1
|
Cong L, Kuang Z, Ren N, Sang Z, Liu Z, Niu M, Xie S, Peng Q, Yang Y. Algorithms to reduce the edge effect and improve the flood histogram quality of a PET detector consisting of two pixelated crystal arrays. Med Phys 2025; 52:856-866. [PMID: 39432181 DOI: 10.1002/mp.17484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
PURPOSE The performance of detectors is key for a PET scanner to achieve high spatial resolution and high sensitivity. This work aims to develop flood histogram generating algorithms to reduce the edge effect and improve the crystal identification of a PET detector consisting of two optically coupled pixelated scintillator detectors. METHODS The PET detector consists of two optically coupled detectors, each consisting of a 23×23 LYSO crystal array with a crystal size of 1.0×1.0×20 mm3 read out by an 8×8 SiPM array with a pixel size of 3.0×3.0 mm2. The SiPM array is read out with a resistor network circuit to obtain four position encoding energy signals. A novel center of gravity (COG) positioning algorithm using six signals from the two detectors was proposed and compared to the traditional COG algorithms using either four or eight signals from the detectors. The raised-to-the-power (RTP) method was applied to the three COG algorithms for the PET detector. Different powers of the RTP from 1.0 to 2.5 were evaluated. RESULTS The proposed COG algorithm significantly improves the crystal identification at the junction of the two detectors as compared to the COG algorithm using four signals of each detector, and improves the crystal identification at the center of the two detectors as compared to the COG algorithm using eight signals from both detectors. The RTP method significantly improves the overall flood histogram qualities of the two COG algorithms using either eight or six signals from the two detectors, and the two COG algorithm provide similar flood histogram quality when a power of 1.5 is used. CONCLUSION The novel positioning algorithms reduce the edge effect and improve the flood histogram quality for a PET detector consisting of two optically coupled detectors, each consisting of a pixelated scintillator crystal array and a SiPM array with highly multiplexed four signal readout. The positioning algorithms can be used in a PET scanner to improve the spatial resolution and sensitivity.
Collapse
Affiliation(s)
- Longhan Cong
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Zhonghua Kuang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Microelectronics and Optoelectronics Technology Key Laboratory of Hunan Higher Education, School of Physics and Electronics-Electrical Engineering, Xiangnan University, Chenzhou, China
| | - Ning Ren
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ziru Sang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zheng Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ming Niu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Siwei Xie
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Qiyu Peng
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yongfeng Yang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
2
|
Wei Q, Wang Y, Huang X, Li D, Zheng Y, Wang P, Sun X, Chai P, Han X, Liu S, Feng B, Zhou W, Zeng X, Zhu M, Zhang Z, Wei L. Performance evaluation of a small-animal PET scanner with 213 mm axis using NEMA NU 4-2008. Med Phys 2025; 52:530-541. [PMID: 39432708 DOI: 10.1002/mp.17469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Long-axis positron emission tomography (PET) has emerged as one of the recent research directions in PET due to its ability to significantly enhance sensitivity and counting performance for low-dose imaging, rapid imaging, and whole-body dynamic imaging. PURPOSE The PET system presented in this study is a long-axis animal PET based on lutetium-yttrium orthosilicate and silicon photomultiplier, designed for whole-body imaging in rats. It features a diameter of 143 mm and an axial length of 213.3 mm. This study evaluated the performance of this PET system in accordance with the National Electrical Manufacturers Association (NEMA) NU 4-2008 standards. METHODS The performance evaluation was conducted according to the NEMA NU 4-2008 standards in terms of spatial resolution, sensitivity, counting rate performance, scatter fraction (SF) and image quality. In addition, a rat imaging study was conducted to assess the imaging capability of this PET system. RESULTS The average energy resolution of the PET system was 12.87%, the average coincidence timing resolution was 751 ps. The FWHM of spatial resolution reconstructed by filtered back projection and 3D-OSEM-PSF algorithm at 5 mm radial offset from the axial center were 1.65 and 0.88 mm. The peak absolute sensitivity measured by a point source at the center of the field of view was evaluated as 6.71% (361-661 keV) and 10.31% (250-750 keV). For the mouse-like phantom, the SF was 11.0% and the peak noise equivalent counting rate (NECR) was 1193 kcps at 94.2 MBq (2.54 mCi). For the rat-like phantom, the SF was 26.8% and the NECR was 682.5 kcps at 78.6 MBq (2.12 mCi). CONCLUSIONS The performance measurement results demonstrate that this PET system exhibits high sensitivity and count rate performance, making it potential for high-quality whole-body dynamic imaging of rats.
Collapse
Affiliation(s)
- Qing Wei
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Yingjie Wang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Xianchao Huang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Daowu Li
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Yushuang Zheng
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Peilin Wang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Xiaoli Sun
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Pei Chai
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Xiaorou Han
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Shuangquan Liu
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Baotong Feng
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Wei Zhou
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Xiangtao Zeng
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Meiling Zhu
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Zhiming Zhang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| | - Long Wei
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
- Jinan Laboratory of Applied Nuclear Science, Jinan, China
- CAEA center of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing, China
| |
Collapse
|
3
|
Ko GB, Kwak D, Lee JS. Enhanced Timing Performance of Dual-Ended PET Detectors for Brain Imaging Using Dual-Finishing Crystal Approach. SENSORS (BASEL, SWITZERLAND) 2024; 24:6520. [PMID: 39460003 PMCID: PMC11511292 DOI: 10.3390/s24206520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
This study presents a novel approach to enhancing the timing performance of dual-ended positron emission tomography (PET) detectors for brain imaging by employing a dual-finishing crystal method. The proposed method integrates both polished and unpolished surfaces within the scintillation crystal block to optimize time-of-flight (TOF) and depth-of-interaction (DOI) resolutions. A dual-finishing detector was constructed using an 8 × 8 LGSO array with a 2 mm pitch, and its performance was compared against fully polished and unpolished crystal blocks. The results indicate that the dual-finishing method significantly improves the timing resolution while maintaining good energy and DOI resolutions. Specifically, the timing resolution achieved with the dual-finishing block was superior, measuring 192.0 ± 12.8 ps, compared to 206.3 ± 9.4 ps and 234.8 ± 17.9 ps for polished and unpolished blocks, respectively. This improvement in timing is crucial for high-performance PET systems, particularly in brain imaging applications where high sensitivity and spatial resolution are paramount.
