- Ewa Ł. Stępień
- M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University , Krakow , Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University , Kraków , Poland
- Theranostics Center, Jagiellonian University , Kraków , Poland
| | - Carina Rząca
- M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University , Krakow , Poland
- Theranostics Center, Jagiellonian University , Kraków , Poland
| | - Paweł Moskal
- M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University , Krakow , Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University , Kraków , Poland
- Theranostics Center, Jagiellonian University , Kraków , Poland
| |
Collapse
|
27
|
Alavi A, Werner TJ, Stępień EŁ, Moskal P. Unparalleled and revolutionary impact of PET imaging on research and day to day practice of medicine. BIO-ALGORITHMS AND MED-SYSTEMS 2021. [DOI: 10.1515/bams-2021-0186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
Positron emission tomography (PET) imaging is the most quantitative modality for assessing disease activity at the molecular and cellular levels, and therefore, it allows monitoring its course and determining the efficacy of various therapeutic interventions. In this scientific communication, we describe the unparalleled and revolutionary impact of PET imaging on research and day to day practice of medicine. We emphasize the critical importance of the development and synthesis of novel radiotracers (starting from the enormous impact of F-Fluorodeouxyglucose (FDG) introduced by investigators at the University of Pennsylvania (PENN)) and PET instrumentation. These innovations have led to the total-body PET systems enabling dynamic and parametric molecular imaging of all organs in the body simultaneously. We also present our perspectives for future development of molecular imaging by multiphoton PET systems that will enable users to extract substantial information (owing to the evolving role of positronium imaging) about the related molecular and biological bases of various disorders, which are unachievable by the current PET imaging techniques.
Collapse
Affiliation(s)
- Abass Alavi
- Department of Radiology , Hospital of the University of Pennsylvania , Philadelphia , PA , USA
| | - Thomas J. Werner
- Department of Radiology , Hospital of the University of Pennsylvania , Philadelphia , PA , USA
| | - Ewa Ł. Stępień
- Faculty of Physics, Astronomy, and Applied Computer Science , Jagiellonian University Kraków , Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University , Kraków , Poland
- Theranostics Center, Jagiellonian University , Kraków , Poland
| | - Pawel Moskal
- Faculty of Physics, Astronomy, and Applied Computer Science , Jagiellonian University Kraków , Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University , Kraków , Poland
- Theranostics Center, Jagiellonian University , Kraków , Poland
| |
Collapse
|
28
|
Silarski M, Dziedzic-Kocurek K, Szczepanek M. Combined BNCT and PET for theranostics. BIO-ALGORITHMS AND MED-SYSTEMS 2021. [DOI: 10.1515/bams-2021-0140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
This short review summarizes the issue of boron distribution monitoring in boron neutron capture therapy (BNCT), which remains a serious drawback of this powerful oncological treatment. Here we present the monitoring methods that are presently used with particular emphasis on the positron emission tomography (PET) which has the highest potential to be used for the real-time monitoring of boron biodistribution. We discuss the possibility of using present PET scanners to determine the boron uptake in vivo before the BNCT treatment with the use of p-boronphenylalanine (BPA) labeled with 18F isotope. Several examples of preclinical studies and clinical trials performed with the use of [18F]FBPA are shown. We also discuss shortly the perspectives of using other radiotracers and boron carriers which may significantly improve the boron imaging with the use of the state-of-the-art Total-Body PET scanners providing a theranostic approach in the BNCT.
Collapse
Affiliation(s)
- Michał Silarski
- Faculty of Physics , Astronomy and Applied Computer Science, Jagiellonian University , Cracow , Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University , Cracow , Poland
| | | | - Monika Szczepanek
- Faculty of Physics , Astronomy and Applied Computer Science, Jagiellonian University , Cracow , Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University , Cracow , Poland
| |
Collapse
|
29
|
Shida JF, Spieglan E, Adams BW, Angelico E, Domurat-Sousa K, Elagin A, Frisch HJ, La Riviere P, Squires AH. Low-Dose High-Resolution TOF-PET Using Ionization-activated Multi-State Low-Z Detector Media. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A, ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT 2021; 1017:165801. [PMID: 34690392 PMCID: PMC8530277 DOI: 10.1016/j.nima.2021.165801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We propose PET scanners using low atomic number media that undergo a persistent local change of state along the paths of the Compton recoil electrons. Measurement of the individual scattering locations and angles, deposited energies, and recoil electron directions allows using the kinematical constraints of the 2-body Compton scattering process to perform a statistical time-ordering of the scatterings, with a high probability of precisely identifying where the gamma first interacted in the detector. In these cases the Line-of-Response is measured with high resolution, determined by the underlying physics processes and not the detector segmentation. There are multiple such media that act through different mechanisms. As an example in which the change of state is quantum-mechanical through a change in molecular configuration, rather than thermodynamic, as in a bubble chamber, we present simulations of a two-state photoswitchable organic dye, a 'Switchillator', that is activated to a fluorescent-capable state by the ionization of the recoil electrons. The activated state is persistent, and can be optically excited multiple times to image individual activated molecules. Energy resolution is provided by counting the activated molecules. Location along the LOR is implemented by large-area time-of-flight MCP-PMT photodetectors with single photon time resolution in the tens of ps and sub-mm spatial resolution. Simulations indicate a large reduction of dose.
Collapse
Affiliation(s)
- J F Shida
- Enrico Fermi Institute, The University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637
| | - E Spieglan
- Enrico Fermi Institute, The University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637
| | - B W Adams
- Quantum Optics Applied Research, Naperville, IL 60564
| | - E Angelico
- Enrico Fermi Institute, The University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637
| | - K Domurat-Sousa
- Enrico Fermi Institute, The University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637
| | - A Elagin
- Enrico Fermi Institute, The University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637
| | - H J Frisch
- Enrico Fermi Institute, The University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637
| | - P La Riviere
- Department of Radiology, The University of Chicago, Billings Hospital, P220, 5841 South Maryland Avenue, MC2026, Chicago, IL 60637
| | - A H Squires
- Pritzker School of Molecular Engineering, The University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637
| |
Collapse
|
30
|
Choiński J, Łyczko M. Prospects for the production of radioisotopes and radiobioconjugates for theranostics. BIO-ALGORITHMS AND MED-SYSTEMS 2021. [DOI: 10.1515/bams-2021-0136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
The development of diagnostic methods in medicine as well as the progress in the synthesis of biologically active compounds allows the use of selected radioisotopes for the simultaneous diagnosis and treatment of diseases, especially cancerous ones, in patients. This approach is called theranostic. This review article includes chemical and physical characterization of chosen theranostic radioisotopes and their compounds that are or could be useful in nuclear medicine.