Collapse
Affiliation(s)
| | | | - Jae Sung Lee
- Brightonix Imaging Inc., Seoul 04782, Republic of Korea; (G.B.K.); (D.K.)
| |
Collapse
|
4
|
Zeng X, Zhang Z, Li D, Huang X, Wang Z, Wang Y, Zhou W, Wang P, Zhu M, Wei Q, Gong H, Wei L. Evaluation of monolithic crystal detector with dual-ended readout utilizing multiplexing method. Phys Med Biol 2024; 69:085003. [PMID: 38484392 DOI: 10.1088/1361-6560/ad3417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
Objective.Monolithic crystal detectors are increasingly being applied in positron emission tomography (PET) devices owing to their excellent depth-of-interaction (DOI) resolution capabilities and high detection efficiency. In this study, we constructed and evaluated a dual-ended readout monolithic crystal detector based on a multiplexing method.Approach.We employed two 12 × 12 silicon photomultiplier (SiPM) arrays for readout, and the signals from the 12 × 12 array were merged into 12 X and 12 Y channels using channel multiplexing. In 2D reconstruction, three methods based on the centre of gravity (COG) were compared, and the concept of thresholds was introduced. Furthermore, a light convolutional neural network (CNN) was employed for testing. To enhance depth localization resolution, we proposed a method by utilizing the mutual information from both ends of the SiPMs. The source width and collimation effect were simulated using GEANT4, and the intrinsic spatial resolution was separated from the measured values.Main results.At an operational voltage of 29 V for the SiPM, an energy resolution of approximately 12.5 % was achieved. By subtracting a 0.8 % threshold from the total energy in every channel, a 2D spatial resolution of approximately 0.90 mm full width at half maximum (FWHM) can be obtained. Furthermore, a higher level of resolution, approximately 0.80 mm FWHM, was achieved using a CNN, with some alleviation of edge effects. With the proposed DOI method, a significant 1.36 mm FWHM average DOI resolution can be achieved. Additionally, it was found that polishing and black coating on the crystal surface yielded smaller edge effects compared to a rough surface with a black coating.Significance.The introduction of a threshold in COG method and a dual-ended readout scheme can lead to excellent spatial resolution for monolithic crystal detectors, which can help to develop PET systems with both high sensitivity and high spatial resolution.
Collapse
Affiliation(s)
- Xiangtao Zeng
- Beijing Engineering Research Centre of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Jinan Laboratory of Applied Nuclear Science, Jinan 250131, People's Republic of China
- CAEA Centre of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing 100049, People's Republic of China
| | - Zhiming Zhang
- Beijing Engineering Research Centre of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Jinan Laboratory of Applied Nuclear Science, Jinan 250131, People's Republic of China
- CAEA Centre of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing 100049, People's Republic of China
| | - Daowu Li
- Beijing Engineering Research Centre of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Jinan Laboratory of Applied Nuclear Science, Jinan 250131, People's Republic of China
- CAEA Centre of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing 100049, People's Republic of China
| | - Xianchao Huang
- Beijing Engineering Research Centre of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Jinan Laboratory of Applied Nuclear Science, Jinan 250131, People's Republic of China
- CAEA Centre of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing 100049, People's Republic of China
| | - Zhuoran Wang
- Beijing Engineering Research Centre of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Jinan Laboratory of Applied Nuclear Science, Jinan 250131, People's Republic of China
- CAEA Centre of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing 100049, People's Republic of China
| | - Yingjie Wang
- Beijing Engineering Research Centre of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Jinan Laboratory of Applied Nuclear Science, Jinan 250131, People's Republic of China
- CAEA Centre of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing 100049, People's Republic of China
| | - Wei Zhou
- Beijing Engineering Research Centre of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Jinan Laboratory of Applied Nuclear Science, Jinan 250131, People's Republic of China
- CAEA Centre of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing 100049, People's Republic of China
| | - Peilin Wang
- Beijing Engineering Research Centre of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Jinan Laboratory of Applied Nuclear Science, Jinan 250131, People's Republic of China
- CAEA Centre of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing 100049, People's Republic of China
| | - Meiling Zhu
- Beijing Engineering Research Centre of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Jinan Laboratory of Applied Nuclear Science, Jinan 250131, People's Republic of China
- CAEA Centre of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing 100049, People's Republic of China
| | - Qing Wei
- Beijing Engineering Research Centre of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Jinan Laboratory of Applied Nuclear Science, Jinan 250131, People's Republic of China
- CAEA Centre of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing 100049, People's Republic of China
| | - Huixing Gong
- Beijing Engineering Research Centre of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Jinan Laboratory of Applied Nuclear Science, Jinan 250131, People's Republic of China
- CAEA Centre of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing 100049, People's Republic of China
| | - Long Wei
- Beijing Engineering Research Centre of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Jinan Laboratory of Applied Nuclear Science, Jinan 250131, People's Republic of China
- CAEA Centre of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing 100049, People's Republic of China
| |
Collapse
|
5
|
Du J, Du S. Performance Comparison of DOI-Encoding PET Detectors Based on 1.1-mm Pitch BGO Arrays With Different Reflectors. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2024; 8:257-262. [PMID: 39279872 PMCID: PMC11392223 DOI: 10.1109/trpms.2024.3361891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Bismuth germanate (BGO)-based positron emission tomography (PET) detectors are potential candidates for low-dose imaging PET scanners, owing to the high stopping power and low background radiation of BGO. In this paper, we compared the performance of two dual-ended readout PET detectors based on 15 × 15 BGO arrays. Both arrays had the same 1.1 mm pitch but utilized different reflectors - barium sulfate (BaSO4) and enhanced specular reflector film (ESR) - for high-resolution PET applications. The detectors were constructed with Hamamatsu 13361-2050-08 SiPM arrays. Each BGO element had dimensions of 1.02 × 1.02 × 20 mm3. The lateral surfaces of the BGO elements were unpolished (saw-cut), while the two ends were polished. Flood histograms showed that the detector based on the BGO array with BaSO4 reflector had much better crystal identification and depth-of-interaction (DOI) resolution. Specifically, the energy, DOI, and timing resolutions for the detector using the BGO array with BaSO4 reflector were 19.8 ± 1.5%, 4.13 ± 0.48 mm, and 2.80 ± 0.23 ns, respectively. In contrast, the values obtained using the BGO array with ESR reflector were 20.9 ± 2.1%, 7.69 ± 1.92 mm, and 2.93 ± 0.20 ns, respectively.
Collapse
Affiliation(s)
- Junwei Du
- Department of Biomedical Engineering, University of California at Davis, Davis, CA, 95616 USA
| | - Shixian Du
- Department of Biomedical Engineering, University of California at Davis and now is with the Department of Radiology & Biomedical Imaging, University of California at San Francisco, San Francisco, CA, 94107 USA
| |
Collapse
|
6
|
Zhang Q, Hu Y, Zhao Y, Cheng J, Fan W, Hu D, Shi F, Cao S, Zhou Y, Yang Y, Liu X, Zheng H, Liang D, Hu Z. Deep Generalized Learning Model for PET Image Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:122-134. [PMID: 37428658 DOI: 10.1109/tmi.2023.3293836] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Low-count positron emission tomography (PET) imaging is challenging because of the ill-posedness of this inverse problem. Previous studies have demonstrated that deep learning (DL) holds promise for achieving improved low-count PET image quality. However, almost all data-driven DL methods suffer from fine structure degradation and blurring effects after denoising. Incorporating DL into the traditional iterative optimization model can effectively improve its image quality and recover fine structures, but little research has considered the full relaxation of the model, resulting in the performance of this hybrid model not being sufficiently exploited. In this paper, we propose a learning framework that deeply integrates DL and an alternating direction of multipliers method (ADMM)-based iterative optimization model. The innovative feature of this method is that we break the inherent forms of the fidelity operators and use neural networks to process them. The regularization term is deeply generalized. The proposed method is evaluated on simulated data and real data. Both the qualitative and quantitative results show that our proposed neural network method can outperform partial operator expansion-based neural network methods, neural network denoising methods and traditional methods.
Collapse
|
7
|
Kuang Z, Sang Z, Ren N, Wang X, Zeng T, Wu S, Niu M, Cong L, Kinyanjui SM, Chen Q, Tie C, Liu Z, Sun T, Hu Z, Du J, Li Y, Liang D, Liu X, Zheng H, Yang Y. Development and performance of SIAT bPET: a high-resolution and high-sensitivity MR-compatible brain PET scanner using dual-ended readout detectors. Eur J Nucl Med Mol Imaging 2024; 51:346-357. [PMID: 37782321 DOI: 10.1007/s00259-023-06458-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
PURPOSE Positron emission tomography/magnetic resonance imaging (PET/MRI) is a powerful tool for brain imaging, but the spatial resolution of the PET scanners currently used for brain imaging can be further improved to enhance the quantitative accuracy of brain PET imaging. The purpose of this study is to develop an MR-compatible brain PET scanner that can simultaneously achieve a uniform high spatial resolution and high sensitivity by using dual-ended readout depth encoding detectors. METHODS The MR-compatible brain PET scanner, named SIAT bPET, consists of 224 dual-ended readout detectors. Each detector contains a 26 × 26 lutetium yttrium oxyorthosilicate (LYSO) crystal array of 1.4 × 1.4 × 20 mm3 crystal size read out by two 10 × 10 silicon photomultiplier (SiPM) arrays from both ends. The scanner has a detector ring diameter of 376.8 mm and an axial field of view (FOV) of 329 mm. The performance of the scanner including spatial resolution, sensitivity, count rate, scatter fraction, and image quality was measured. Imaging studies of phantoms and the brain of a volunteer were performed. The mutual interferences of the PET insert and the uMR790 3 T MRI scanner were measured, and simultaneous PET/MRI imaging of the brain of a volunteer was performed. RESULTS A spatial resolution of better than 1.5 mm with an average of 1.2 mm within the whole FOV was obtained. A sensitivity of 11.0% was achieved at the center FOV for an energy window of 350-750 keV. Except for the dedicated RF coil, which caused a ~ 30% reduction of the sensitivity of the PET scanner, the MRI sequences running had a negligible effect on the performance of the PET scanner. The reduction of the SNR and homogeneity of the MRI images was less than 2% as the PET scanner was inserted to the MRI scanner and powered-on. High quality PET and MRI images of a human brain were obtained from simultaneous PET/MRI scans. CONCLUSION The SIAT bPET scanner achieved a spatial resolution and sensitivity better than all MR-compatible brain PET scanners developed up to date. It can be used either as a standalone brain PET scanner or a PET insert placed inside a commercial whole-body MRI scanner to perform simultaneous PET/MRI imaging.