Collapse
Affiliation(s)
| | - Monika Łyczko
- Institute of Nuclear Chemistry and Technology , Warsaw , Poland
| |
Collapse
|
31
|
Giovagnoli D, Bousse A, Beaupere N, Canot C, Cussonneau JP, Diglio S, Iborra Carreres A, Masbou J, Merlin T, Morteau E, Xing Y, Zhu Y, Thers D, Visvikis D. A Pseudo-TOF Image Reconstruction Approach for Three-Gamma Small Animal Imaging. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2020.3046409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Alkhorayef M, Sulieman A, Alsager O, Alrumayan F, Alkhomashi N. Investigation of using positronium and its annihilation for hypoxia PET imaging. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Moskal P, Dulski K, Chug N, Curceanu C, Czerwiński E, Dadgar M, Gajewski J, Gajos A, Grudzień G, Hiesmayr BC, Kacprzak K, Kapłon Ł, Karimi H, Klimaszewski K, Korcyl G, Kowalski P, Kozik T, Krawczyk N, Krzemień W, Kubicz E, Małczak P, Niedźwiecki S, Pawlik-Niedźwiecka M, Pędziwiatr M, Raczyński L, Raj J, Ruciński A, Sharma S, Shivani, Shopa RY, Silarski M, Skurzok M, Stępień EŁ, Szczepanek M, Tayefi F, Wiślicki W. Positronium imaging with the novel multiphoton PET scanner. SCIENCE ADVANCES 2021; 7:eabh4394. [PMID: 34644101 DOI: 10.1126/sciadv.abh4394] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In vivo assessment of cancer and precise location of altered tissues at initial stages of molecular disorders are important diagnostic challenges. Positronium is copiously formed in the free molecular spaces in the patient’s body during positron emission tomography (PET). The positronium properties vary according to the size of inter- and intramolecular voids and the concentration of molecules in them such as, e.g., molecular oxygen, O2; therefore, positronium imaging may provide information about disease progression during the initial stages of molecular alterations. Current PET systems do not allow acquisition of positronium images. This study presents a new method that enables positronium imaging by simultaneous registration of annihilation photons and deexcitation photons from pharmaceuticals labeled with radionuclides. The first positronium imaging of a phantom built from cardiac myxoma and adipose tissue is demonstrated. It is anticipated that positronium imaging will substantially enhance the specificity of PET diagnostics.
Collapse
Affiliation(s)
- Paweł Moskal
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Kamil Dulski
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Neha Chug
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | | | - Eryk Czerwiński
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Meysam Dadgar
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Jan Gajewski
- Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
| | - Aleksander Gajos
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Grzegorz Grudzień
- Department of Cardiovascular Surgery and Transplantology, John Paul II Hospital, Kraków, Poland
| | | | - Krzysztof Kacprzak
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Łukasz Kapłon
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Hanieh Karimi
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Konrad Klimaszewski
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Grzegorz Korcyl
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Paweł Kowalski
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Tomasz Kozik
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Nikodem Krawczyk
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Wojciech Krzemień
- High Energy Physics Division, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Ewelina Kubicz
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Piotr Małczak
- 2nd Department of General Surgery, Jagiellonian University Medical College, Kraków, Poland
| | - Szymon Niedźwiecki
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Monika Pawlik-Niedźwiecka
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Michał Pędziwiatr
- 2nd Department of General Surgery, Jagiellonian University Medical College, Kraków, Poland
| | - Lech Raczyński
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Juhi Raj
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Antoni Ruciński
- Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
| | - Sushil Sharma
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Shivani
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Roman Y Shopa
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Michał Silarski
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Magdalena Skurzok
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Ewa Ł Stępień
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Monika Szczepanek
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Faranak Tayefi
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - Wojciech Wiślicki
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| |
Collapse
|
34
|
Free versus bound entanglement, a NP-hard problem tackled by machine learning. Sci Rep 2021; 11:19739. [PMID: 34611192 PMCID: PMC8492810 DOI: 10.1038/s41598-021-98523-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
Entanglement detection in high dimensional systems is a NP-hard problem since it is lacking an efficient way. Given a bipartite quantum state of interest free entanglement can be detected efficiently by the PPT-criterion (Peres-Horodecki criterion), in contrast to detecting bound entanglement, i.e. a curious form of entanglement that can also not be distilled into maximally (free) entangled states. Only a few bound entangled states have been found, typically by constructing dedicated entanglement witnesses, so naturally the question arises how large is the volume of those states. We define a large family of magically symmetric states of bipartite qutrits for which we find [Formula: see text] to be free entangled, [Formula: see text] to be certainly separable and as much as [Formula: see text] to be bound entangled, which shows that this kind of entanglement is not rare. Via various machine learning algorithms we can confirm that the remaining [Formula: see text] of states are more likely to belonging to the set of separable states than bound entangled states. Most important we find via dimension reduction algorithms that there is a strong two-dimensional (linear) sub-structure in the set of bound entangled states. This revealed structure opens a novel path to find and characterize bound entanglement towards solving the long-standing problem of what the existence of bound entanglement is implying.
Collapse
|
35
|
Moskal P, Gajos A, Mohammed M, Chhokar J, Chug N, Curceanu C, Czerwiński E, Dadgar M, Dulski K, Gorgol M, Goworek J, Hiesmayr BC, Jasińska B, Kacprzak K, Kapłon Ł, Karimi H, Kisielewska D, Klimaszewski K, Korcyl G, Kowalski P, Krawczyk N, Krzemień W, Kozik T, Kubicz E, Niedźwiecki S, Parzych S, Pawlik-Niedźwiecka M, Raczyński L, Raj J, Sharma S, Choudhary S, Shopa RY, Sienkiewicz A, Silarski M, Skurzok M, Stępień EŁ, Tayefi F, Wiślicki W. Testing CPT symmetry in ortho-positronium decays with positronium annihilation tomography. Nat Commun 2021; 12:5658. [PMID: 34580294 PMCID: PMC8476595 DOI: 10.1038/s41467-021-25905-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
Charged lepton system symmetry under combined charge, parity, and time-reversal transformation (CPT) remains scarcely tested. Despite stringent quantum-electrodynamic limits, discrepancies in predictions for the electron–positron bound state (positronium atom) motivate further investigation, including fundamental symmetry tests. While CPT noninvariance effects could be manifested in non-vanishing angular correlations between final-state photons and spin of annihilating positronium, measurements were previously limited by knowledge of the latter. Here, we demonstrate tomographic reconstruction techniques applied to three-photon annihilations of ortho-positronium atoms to estimate their spin polarisation without magnetic field or polarised positronium source. We use a plastic-scintillator-based positron-emission-tomography scanner to record ortho-positronium (o-Ps) annihilations with single-event estimation of o-Ps spin and determine the complete spectrum of an angular correlation operator sensitive to CPT-violating effects. We find no violation at the precision level of 10−4, with an over threefold improvement on the previous measurement. CPT violation could manifest itself in annihilating positronium events, but searching for this effect would require to know the spin of the annihilating system. Here, the authors do this using a positron-emission tomography scanner, finding no violation with a statistical precision of 10−4.