Collapse
Affiliation(s)
- Zhonghua Kuang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Physics and Electronics-Electrical Engineering, Xiangnan University, Chenzhou, 423000, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ziru Sang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ning Ren
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaohui Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tianyi Zeng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - San Wu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ming Niu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Longhan Cong
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Samuel M Kinyanjui
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qiaoyan Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Changjun Tie
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zheng Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tao Sun
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhanli Hu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Junwei Du
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ye Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Dong Liang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xin Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hairong Zheng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Yongfeng Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
8
|
Kuang Z, Zhang L, Ren N, Kinyanjui SM, Liu Z, Sun T, Hu Z, Yang Y. Effect of depth of interaction resolution on the spatial resolution of SIAT aPET. Phys Med Biol 2023; 68:22NT02. [PMID: 37890466 DOI: 10.1088/1361-6560/ad078b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/27/2023] [Indexed: 10/29/2023]
Abstract
Objective.Spatial resolution is a crucial parameter for a positron emission tomography (PET) scanner. The spatial resolution of a high-resolution small animal PET scanner is significantly influenced by the effect of depth of interaction (DOI) uncertainty. The aim of this work is to investigate the impact of DOI resolution on the spatial resolution of a small animal PET scanner called SIAT aPET and determine the required DOI resolution to achieve nearly uniform spatial resolution within the field of view (FOV).Approach. The SIAT aPET detectors utilize 1.0 × 1.0 × 20 mm3crystals, with an average DOI resolution of ∼2 mm. A default number of 16 DOI bins are used during data acquisition. First, a Na-22 point source was scanned in the center of the axial FOV with different radial offsets. Then, a Derenzo phantom was scanned at radial offsets of 0 and 15 mm in the center axial FOV. The measured DOI information was rebinned to 1, 2, 4 and 8 DOI bins to mimic different DOI resolutions of the detectors during image reconstruction.Main results. Significant artifacts were observed in images obtained from both the point source and Derenzo phantom when using only one DOI bin. When accurate measurement of DOI is not achieved, degradation in spatial resolution is more pronounced in the radial direction compared to tangential and axial directions for large radial offsets. The radial spatial resolutions at a 30 mm radial offset are 5.05, 2.62, 1.24, 0.86 and 0.78 mm when using 1, 2, 4, 8, or 16 DOI bins, respectively. The axial spatial resolution improved from ∼1.3 to 0.7 mm as the number of DOI bins increased from 1 to 16 at radial offsets from 0 to 25 mm. Two DOI bins are required to obtain images without significant artifacts. The required DOI resolution is about three times the crystal width of SIAT aPET to achieve a uniform submillimeter spatial resolution within the central 60 mm FOV and resolve the 1 mm rods of the Derenzo phantom at both positions.
Collapse
Affiliation(s)
- Zhonghua Kuang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- School of Physics and Electronics-Electrical Engineering, Xiangnan University, Chenzhou 423000, People's Republic of China
| | - Ling Zhang
- School of Medicine, Hunan University of Medicine, Huaihua 418000, People's Republic of China
| | - Ning Ren
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Samuel M Kinyanjui
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Zheng Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Tao Sun
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Zhanli Hu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Yongfeng Yang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| |
Collapse
|
9
|
Liu Y, Li A, Cheng R, Li B, Xie Q, Wang X, Qiu B, Chen X, Xiao P. A depth-of-interaction rebinning method based on both geometric and activity weights. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 240:107703. [PMID: 37531688 DOI: 10.1016/j.cmpb.2023.107703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND AND OBJECTIVE For positron emission tomography (PET) scanners with depth-of-interaction (DOI) measurement, the DOI rebinning method that utilizes DOI information to process the projection data is critical to image quality. Current DOI rebinning methods map coincidence events onto the rebinned sinogram based on the correlation of lines of response (LOR). This study aims to incorporate prior radioactivity distribution of the imaging object into DOI rebinning to obtain better image quality. METHODS A DOI rebinning method based on both geometric and activity weights was proposed to assign coincidence events to the rebinned sinogram defined by a virtual ring. The geometric weights, representing the correlation between LORs, were calculated based on the areas of intersection. The activity weights, reflecting the activity distribution of the imaging object, were derived from the previous reconstructed image. RESULTS Monte Carlo simulation data from four phantoms, including the image quality phantom, Derenzo phantom, and two rat-like ROBY phantoms, was used to evaluate the proposed method. The recovery coefficient (RC), contrast recovery coefficient (CRC), structural similarity index measure (SSIM), and peak signal-to-noise ratio (PSNR) were used as image quality metrics. Compared to other DOI rebinning methods, the proposed method achieved the highest RC (maximum improvement of 32%) and CRC at the same noise level and was also optimal in terms of the SSIM and PSNR. Meanwhile, incorporating the prior activity distribution into DOI rebinning also improved the image reconstruction speed. CONCLUSIONS This work developed a new DOI rebinning method combining the correlation of LORs with the prior activity distribution, achieving relatively optimal image quality and reconstruction speed. Furthermore, it still needs to be evaluated on the actual equipment.
Collapse
Affiliation(s)
- Yu Liu
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ang Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ran Cheng
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bingxuan Li
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230026, China
| | - Qingguo Xie
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230026, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230026, China
| | - Xiaoping Wang
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bensheng Qiu
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230026, China
| | - Xun Chen
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230026, China
| | - Peng Xiao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230026, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230026, China.
| |
Collapse
|
10
|
Zeng T, Zhang J, Lieffrig EV, Cai Z, Chen F, You C, Naganawa M, Lu Y, Onofrey JA. Fast Reconstruction for Deep Learning PET Head Motion Correction. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2023; 14229:710-719. [PMID: 38174207 PMCID: PMC10758999 DOI: 10.1007/978-3-031-43999-5_67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Head motion correction is an essential component of brain PET imaging, in which even motion of small magnitude can greatly degrade image quality and introduce artifacts. Building upon previous work, we propose a new head motion correction framework taking fast reconstructions as input. The main characteristics of the proposed method are: (i) the adoption of a high-resolution short-frame fast reconstruction workflow; (ii) the development of a novel encoder for PET data representation extraction; and (iii) the implementation of data augmentation techniques. Ablation studies are conducted to assess the individual contributions of each of these design choices. Furthermore, multi-subject studies are conducted on an 18F-FPEB dataset, and the method performance is qualitatively and quantitatively evaluated by MOLAR reconstruction study and corresponding brain Region of Interest (ROI) Standard Uptake Values (SUV) evaluation. Additionally, we also compared our method with a conventional intensity-based registration method. Our results demonstrate that the proposed method outperforms other methods on all subjects, and can accurately estimate motion for subjects out of the training set. All code is publicly available on GitHub: https://github.com/OnofreyLab/dl-hmc_fast_recon_miccai2023.