Collapse
Affiliation(s)
- P Moskal
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland. .,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland.
| | - A Gajos
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland. .,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland.
| | - M Mohammed
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland
| | - J Chhokar
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - N Chug
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - C Curceanu
- INFN, Laboratori Nazionali di Frascati CP 13, Via E. Fermi 40, 00044, Frascati, Italy
| | - E Czerwiński
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - M Dadgar
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - K Dulski
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - M Gorgol
- Department of Nuclear Methods, Institute of Physics, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 1, 20-031, Lublin, Poland
| | - J Goworek
- Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 3, 20-031, Lublin, Poland
| | - B C Hiesmayr
- Faculty of Physics, University of Vienna Boltzmanngasse 5, 1090, Vienna, Austria
| | - B Jasińska
- Department of Nuclear Methods, Institute of Physics, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 1, 20-031, Lublin, Poland
| | - K Kacprzak
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland
| | - Ł Kapłon
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - H Karimi
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - D Kisielewska
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland
| | - K Klimaszewski
- Department of Complex Systems, National Centre for Nuclear Research, 05-400, Otwock-Świerk, Poland
| | - G Korcyl
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - P Kowalski
- Department of Complex Systems, National Centre for Nuclear Research, 05-400, Otwock-Świerk, Poland
| | - N Krawczyk
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - W Krzemień
- High Energy Department, National Centre for Nuclear Research, 05-400, Otwock-Świerk, Poland
| | - T Kozik
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland
| | - E Kubicz
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - S Niedźwiecki
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - S Parzych
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - M Pawlik-Niedźwiecka
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - L Raczyński
- Department of Complex Systems, National Centre for Nuclear Research, 05-400, Otwock-Świerk, Poland
| | - J Raj
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - S Sharma
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - S Choudhary
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - R Y Shopa
- Department of Complex Systems, National Centre for Nuclear Research, 05-400, Otwock-Świerk, Poland
| | - A Sienkiewicz
- Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 3, 20-031, Lublin, Poland
| | - M Silarski
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - M Skurzok
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland.,INFN, Laboratori Nazionali di Frascati CP 13, Via E. Fermi 40, 00044, Frascati, Italy
| | - E Ł Stępień
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - F Tayefi
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348, Kraków, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - W Wiślicki
- Department of Complex Systems, National Centre for Nuclear Research, 05-400, Otwock-Świerk, Poland
| |
Collapse
|
36
|
Moskal P, Kowalski P, Shopa RY, Raczyński L, Baran J, Chug N, Curceanu C, Czerwiński E, Dadgar M, Dulski K, Gajos A, Hiesmayr BC, Kacprzak K, Kapłon Ł, Kisielewska D, Klimaszewski K, Kopka P, Korcyl G, Krawczyk N, Krzemień W, Kubicz E, Niedźwiecki S, Parzych S, Raj J, Sharma S, Shivani S, Stępień E, Tayefi F, Wiślicki W. Simulating NEMA characteristics of the modular total-body J-PET scanner-an economic total-body PET from plastic scintillators. Phys Med Biol 2021; 66. [PMID: 34289460 DOI: 10.1088/1361-6560/ac16bd] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/21/2021] [Indexed: 02/01/2023]
Abstract
The purpose of the presented research is estimation of the performance characteristics of the economic total-body Jagiellonian-PET system (TB-J-PET) constructed from plastic scintillators. The characteristics are estimated according to the NEMA NU-2-2018 standards utilizing the GATE package. The simulated detector consists of 24 modules, each built out of 32 plastic scintillator strips (each with cross section of 6 mm times 30 mm and length of 140 or 200 cm) arranged in two layers in regular 24-sided polygon circumscribing a circle with the diameter of 78.6 cm. For the TB-J-PET with an axial field-of-view (AFOV) of 200 cm, a spatial resolutions (SRs) of 3.7 mm (transversal) and 4.9 mm (axial) are achieved. The noise equivalent count rate (NECR) peak of 630 kcps is expected at 30 kBq cc-1. Activity concentration and the sensitivity at the center amounts to 38 cps kBq-1. The scatter fraction (SF) is estimated to 36.2 %. The values of SF and SR are comparable to those obtained for the state-of-the-art clinical PET scanners and the first total-body tomographs: uExplorer and PennPET. With respect to the standard PET systems with AFOV in the range from 16 to 26 cm, the TB-J-PET is characterized by an increase in NECR approximately by factor of 4 and by the increase of the whole-body sensitivity by factor of 12.6 to 38. The time-of-flight resolution for the TB-J-PET is expected to be at the level of CRT = 240 ps full width at half maximum. For the TB-J-PET with an AFOV of 140 cm, an image quality of the reconstructed images of a NEMA IEC phantom was presented with a contrast recovery coefficient and a background variability parameters. The increase of the whole-body sensitivity and NECR estimated for the TB-J-PET with respect to current commercial PET systems makes the TB-J-PET a promising cost-effective solution for the broad clinical applications of total-body PET scanners. TB-J-PET may constitute an economic alternative for the crystal TB-PET scanners, since plastic scintillators are much cheaper than BGO or LYSO crystals and axial arrangement of the strips significantly reduces the costs of readout electronics and SiPMs.
Collapse
Affiliation(s)
- P Moskal
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Cracow, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Cracow, Poland
| | - P Kowalski
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - R Y Shopa
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - L Raczyński
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - J Baran
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Cracow, Poland
| | - N Chug
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Cracow, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Cracow, Poland
| | - C Curceanu
- INFN, Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
| | - E Czerwiński
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Cracow, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Cracow, Poland
| | - M Dadgar
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Cracow, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Cracow, Poland
| | - K Dulski
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Cracow, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Cracow, Poland
| | - A Gajos
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Cracow, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Cracow, Poland
| | - B C Hiesmayr
- Faculty of Physics, University of Vienna, A-1090 Vienna, Austria
| | - K Kacprzak
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Cracow, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Cracow, Poland
| | - Ł Kapłon
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Cracow, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Cracow, Poland
| | - D Kisielewska
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Cracow, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Cracow, Poland
| | - K Klimaszewski
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - P Kopka
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - G Korcyl
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Cracow, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Cracow, Poland
| | - N Krawczyk
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Cracow, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Cracow, Poland
| | - W Krzemień
- High Energy Physics Division, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - E Kubicz
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Cracow, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Cracow, Poland
| | - Sz Niedźwiecki
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Cracow, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Cracow, Poland
| | - Sz Parzych
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Cracow, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Cracow, Poland
| | - J Raj
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Cracow, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Cracow, Poland
| | - S Sharma
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Cracow, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Cracow, Poland
| | - S Shivani
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Cracow, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Cracow, Poland
| | - E Stępień
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Cracow, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Cracow, Poland
| | - F Tayefi
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Cracow, Poland.,Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Cracow, Poland
| | - W Wiślicki
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| |
Collapse
|
37
|
Shopa RY, Klimaszewski K, Kopka P, Kowalski P, Krzemień W, Raczyński L, Wiślicki W, Chug N, Curceanu C, Czerwiński E, Dadgar M, Dulski K, Gajos A, Hiesmayr BC, Kacprzak K, Kapłon Ł, Kisielewska D, Korcyl G, Krawczyk N, Kubicz E, Niedźwiecki S, Raj J, Sharma S, Shivani, Stȩpień EŁ, Tayefi F, Moskal P. Optimisation of the event-based TOF filtered back-projection for online imaging in total-body J-PET. Med Image Anal 2021; 73:102199. [PMID: 34365143 DOI: 10.1016/j.media.2021.102199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
We perform a parametric study of the newly developed time-of-flight (TOF) image reconstruction algorithm, proposed for the real-time imaging in total-body Jagiellonian PET (J-PET) scanners. The asymmetric 3D filtering kernel is applied at each most likely position of electron-positron annihilation, estimated from the emissions of back-to-back γ-photons. The optimisation of its parameters is studied using Monte Carlo simulations of a 1-mm spherical source, NEMA IEC and XCAT phantoms inside the ideal J-PET scanner. The combination of high-pass filters which included the TOF filtered back-projection (FBP), resulted in spatial resolution, 1.5 times higher in the axial direction than for the conventional 3D FBP. For realistic 10-minute scans of NEMA IEC and XCAT, which require a trade-off between the noise and spatial resolution, the need for Gaussian TOF kernel components, coupled with median post-filtering, is demonstrated. The best sets of 3D filter parameters were obtained by the Nelder-Mead minimisation of the mean squared error between the resulting and reference images. The approach allows training the reconstruction algorithm for custom scans, using the IEC phantom, when the temporal resolution is below 50 ps. The image quality parameters, estimated for the best outcomes, were systematically better than for the non-TOF FBP.
Collapse
Affiliation(s)
- R Y Shopa
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland.
| | - K Klimaszewski
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - P Kopka
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - P Kowalski
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - W Krzemień
- High Energy Physics Division, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - L Raczyński
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - W Wiślicki
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - N Chug
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - C Curceanu
- INFN, Laboratori Nazionali di Frascati, Frascati 00044, Italy
| | - E Czerwiński
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - M Dadgar
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - K Dulski
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - A Gajos
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - B C Hiesmayr
- Faculty of Physics, University of Vienna, Vienna 1090, Austria
| | - K Kacprzak
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - Ł Kapłon
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - D Kisielewska
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - G Korcyl
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - N Krawczyk
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - E Kubicz
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - Sz Niedźwiecki
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - J Raj
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - S Sharma
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - Shivani
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - E Ł Stȩpień
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - F Tayefi
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| | - P Moskal
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, 30-348 Cracow, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Poland
| |
Collapse
|
38
|
Gundacker S, Pots RH, Nepomnyashchikh A, Radzhabov E, Shendrik R, Omelkov S, Kirm M, Acerbi F, Capasso M, Paternoster G, Mazzi A, Gola A, Chen J, Auffray E. Vacuum ultraviolet silicon photomultipliers applied to BaF 2cross-luminescence detection for high-rate ultrafast timing applications. Phys Med Biol 2021; 66. [PMID: 33794510 DOI: 10.1088/1361-6560/abf476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 04/01/2021] [Indexed: 11/11/2022]
Abstract
Inorganic scintillators are widely used for fast timing applications in high-energy physics (HEP) experiments, time-of-flight positron emission tomography and time tagging of soft and hard x-ray photons at advanced light sources. As the best coincidence time resolution (CTR) achievable is proportional to the square root of the scintillation decay time it is worth studying fast cross-luminescence, for example in BaF2which has an intrinsic yield of about 1400 photons/MeV. However, emission bands in BaF2are located in the deep-UV at 195 nm and 220 nm, which sets severe constraints on photodetector selection. Recent developments in dark matter and neutrinoless double beta decay searches have led to silicon photomultipliers (SiPMs) with photon detection efficiencies of 20%-25% at wavelengths of 200 nm. We tested state-of-the-art devices from Fondazione Bruno Kessler and measured a best CTR of 51 ± 5 ps full width at half maximum when coupling 2 mm × 2 mm × 3 mm BaF2crystals excited by 511 keV electron-positron annihilation gammas. Using these vacuum ultraviolet SiPMs we recorded the scintillation kinetics of samples from Epic Crystal under 511 keV excitation, confirming a fast decay time of 855 ps with 12.2% relative light yield and 805 ns with 84.0% abundance, together with a smaller rise time of 4 ps beyond the resolution of our setup. The total intrinsic light yield was determined to be 8500 photons/MeV. We also revealed a faster component with 136 ps decay time and 3.7% light yield contribution, which is extremely interesting for the fastest timing applications. Timing characteristics and CTR results on BaF2samples from different producers and with different dopants (yttrium, cadmium and lanthanum) are given, and clearly show that the the slow 800 ns emission can be effectively suppressed. Such results ultimately pave the way for high-rate ultrafast timing applications in medical diagnosis, range monitoring in proton or heavy ion therapy and HEP.