Collapse
Affiliation(s)
- Tianyi Zeng
- Department of Radiology & Biomedical Imaging
| | - Jiazhen Zhang
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | | | | | - Fuyao Chen
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Chenyu You
- Department of Electrical Engineering, Yale University, New Haven, CT, USA
| | | | - Yihuan Lu
- United Imaging Healthcare, Shanghai, China
| | - John A Onofrey
- Department of Radiology & Biomedical Imaging
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Urology, Yale University, New Haven, CT, USA
| |
Collapse
|
11
|
Cai Z, Zeng T, Lieffrig EV, Zhang J, Chen F, Toyonaga T, You C, Xin J, Zheng N, Lu Y, Duncan JS, Onofrey JA. Cross-Attention for Improved Motion Correction in Brain PET. MACHINE LEARNING IN CLINICAL NEUROIMAGING : 6TH INTERNATIONAL WORKSHOP, MLCN 2023, HELD IN CONJUNCTION WITH MICCAI 2023, VANCOUVER, BC, CANADA, OCTOBER 8, 2023, PROCEEDINGS. MLCN (WORKSHOP) (6TH : 2023 : VANCOUVER, B.C.) 2023; 14312:34-45. [PMID: 38174216 PMCID: PMC10758996 DOI: 10.1007/978-3-031-44858-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Head movement during long scan sessions degrades the quality of reconstruction in positron emission tomography (PET) and introduces artifacts, which limits clinical diagnosis and treatment. Recent deep learning-based motion correction work utilized raw PET list-mode data and hardware motion tracking (HMT) to learn head motion in a supervised manner. However, motion prediction results were not robust to testing subjects outside the training data domain. In this paper, we integrate a cross-attention mechanism into the supervised deep learning network to improve motion correction across test subjects. Specifically, cross-attention learns the spatial correspondence between the reference images and moving images to explicitly focus the model on the most correlative inherent information - the head region the motion correction. We validate our approach on brain PET data from two different scanners: HRRT without time of flight (ToF) and mCT with ToF. Compared with traditional and deep learning benchmarks, our network improved the performance of motion correction by 58% and 26% in translation and rotation, respectively, in multi-subject testing in HRRT studies. In mCT studies, our approach improved performance by 66% and 64% for translation and rotation, respectively. Our results demonstrate that cross-attention has the potential to improve the quality of brain PET image reconstruction without the dependence on HMT. All code will be released on GitHub: https://github.com/OnofreyLab/dl_hmc_attention_mlcn2023.
Collapse
Affiliation(s)
- Zhuotong Cai
- Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, China
- Department of Radiology & Biomedical Imaging, New Haven, CT, USA
- Department of Biomedical Engineering, New Haven, CT, USA
| | - Tianyi Zeng
- Department of Radiology & Biomedical Imaging, New Haven, CT, USA
| | | | - Jiazhen Zhang
- Department of Biomedical Engineering, New Haven, CT, USA
| | - Fuyao Chen
- Department of Biomedical Engineering, New Haven, CT, USA
| | - Takuya Toyonaga
- Department of Radiology & Biomedical Imaging, New Haven, CT, USA
| | - Chenyu You
- Department of Electrical Engineering, New Haven, CT, USA
| | - Jingmin Xin
- Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, China
| | - Nanning Zheng
- Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, China
| | - Yihuan Lu
- United Imaging Healthcare, Shanghai, China
| | - James S Duncan
- Department of Radiology & Biomedical Imaging, New Haven, CT, USA
- Department of Biomedical Engineering, New Haven, CT, USA
- Department of Electrical Engineering, New Haven, CT, USA
| | - John A Onofrey
- Department of Radiology & Biomedical Imaging, New Haven, CT, USA
- Department of Biomedical Engineering, New Haven, CT, USA
- Department of Urology, Yale University, New Haven, CT, USA
| |
Collapse
|
12
|
Sang Z, Kuang Z, Wang X, Ren N, Wu S, Niu M, Cong L, Liu Z, Hu Z, Sun T, Liang D, Liu X, Zheng H, Li Y, Yang Y. Mutual interferences between SIAT aPET insert and a 3 T uMR 790 MRI scanner. Phys Med Biol 2023; 68. [PMID: 36549011 DOI: 10.1088/1361-6560/acae17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Objective.Dual-modality small animal PET/MR imaging provides temporally correlated information on two biochemical processes of a living object. An magnetic resonance imaging (MRI)-compatible small animal PET insert named Shenzhen Institutes of Advanced Technology (SIAT) aPET was developed by using dual-ended readout depth encoding detectors to simultaneously achieve a uniform high spatial resolution and high sensitivity at the SIAT. In this work, the mutual interferences between SIAT aPET and the 3 T uMR 790 MRI scanner of United Imaging was quantitatively evaluated.Approach.To minimize the mutual interferences, only the PET detectors and the readout electronics were placed inside the MRI scanner, the major signal processing electronic was placed in the corner of the MRI room and the auxiliary unit was placed in the MRI technical room. A dedicated mouse radio fRequency (RF) coil with a transmitter and receiver was developed for the PET insert. The effects of PET scanner on theB0andB1field of the MRI scanner and the quality of the MRI images were measured. The effects of MRI imaging on the performance of both the PET detectors and scanner were also measured.Main results.The electronic and mechanical components of the PET insert affected the homogeneity of theB0field. The PET insert had no effect on the homogeneity ofB1produced by the dedicated mouse coil but slightly reduced the strength ofB1. The mean and standard deviation of the RF noise map were increased by 2.2% and 11.6%, respectively, while the PET insert was placed in the MRI scanner and powered on. Eddy current was produced while the PET insert was placed in the MRI scanner, and it was further increased while the PET insert was powered on. Despite the above-mentioned interferences from the PET insert, the MR images of a uniform cylindrical water phantom showed that the changes in the signal-to-noise ratio (SNR) and homogeneity as the PET insert was placed in the MRI scanner were acceptable regardless of whether the PET insert was powered off or powered on. The maximum reduction of SNR was less than 11%, and the maximum reduction of homogeneity was less than 2.5% while the PET insert was placed inside the MRI scanner and powered on for five commonly used MRI sequences. MRI using gradient echo (GRE), spin echo (SE) and fast spin echo (FSE) sequences had negligible effects on the flood histograms and energy resolution of the PET detectors, as well as the spatial resolution and sensitivity of the PET scanner.Significance.The mutual interference between the SIAT aPET and the 3 T uMR 790 MRI scanner are acceptable. Simultaneous PET/MRI imaging of small animals can be performed with the two scanners.