Collapse
Affiliation(s)
- S Gundacker
- CERN,1211 Geneve 23, Switzerland.,UniMIB,Piazza dell'Ateneo Nuovo, 1-20126, Milano, Italy
| | - R H Pots
- CERN,1211 Geneve 23, Switzerland.,RWTH Aachen, Templergraben 55, 52062 Aachen, Germany
| | - A Nepomnyashchikh
- Vinogradov Institute of Geochemistry, Favorskii Street 1a, PO Box 4019, Irkutsk 664033, Russia
| | - E Radzhabov
- Vinogradov Institute of Geochemistry, Favorskii Street 1a, PO Box 4019, Irkutsk 664033, Russia
| | - R Shendrik
- Vinogradov Institute of Geochemistry, Favorskii Street 1a, PO Box 4019, Irkutsk 664033, Russia
| | - S Omelkov
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu 50411, Estonia
| | - M Kirm
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu 50411, Estonia
| | - F Acerbi
- Fondazione Bruno Kessler, via Sommarive 18, Trento 38123, Italy
| | - M Capasso
- Fondazione Bruno Kessler, via Sommarive 18, Trento 38123, Italy
| | - G Paternoster
- Fondazione Bruno Kessler, via Sommarive 18, Trento 38123, Italy
| | - A Mazzi
- Fondazione Bruno Kessler, via Sommarive 18, Trento 38123, Italy
| | - A Gola
- Fondazione Bruno Kessler, via Sommarive 18, Trento 38123, Italy
| | - J Chen
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 588 Hesuo Road, Jiading District, Shanghai 201899, People's Republic of China
| | | |
Collapse
|
39
|
Sarrut D, Bała M, Bardiès M, Bert J, Chauvin M, Chatzipapas K, Dupont M, Etxebeste A, M Fanchon L, Jan S, Kayal G, S Kirov A, Kowalski P, Krzemien W, Labour J, Lenz M, Loudos G, Mehadji B, Ménard L, Morel C, Papadimitroulas P, Rafecas M, Salvadori J, Seiter D, Stockhoff M, Testa E, Trigila C, Pietrzyk U, Vandenberghe S, Verdier MA, Visvikis D, Ziemons K, Zvolský M, Roncali E. Advanced Monte Carlo simulations of emission tomography imaging systems with GATE. Phys Med Biol 2021; 66:10.1088/1361-6560/abf276. [PMID: 33770774 PMCID: PMC10549966 DOI: 10.1088/1361-6560/abf276] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/26/2021] [Indexed: 12/13/2022]
Abstract
Built on top of the Geant4 toolkit, GATE is collaboratively developed for more than 15 years to design Monte Carlo simulations of nuclear-based imaging systems. It is, in particular, used by researchers and industrials to design, optimize, understand and create innovative emission tomography systems. In this paper, we reviewed the recent developments that have been proposed to simulate modern detectors and provide a comprehensive report on imaging systems that have been simulated and evaluated in GATE. Additionally, some methodological developments that are not specific for imaging but that can improve detector modeling and provide computation time gains, such as Variance Reduction Techniques and Artificial Intelligence integration, are described and discussed.
Collapse
Affiliation(s)
- David Sarrut
- Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1294, INSA-Lyon, Université Lyon 1, Lyon, France
| | | | - Manuel Bardiès
- Cancer Research Institute of Montpellier, U1194 INSERM/ICM/Montpellier University, 208 Av des Apothicaires, F-34298 Montpellier cedex 5, France
| | - Julien Bert
- LaTIM, INSERM UMR 1101, IBRBS, Faculty of Medicine, Univ Brest, 22 avenue Camille Desmoulins, F-29238, Brest, France
| | - Maxime Chauvin
- CRCT, UMR 1037, INSERM, Université Toulouse III Paul Sabatier, Toulouse, France
| | | | | | - Ane Etxebeste
- Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1294, INSA-Lyon, Université Lyon 1, Lyon, France
| | - Louise M Fanchon
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, United States of America
| | - Sébastien Jan
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, F-91401, Orsay, France
| | - Gunjan Kayal
- CRCT, UMR 1037, INSERM, Université Toulouse III Paul Sabatier, Toulouse, France
- SCK CEN, Belgian Nuclear Research Centre, Boeretang 200, Mol 2400, Belgium
| | - Assen S Kirov
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, United States of America
| | - Paweł Kowalski
- High Energy Physics Division, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Wojciech Krzemien
- High Energy Physics Division, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Joey Labour
- Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1294, INSA-Lyon, Université Lyon 1, Lyon, France
| | - Mirjam Lenz
- FH Aachen University of Applied Sciences, Forschungszentrum Jülich, Jülich, Germany
- Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - George Loudos
- Bioemission Technology Solutions (BIOEMTECH), Alexandras Av. 116, Athens, Greece
| | | | - Laurent Ménard
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, F-91405 Orsay, France
- Université de Paris, IJCLab, F-91405 Orsay France
| | | | | | - Magdalena Rafecas
- Institute of Medical Engineering, University of Lübeck, Lübeck, Germany
| | - Julien Salvadori
- Department of Nuclear Medicine and Nancyclotep molecular imaging platform, CHRU-Nancy, Université de Lorraine, F-54000, Nancy, France
| | - Daniel Seiter
- Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, 53705, United States of America
| | - Mariele Stockhoff
- Medical Image and Signal Processing (MEDISIP), Ghent University, Ghent, Belgium
| | - Etienne Testa
- Univ. Lyon, Univ. Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, F-69622, Villeurbanne, France
| | - Carlotta Trigila
- Department of Biomedical Engineering, University of California, Davis, CA 95616 United States of America
| | - Uwe Pietrzyk
- Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | | | - Marc-Antoine Verdier
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, F-91405 Orsay, France
- Université de Paris, IJCLab, F-91405 Orsay France
| | - Dimitris Visvikis
- LaTIM, INSERM UMR 1101, IBRBS, Faculty of Medicine, Univ Brest, 22 avenue Camille Desmoulins, F-29238, Brest, France
| | - Karl Ziemons
- FH Aachen University of Applied Sciences, Forschungszentrum Jülich, Jülich, Germany
| | - Milan Zvolský
- Institute of Medical Engineering, University of Lübeck, Lübeck, Germany
| | - Emilie Roncali
- Department of Biomedical Engineering, University of California, Davis, CA 95616 United States of America
| |
Collapse
|
40
|
Herraiz JL, Bembibre A, López-Montes A. Deep-Learning Based Positron Range Correction of PET Images. APPLIED SCIENCES-BASEL 2020. [DOI: https://doi.org/10.3390/app11010266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Positron emission tomography (PET) is a molecular imaging technique that provides a 3D image of functional processes in the body in vivo. Some of the radionuclides proposed for PET imaging emit high-energy positrons, which travel some distance before they annihilate (positron range), creating significant blurring in the reconstructed images. Their large positron range compromises the achievable spatial resolution of the system, which is more significant when using high-resolution scanners designed for the imaging of small animals. In this work, we trained a deep neural network named Deep-PRC to correct PET images for positron range effects. Deep-PRC was trained with modeled cases using a realistic Monte Carlo simulation tool that considers the positron energy distribution and the materials and tissues it propagates into. Quantification of the reconstructed PET images corrected with Deep-PRC showed that it was able to restore the images by up to 95% without any significant noise increase. The proposed method, which is accessible via Github, can provide an accurate positron range correction in a few seconds for a typical PET acquisition.
Collapse
|
41
|
Herraiz JL, Bembibre A, López-Montes A. Deep-Learning Based Positron Range Correction of PET Images. APPLIED SCIENCES 2020; 11:266. [DOI: 10.3390/app11010266] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Positron emission tomography (PET) is a molecular imaging technique that provides a 3D image of functional processes in the body in vivo. Some of the radionuclides proposed for PET imaging emit high-energy positrons, which travel some distance before they annihilate (positron range), creating significant blurring in the reconstructed images. Their large positron range compromises the achievable spatial resolution of the system, which is more significant when using high-resolution scanners designed for the imaging of small animals. In this work, we trained a deep neural network named Deep-PRC to correct PET images for positron range effects. Deep-PRC was trained with modeled cases using a realistic Monte Carlo simulation tool that considers the positron energy distribution and the materials and tissues it propagates into. Quantification of the reconstructed PET images corrected with Deep-PRC showed that it was able to restore the images by up to 95% without any significant noise increase. The proposed method, which is accessible via Github, can provide an accurate positron range correction in a few seconds for a typical PET acquisition.
Collapse
Affiliation(s)
- Joaquín L. Herraiz
- Nuclear Physics Group and IPARCOS, Faculty of Physical Sciences, University Complutense of Madrid, CEI Moncloa, 28040 Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Adrián Bembibre
- Nuclear Physics Group and IPARCOS, Faculty of Physical Sciences, University Complutense of Madrid, CEI Moncloa, 28040 Madrid, Spain
| | - Alejandro López-Montes
- Nuclear Physics Group and IPARCOS, Faculty of Physical Sciences, University Complutense of Madrid, CEI Moncloa, 28040 Madrid, Spain
| |
Collapse
|
42
|
Raczyński L, Wiślicki W, Klimaszewski K, Krzemień W, Kopka P, Kowalski P, Shopa R, Bała M, Chhokar J, Curceanu C, Czerwiński E, Dulski K, Gajewski J, Gajos A, Gorgol M, Del Grande R, Hiesmayr B, Jasińska B, Kacprzak K, Kapłon L, Kisielewska D, Korcyl G, Kozik T, Krawczyk N, Kubicz E, Mohammed M, Niedźwiecki S, Pałka M, Pawlik-Niedźwiecka M, Raj J, Rakoczy K, Ruciński A, Sharma S, Shivani S, Silarski M, Skurzok M, Stepień E, Zgardzińska B, Moskal P. 3D TOF-PET image reconstruction using total variation regularization. Phys Med 2020; 80:230-242. [DOI: 10.1016/j.ejmp.2020.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/31/2022] Open
|
43
|
Chiang CC, Chuang CC, Ni YC, Jan ML, Chuang KS, Lin HH. Time of flight dual photon emission computed tomography. Sci Rep 2020; 10:19514. [PMID: 33177616 PMCID: PMC7659351 DOI: 10.1038/s41598-020-76526-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/28/2020] [Indexed: 11/09/2022] Open
Abstract
Time-of-flight dual photon emission computed tomography (TOF-DuPECT) is an imaging system that can obtain radionuclide distributions using time information recorded from two cascade-decay photons. The potential decay locations in the image space, a hyperbolic response curve, can be determined via time-difference-of-arrival (TDOA) estimations from two instantaneous coincidence photons. In this feasibility study, Monte Carlo simulations were performed to generate list-mode coincidence data. A full-ring positron emission tomography-like detection system geometry was built in the simulation environment. A contrast phantom and a Jaszczak-like phantom filled with Selenium-75 (Se-75) were used to evaluate the image quality. A TOF-DuPECT system with varying coincidence time resolution (CTR) was then evaluated. We used the stochastic origin ensemble (SOE) algorithm to reconstruct images from the recorded list-mode data. The results indicate that the SOE method can be successfully employed for the TOF-DuPECT system and can achieve acceptable image quality when the CTR is less than 100 ps. Therefore, the TOF-DuPECT imaging system is feasible. With the improvement of the detector with time, future implementations and applications of TOF-DuPECT are promising. Further quantitative imaging techniques such as attenuation and scatter corrections for the TOF-DuPECT system will be developed in future.
Collapse
Affiliation(s)
- Chih-Chieh Chiang
- Medical Physics Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, Taiwan
| | - Chun-Chao Chuang
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Ching Ni
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, Taiwan
- Health Physics Division, Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Meei-Ling Jan
- Medical Physics Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Keh-Shih Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, Taiwan
| | - Hsin-Hon Lin
- Medical Physics Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Department of Nuclear Medicine, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan.
| |
Collapse
|
44
|
Lecoq P, Morel C, Prior JO, Visvikis D, Gundacker S, Auffray E, Križan P, Turtos RM, Thers D, Charbon E, Varela J, de La Taille C, Rivetti A, Breton D, Pratte JF, Nuyts J, Surti S, Vandenberghe S, Marsden P, Parodi K, Benlloch JM, Benoit M. Roadmap toward the 10 ps time-of-flight PET challenge. Phys Med Biol 2020; 65:21RM01. [PMID: 32434156 PMCID: PMC7721485 DOI: 10.1088/1361-6560/ab9500] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since the seventies, positron emission tomography (PET) has become an invaluable medical molecular imaging modality with an unprecedented sensitivity at the picomolar level, especially for cancer diagnosis and the monitoring of its response to therapy. More recently, its combination with x-ray computed tomography (CT) or magnetic resonance (MR) has added high precision anatomic information in fused PET/CT and PET/MR images, thus compensating for the modest intrinsic spatial resolution of PET. Nevertheless, a number of medical challenges call for further improvements in PET sensitivity. These concern in particular new treatment opportunities in the context personalized (also called precision) medicine, such as the need to dynamically track a small number of cells in cancer immunotherapy or stem cells for tissue repair procedures. A better signal-to-noise ratio (SNR) in the image would allow detecting smaller size tumours together with a better staging of the patients, thus increasing the chances of putting cancer in complete remission. Moreover, there is an increasing demand for reducing the radioactive doses injected to the patients without impairing image quality. There are three ways to improve PET scanner sensitivity: improving detector efficiency, increasing geometrical acceptance of the imaging device and pushing the timing performance of the detectors. Currently, some pre-localization of the electron-positron annihilation along a line-of-response (LOR) given by the detection of a pair of annihilation photons is provided by the detection of the time difference between the two photons, also known as the time-of-flight (TOF) difference of the photons, whose accuracy is given by the coincidence time resolution (CTR). A CTR of about 10 picoseconds FWHM will ultimately allow to obtain a direct 3D volume representation of the activity distribution of a positron emitting radiopharmaceutical, at the millimetre level, thus introducing a quantum leap in PET imaging and quantification and fostering more frequent use of 11C radiopharmaceuticals. The present roadmap article toward the advent of 10 ps TOF-PET addresses the status and current/future challenges along the development of TOF-PET with the objective to reach this mythic 10 ps frontier that will open the door to real-time volume imaging virtually without tomographic inversion. The medical impact and prospects to achieve this technological revolution from the detection and image reconstruction point-of-views, together with a few perspectives beyond the TOF-PET application are discussed.