Collapse
Affiliation(s)
- Ziru Sang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Zhonghua Kuang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Xiaohui Wang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Ning Ren
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - San Wu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Ming Niu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Longhan Cong
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Zheng Liu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Zhanli Hu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Tao Sun
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Dong Liang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Xin Liu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Hairong Zheng
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Ye Li
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Yongfeng Yang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| |
Collapse
|
13
|
Du J, Jones T. Technical opportunities and challenges in developing total-body PET scanners for mice and rats. EJNMMI Phys 2023; 10:2. [PMID: 36592266 PMCID: PMC9807733 DOI: 10.1186/s40658-022-00523-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/20/2022] [Indexed: 01/03/2023] Open
Abstract
Positron emission tomography (PET) is the most sensitive in vivo molecular imaging technique available. Small animal PET has been widely used in studying pharmaceutical biodistribution and disease progression over time by imaging a wide range of biological processes. However, it remains true that almost all small animal PET studies using mouse or rat as preclinical models are either limited by the spatial resolution or the sensitivity (especially for dynamic studies), or both, reducing the quantitative accuracy and quantitative precision of the results. Total-body small animal PET scanners, which have axial lengths longer than the nose-to-anus length of the mouse/rat and can provide high sensitivity across the entire body of mouse/rat, can realize new opportunities for small animal PET. This article aims to discuss the technical opportunities and challenges in developing total-body small animal PET scanners for mice and rats.
Collapse
Affiliation(s)
- Junwei Du
- grid.27860.3b0000 0004 1936 9684Department of Biomedical Engineering, University of California at Davis, Davis, CA 95616 USA
| | - Terry Jones
- grid.27860.3b0000 0004 1936 9684Department of Radiology, University of California at Davis, Davis, CA 95616 USA
| |
Collapse
|
14
|
Zeng T, Zhang J, Revilla E, Lieffrig EV, Fang X, Lu Y, Onofrey JA. Supervised Deep Learning for Head Motion Correction in PET. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2022; 13434:194-203. [PMID: 38107622 PMCID: PMC10725740 DOI: 10.1007/978-3-031-16440-8_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Head movement is a major limitation in brain positron emission tomography (PET) imaging, which results in image artifacts and quantification errors. Head motion correction plays a critical role in quantitative image analysis and diagnosis of nervous system diseases. However, to date, there is no approach that can track head motion continuously without using an external device. Here, we develop a deep learning-based algorithm to predict rigid motion for brain PET by lever-aging existing dynamic PET scans with gold-standard motion measurements from external Polaris Vicra tracking. We propose a novel Deep Learning for Head Motion Correction (DL-HMC) methodology that consists of three components: (i) PET input data encoder layers; (ii) regression layers to estimate the six rigid motion transformation parameters; and (iii) feature-wise transformation (FWT) layers to condition the network to tracer time-activity. The input of DL-HMC is sampled pairs of one-second 3D cloud representations of the PET data and the output is the prediction of six rigid transformation motion parameters. We trained this network in a supervised manner using the Vicra motion tracking information as gold-standard. We quantitatively evaluate DL-HMC by comparing to gold-standard Vicra measurements and qualitatively evaluate the reconstructed images as well as perform region of interest standard uptake value (SUV) measurements. An algorithm ablation study was performed to determine the contributions of each of our DL-HMC design choices to network performance. Our results demonstrate accurate motion prediction performance for brain PET using a data-driven registration approach without external motion tracking hardware. All code is publicly available on GitHub: https://github.com/OnofreyLab/dl-hmc_miccai2022.
Collapse
Affiliation(s)
- Tianyi Zeng
- Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Jiazhen Zhang
- Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
| | | | - Eléonore V Lieffrig
- Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Xi Fang
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Yihuan Lu
- United Imaging Healthcare, Shanghai, China
| | - John A Onofrey
- Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Urology, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
15
|
Liu Z, Niu M, Kuang Z, Ren N, Wu S, Cong L, Wang X, Sang Z, Williams C, Yang Y. High resolution detectors for whole-body PET scanners by using dual-ended readout. EJNMMI Phys 2022; 9:29. [PMID: 35445890 PMCID: PMC9023628 DOI: 10.1186/s40658-022-00460-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Most current whole-body positron emission tomography (PET) scanners use detectors with high timing resolution to measure the time-of-flight of two 511 keV photons, improving the signal-to-noise ratio of PET images. However, almost all current whole-body PET scanners use detectors without depth-encoding capability; therefore, their spatial resolution can be affected by the parallax effect. METHODS In this work, four depth-encoding detectors consisting of LYSO arrays with crystals of 2.98 × 2.98 × 20 mm3, 2.98 × 2.98 × 30 mm3, 1.95 × 1.95 × 20 mm3, and 1.95 × 1.95 × 30 mm3, respectively, were read at both ends, with 6 × 6 mm2 silicon photomultiplier (SiPM) pixels in a 4 × 4 array being used. The timing signals of the detectors were processed individually using an ultrafast NINO application-specific integrated circuit (ASIC) to obtain good timing resolution. The 16 energy signals of the SiPM array were read using a row and column summing circuit to obtain four position-encoding energy signals. RESULTS The four PET detectors provided good flood histograms in which all crystals could be clearly resolved, the crystal energy resolutions measured being 10.2, 12.1, 11.4 and 11.7% full width at half maximum (FWHM), at an average crystal depth of interaction (DOI) resolution of 3.5, 3.9, 2.7, and 3.0 mm, respectively. The depth dependence of the timing of each SiPM was measured and corrected, the timing of the two SiPMs being used as the timing of the dual-ended readout detector. The four detectors provided coincidence time resolutions of 180, 214, 239, and 263 ps, respectively. CONCLUSIONS The timing resolution of the dual-ended readout PET detector was approximately 20% better than that of the single-ended readout detector using the same LYSO array, SiPM array, and readout electronics. The detectors developed in this work used long crystals with small cross-sections and provided good flood histograms, DOI, energy, and timing resolutions, suggesting that they could be used to develop whole-body PET scanners with high sensitivity, uniform high spatial resolution, and high timing resolution.
Collapse
Affiliation(s)
- Zheng Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ming Niu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhonghua Kuang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ning Ren
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - San Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Longhan Cong
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaohui Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ziru Sang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Crispin Williams
- European Centre for Nuclear Research (CERN), Geneva, Switzerland
| | - Yongfeng Yang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
16
|
Niu M, Liu Z, Kuang Z, Wang X, Ren N, Sang Z, Wu S, Cong L, Sun T, Hu Z, Yang Y. Ultra-high resolution depth-encoding small animal PET detectors: Using GAGG and LYSO crystal arrays. Med Phys 2022; 49:3006-3020. [PMID: 35301730 DOI: 10.1002/mp.15606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 11/12/2022] Open
Abstract
PURPOSE Small animal PET scanners are widely used in current biomedical research. The study aimed to develop high efficiency and ultra-high resolution detectors that could be used to develop a small animal PET scanner with high sensitivity and spatial resolution approaching to its physical limit. METHODS 4 crystal arrays were fabricated and measured in this study. Crystal arrays 1 and 2 consisted of 38 × 38 GAGG and LYSO crystals of 0.4 × 0.4 × 20 mm3 size. Crystal array 3 consisted of 16 × 16 GAGG crystals of 0.3 × 0.3 × 20 mm3 size, and crystal array 4 consisted of 24 × 24 LYSO crystals 0.3 × 0.3 × 20 mm3 in size. The crystal arrays were dual-ended readouts using 8 × 8 SiPM arrays of 2 × 2 mm2 pixel area. The SiPM array was read-out using a signal multiplexing circuit to convert the 64 output signals into 4 position-encoding signals. The performances of the 4 detectors in terms of flood histogram, energy resolution, depth of interaction resolution and timing resolution were measured. RESULTS The GAGG detectors provided better flood histograms, ∼30% higher photopeak amplitude, ∼20% higher energy resolution, ∼12% worse DOI resolution and ∼15% worse timing resolution compared with LYSO detectors of the same crystal size. These 4 detectors provided DOI resolutions of <2 mm, energy resolutions of <22% and timing resolutions of <1.6 ns. All crystals of 0.4 × 0.4 × 20 mm3 and 0.3 × 0.3 × 20 mm3 could be clearly resolved if the crystal array was 1 mm smaller in the four sides than that in the SiPM array. CONCLUSIONS High DOI resolution PET detectors were developed using both GAGG and LYSO arrays with crystal sizes of 0.3 and 0.4 mm, respectively, and a length of 20 mm. The detectors can be used in the future to develop small animal PET scanners, especially dedicated mouse imaging PET scanners, which can simultaneously achieve high sensitivity and ultra-high spatial resolution. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ming Niu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zheng Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhonghua Kuang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaohui Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ning Ren
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ziru Sang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - San Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Longhan Cong
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tao Sun
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhanli Hu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yongfeng Yang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
17
|
Kang HG, Tashima H, Nishikido F, Akamatsu G, Wakizaka H, Higuchi M, Yamaya T. Initial results of a mouse brain PET insert with a staggered 3-layer DOI detector. Phys Med Biol 2021; 66. [PMID: 34666328 DOI: 10.1088/1361-6560/ac311c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/19/2021] [Indexed: 11/11/2022]
Abstract
Objective.Small animal positron emission tomography (PET) requires a submillimeter resolution for better quantification of radiopharmaceuticals. On the other hand, depth-of-interaction (DOI) information is essential to preserve the spatial resolution while maintaining the sensitivity. Recently, we developed a staggered 3-layer DOI detector with 1 mm crystal pitch and 15 mm total crystal thickness, but we did not demonstrate the imaging performance of the DOI detector with full ring geometry. In this study we present initial imaging results obtained for a mouse brain PET prototype developed with the staggered 3-layer DOI detector.Approach.The prototype had 53 mm inner diameter and 11 mm axial field-of-view. The PET scanner consisted of 16 DOI detectors each of which had a staggered 3-layer LYSO crystal array (4/4/7 mm) coupled to a 4 × 4 silicon photomultiplier array. The physical performance was evaluated in terms of the NEMA NU 4 2008 protocol.Main Results.The measured spatial resolutions at the center and 15 mm radial offset were 0.67 mm and 1.56 mm for filtered-back-projection, respectively. The peak absolute sensitivity of 0.74% was obtained with an energy window of 400-600 keV. The resolution phantom imaging results show the clear identification of a submillimetric rod pattern with the ordered-subset expectation maximization algorithm. The inter-crystal scatter rejection using a narrow energy window could enhance the resolvability of a 0.75 mm rod significantly.Significance.In an animal imaging experiment, the detailed mouse brain structures such as cortex and thalamus were clearly identified with high contrast. In conclusion, we successfully developed the mouse brain PET insert prototype with a staggered 3-layer DOI detector.