Collapse
Affiliation(s)
- Paul Lecoq
- CERN, department EP, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Moskal P, Stępień EŁ. Prospects and Clinical Perspectives of Total-Body PET Imaging Using Plastic Scintillators. PET Clin 2020; 15:439-452. [DOI: 10.1016/j.cpet.2020.06.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
46
|
Sharma N, Silarski M, Chhokar J, Czerwinski E, Curceanu C, Dulski K, Farbaniec K, Gajos A, Del Grande R, Gorgol M, Hiesmayr BC, Jasinska B, Kacprzak K, Kaplon L, Kisielewska D, Klimaszewski K, Korcyl G, Kowalski P, Krawczyk N, Krzemien W, Kozik T, Kubicz E, Mohammed M, Niedzwiecki S, Palka M, Pawlik-Niedzwiecka M, Raczynski L, Raj J, Sharma S, Shivani S, Shopa RY, Skurzok M, Wislicki W, Zgardzinska B, Moskal P. Hit-Time and Hit-Position Reconstruction in Strips of Plastic Scintillators Using Multithreshold Readouts. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020. [DOI: 10.1109/trpms.2020.2990621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
47
|
Sensitivity of Discrete Symmetry Tests in the Positronium System with the J-PET Detector. Symmetry (Basel) 2020. [DOI: 10.3390/sym12081268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Study of certain angular correlations in the three-photon annihilations of the triplet state of positronium, the electron–positron bound state, may be used as a probe of potential CP and CPT-violating effects in the leptonic sector. We present the perspectives of CP and CPT tests using this process recorded with a novel detection system for photons in the positron annihilation energy range, the Jagiellonian Positron Emission Tomography (J-PET). We demonstrate the capability of this system to register three-photon annihilations with an unprecedented range of kinematical configurations and to measure the CPT-odd correlation between positronium spin and annihilation plane orientation with a precision improved by at least an order of magnitude with respect to present results. We also discuss the means to control and reduce detector asymmetries in order to allow J-PET to set the first measurement of the correlation between positronium spin and momentum of the most energetic annihilation photon which has never been studied to date.
Collapse
|
48
|
Zgardzińska B, Chołubek G, Jarosz B, Wysogląd K, Gorgol M, Goździuk M, Chołubek M, Jasińska B. Studies on healthy and neoplastic tissues using positron annihilation lifetime spectroscopy and focused histopathological imaging. Sci Rep 2020; 10:11890. [PMID: 32681103 PMCID: PMC7367828 DOI: 10.1038/s41598-020-68727-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/29/2020] [Indexed: 11/29/2022] Open
Abstract
Samples of healthy and neoplastic myometrial tissues were investigated using Positron Annihilation Lifetime Spectroscopy (PALS). Meaningful differences between normal and diseased tissues were observed for each patient. The differences were also clearly visible for various kinds of lesions in each patient. The set of lifetimes and intensities obtained from PALS was correlated with the histopathological examinations of the same fragments of tissues. Strong coincidence between PALS parameters and histopathological findings was observed only in the case of a very precise correlation of the investigated area in both techniques. Measurements and discussion presented here were carried out to develop a method for measuring the sub-nanometric structure of human tissues. This kind of investigation, using positron probe, creates an opportunity of a new application in Positron Emission Tomography (PET).
Collapse
Affiliation(s)
- B Zgardzińska
- Institute of Physics, Maria Curie-Sklodowska University, Pl. Marii Curie-Skłodowskiej 1, 20-031, Lublin, Poland.
| | - G Chołubek
- Diagnostic Techniques Unit, Faculty of Health Sciences, Medical University of Lublin, Al. Racławickie 1, 20-059, Lublin, Poland
| | - B Jarosz
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Al. Racławickie 1, 20-954, Lublin, Poland
| | - K Wysogląd
- Institute of Physics, Maria Curie-Sklodowska University, Pl. Marii Curie-Skłodowskiej 1, 20-031, Lublin, Poland
| | - M Gorgol
- Institute of Physics, Maria Curie-Sklodowska University, Pl. Marii Curie-Skłodowskiej 1, 20-031, Lublin, Poland
| | - M Goździuk
- Institute of Physics, Maria Curie-Sklodowska University, Pl. Marii Curie-Skłodowskiej 1, 20-031, Lublin, Poland
| | - M Chołubek
- Medical Faculty, Medical University of Lublin, Al. Racławickie 1, 20-059, Lublin, Poland
| | - B Jasińska
- Institute of Physics, Maria Curie-Sklodowska University, Pl. Marii Curie-Skłodowskiej 1, 20-031, Lublin, Poland
| |
Collapse
|
49
|
Moskal P, Kisielewska D, Y Shopa R, Bura Z, Chhokar J, Curceanu C, Czerwiński E, Dadgar M, Dulski K, Gajewski J, Gajos A, Gorgol M, Del Grande R, C Hiesmayr B, Jasińska B, Kacprzak K, Kamińska A, Kapłon Ł, Karimi H, Korcyl G, Kowalski P, Krawczyk N, Krzemień W, Kozik T, Kubicz E, Małczak P, Mohammed M, Niedźwiecki S, Pałka M, Pawlik-Niedźwiecka M, Pędziwiatr M, Raczyński L, Raj J, Ruciński A, Sharma S, Shivani S, Silarski M, Skurzok M, Stępień EŁ, Vandenberghe S, Wiślicki W, Zgardzińska B. Performance assessment of the 2 γpositronium imaging with the total-body PET scanners. EJNMMI Phys 2020; 7:44. [PMID: 32607664 PMCID: PMC7326848 DOI: 10.1186/s40658-020-00307-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 05/17/2020] [Indexed: 02/01/2023] Open
Abstract
Purpose In living organisms, the positron-electron annihilation (occurring during the PET imaging) proceeds in about 30% via creation of a metastable ortho-positronium atom. In the tissue, due to the pick-off and conversion processes, over 98% of ortho-positronia annihilate into two 511 keV photons. In this article, we assess the feasibility for reconstruction of the mean ortho-positronium lifetime image based on annihilations into two photons. The main objectives of this work include the (i) estimation of the sensitivity of the total-body PET scanners for the ortho-positronium mean lifetime imaging using 2γ annihilations and (ii) estimation of the spatial and time resolution of the ortho-positronium image as a function of the coincidence resolving time (CRT) of the scanner. Methods Simulations are conducted assuming that radiopharmaceutical is labeled with 44Sc isotope emitting one positron and one prompt gamma. The image is reconstructed on the basis of triple coincidence events. The ortho-positronium lifetime spectrum is determined for each voxel of the image. Calculations were performed for cases of total-body detectors build of (i) LYSO scintillators as used in the EXPLORER PET and (ii) plastic scintillators as anticipated for the cost-effective total-body J-PET scanner. To assess the spatial and time resolution, the four cases were considered assuming that CRT is equal to 500 ps, 140 ps, 50 ps, and 10 ps. Results The estimated total-body PET sensitivity for the registration and selection of image forming triple coincidences (2γ+γprompt) is larger by a factor of 13.5 (for LYSO PET) and by factor of 5.2 (for plastic PET) with respect to the sensitivity for the standard 2γ imaging by LYSO PET scanners with AFOV = 20 cm. The spatial resolution of the ortho-positronium image is comparable with the resolution achievable when using TOF-FBP algorithms already for CRT = 50 ps. For the 20-min scan, the resolution better than 20 ps is expected for the mean ortho-positronium lifetime image determination. Conclusions Ortho-positronium mean lifetime imaging based on the annihilations into two photons and prompt gamma is shown to be feasible with the advent of the high sensitivity total-body PET systems and time resolution of the order of tens of picoseconds.
Collapse
Affiliation(s)
- P Moskal
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland.
| | - D Kisielewska
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland.
| | - R Y Shopa
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, 05-400, Poland
| | - Z Bura
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland
| | - J Chhokar
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland
| | - C Curceanu
- INFN, Laboratori Nazionali di Frascati, Frascati, 00044, Italy
| | - E Czerwiński
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland
| | - M Dadgar
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland
| | - K Dulski
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland
| | - J Gajewski
- Institute of Nuclear Physics PAN, Cracow, Poland
| | - A Gajos
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland
| | - M Gorgol
- Institute of Physics, Maria Curie-Skłodowska University, Lublin, 20-031, Poland
| | - R Del Grande
- INFN, Laboratori Nazionali di Frascati, Frascati, 00044, Italy
| | - B C Hiesmayr
- Faculty of Physics, University of Vienna, Vienna, 1090, Austria
| | - B Jasińska
- Institute of Physics, Maria Curie-Skłodowska University, Lublin, 20-031, Poland
| | - K Kacprzak
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland
| | - A Kamińska
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland
| | - Ł Kapłon
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland
| | - H Karimi
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland
| | - G Korcyl
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland
| | - P Kowalski
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, 05-400, Poland
| | - N Krawczyk
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland
| | - W Krzemień
- High Energy Physics Division, National Centre for Nuclear Research, Otwock-Świerk, 05-400, Poland
| | - T Kozik
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland
| | - E Kubicz
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland
| | - P Małczak
- 2nd Department of General Surgery, Jagiellonian University Medical College, Cracow, Poland
| | - M Mohammed
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland.,Department of Physics, College of Education for Pure Sciences, University of Mosul, Mosul, Iraq
| | - Sz Niedźwiecki
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland
| | - M Pałka
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland
| | - M Pawlik-Niedźwiecka
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland
| | - M Pędziwiatr
- 2nd Department of General Surgery, Jagiellonian University Medical College, Cracow, Poland
| | - L Raczyński
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, 05-400, Poland
| | - J Raj
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland
| | - A Ruciński
- Institute of Nuclear Physics PAN, Cracow, Poland
| | - S Sharma
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland
| | - S Shivani
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland
| | - M Silarski
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland
| | - M Skurzok
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland.,INFN, Laboratori Nazionali di Frascati, Frascati, 00044, Italy
| | - E Ł Stępień
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, prof. Stanisława Łojasiewicza 11, Cracow, 30-348, Poland
| | - S Vandenberghe
- Department of Electronics and Information Systems, MEDISIP, Ghent University-IBiTech, De Pintelaan 185 block B, Ghent, B-9000, Belgium
| | - W Wiślicki
- High Energy Physics Division, National Centre for Nuclear Research, Otwock-Świerk, 05-400, Poland
| | - B Zgardzińska
- Institute of Physics, Maria Curie-Skłodowska University, Lublin, 20-031, Poland
| |
Collapse
|
50
|
Estimating relationship between the time over threshold and energy loss by photons in plastic scintillators used in the J-PET scanner. EJNMMI Phys 2020; 7:39. [PMID: 32504254 PMCID: PMC7275104 DOI: 10.1186/s40658-020-00306-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/17/2020] [Indexed: 12/28/2022] Open
Abstract
PURPOSE The time-over-threshold (TOT) technique is being used widely due to itsimplications in developing the multi-channel readouts, mainly when fast signal processing is required. Using the TOT technique, as a measure of energy loss instead of charge integration methods, significantly reduces the signal readout costs by combining the time and energy information. Therefore, this approach can potentially be utilized in J-PET tomograph which is built from plastic scintillators characterized by fast light signals. The drawback in adopting this technique lies in the non-linear correlation between input energy loss and TOT of the signal. The main motivation behind this work is to develop the relationship between TOT and energy loss and validate it by the J-PET tomograph setup. METHODS The experiment was performed using a 22Na beta emitter source placed in the center of the J-PET tomograph. This isotope produces photons of two different energies: 511 keV photons from the positron annihilation (direct annihilation or through the formation of a para-positronium atom or pick-off process of ortho-positronium atoms) and a 1275 keV prompt photon. This allows the study of the correlation between TOT values and energy loss for energy ranges up to 1000 keV. Since the photon interacts predominantly via Compton scattering inside the plastic scintillator, there is no direct information of the energy deposition. However, using the J-PET geometry, one can measure the scattering angle of the interacting photon. Since the 22Na source emits photons of two different energies, it is necessary to know unambiguously the energy of incident photons and their corresponding scattering angles in order to estimate energy deposition. In summary, this work presents a dedicated algorithm developed to tag photons of different energies and studying their scattering angles to calculate the energy deposition by the interacting photons. RESULTS A new method was elaborated to measure the energy loss by photons interacting with plastic scintillators used in the J-PET tomograph. We find the relationship between the energy loss and TOT is non-linear and can be described by the functions TOT = A0 + A1 * ln(E dep + A2) + A3 * (ln(E dep + A2))2 and TOT = A0 - A1 * A2[Formula: see text]. In addition, we also introduced a theoretical model to calculate the TOT as a function of energy loss in plastic scintillators. CONCLUSIONS A relationship between TOT and energy loss by photons interacting inside the plastic scintillators used in J-PET scanner is established for a deposited energy range of 100-1000 keV.
Collapse
|