Collapse
Affiliation(s)
- Han Gyu Kang
- National Institutes for Quantum Science and Technology (QST), 4-9-1, Anagawa, Inage-ku, Chiba, Japan
| | - Hideaki Tashima
- National Institutes for Quantum Science and Technology (QST), 4-9-1, Anagawa, Inage-ku, Chiba, Japan
| | - Fumihiko Nishikido
- National Institutes for Quantum Science and Technology (QST), 4-9-1, Anagawa, Inage-ku, Chiba, Japan
| | - Go Akamatsu
- National Institutes for Quantum Science and Technology (QST), 4-9-1, Anagawa, Inage-ku, Chiba, Japan
| | - Hidekazu Wakizaka
- National Institutes for Quantum Science and Technology (QST), 4-9-1, Anagawa, Inage-ku, Chiba, Japan
| | - Makoto Higuchi
- National Institutes for Quantum Science and Technology (QST), 4-9-1, Anagawa, Inage-ku, Chiba, Japan
| | - Taiga Yamaya
- National Institutes for Quantum Science and Technology (QST), 4-9-1, Anagawa, Inage-ku, Chiba, Japan
| |
Collapse
|
18
|
Cheng X, Hu K, Yang D, Shao Y. A compact and lightweight small animal PET with uniform high-resolution for onboard PET/CT image-guided preclinical radiation oncology research. Phys Med Biol 2021; 66. [PMID: 34592731 DOI: 10.1088/1361-6560/ac2bb4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/30/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVE In contrast to clinical radiation therapy (RT) that ubiquitously uses PET/CT image to accurately guide RT, all current commercial animal irradiators can only provide CT image-guided preclinical RT that severely limits their capability for preclinical and compatibility for translational radiation oncology research. To address this problem, we have developed a compact and lightweight PET with uniform, high spatial resolution that is suited to be installed inside an existing animal irradiator for potential onboard PET/CT image-guided preclinical RT research. APPROACH The design focused on the balance of achieving sufficient imaging performance for practical preclinical RT guidance with constrained size and weight. The detector head consists of a ring of 12 detector panels in a dodecagon configuration and 12 front-end electronics boards that are closely attached to the detector panels. The overall size and weight of the detector head are 33.0 cm diameter, 11.0 cm axial length and ∼6.5 kg weight that can be installed inside an existing irradiator. Each detector panel has a 30 × 30 array of 1 × 1 × 20 mm3LYSO scintillators with depth-of-interaction (DOI) measurement. The front-end electronics boards process and convert detected signals to digital signals and transfer them to system electronics and data acquisition located outside the irradiator through low-voltage-differential-signaling cables. MAIN RESULTS The typical energy, DOI and coincidence timing resolutions are around 22.1%, 3.1 mm, and 1.92 ns. The imaging field-of-view (FOV) is 8.0 cm diameter and 3.5 cm axial length. The performance evaluations show a 1.8% sensitivity at the center FOV, uniform ∼1.1 mm resolution within 6 cm diameter FOV, and all rods of 1.0 mm diameter can be clearly resolved from the image of an ultra-micro hot-rods phantom. SIGNIFICANCE Overall, this compact and lightweight PET has demonstrated its designed capability and performance sufficient for providing onboard functional/biological/molecular image to guide the preclinical RT research.
Collapse
Affiliation(s)
- Xinyi Cheng
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75057, United States of America
| | - Kun Hu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75057, United States of America
| | - Dongxu Yang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75057, United States of America
| | - Yiping Shao
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75057, United States of America
| |
Collapse
|
19
|
Du J, Wang Q, Liu CC, Qi J, Cherry SR. Performance evaluation of dual-ended readout PET detectors based on BGO arrays with different reflector arrangements. Phys Med Biol 2021; 66. [PMID: 34607324 DOI: 10.1088/1361-6560/ac2c9c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/04/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Dual-ended readout depth-encoding detectors based on bismuth germanate (BGO) scintillation crystal arrays are good candidates for high-sensitivity small animal positron emission tomography used for very-low-dose imaging. In this paper, the performance of three dual-ended readout detectors based on 15 × 15 BGO arrays with three different reflector arrangements and 8 × 8 silicon photomultiplier arrays were evaluated and compared. APPROACH The three BGO arrays, denoted wo-ILG (without internal light guide), wp-ILG (with partial internal light guide), and wf-ILG (with full internal light guide), share a pitch size of 1.6 mm and thickness of 20 mm. Toray E60 with a thickness of 50μm was used as inter-crystal reflector. All reflector lengths in the wo-ILG and wf-ILG BGO arrays were 20 and 18 mm, respectively; the reflectors in the wp-ILG BGO array were 18 mm at the central region of the array and 20 mm at the edge. By using 18 mm reflectors, part of the crystals in the wp-ILG and wf-ILG BGO arrays worked as internal light guides. MAIN RESULTS The results showed that the detector based on the wo-ILG BGO array provided the best flood histogram. The energy, timing and DOI resolutions of the three detectors were similar. The energy resolutions full width at half maximum (FWHM value) based on the wo-ILG, wp-ILG and wf-ILG BGO arrays were 27.2 ± 3.9%, 28.7 ± 4.6%, and 29.5 ± 4.7%, respectively. The timing resolutions (FWHM value) were 4.7 ± 0.5 ns, 4.9 ± 0.5 ns, and 5.0 ± 0.6 ns, respectively. The DOI resolution (FWHM value) were 3.0 ± 0.2 mm, 2.9 ± 0.2 mm, and 3.0 ± 0.2 mm, respectively. Over all, the wo-ILG detector provided the best performance.
Collapse
Affiliation(s)
- Junwei Du
- Department of Biomedical Engineering, University of California at Davis, Davis, CA 95616, United States of America
| | - Qian Wang
- Department of Biomedical Engineering, University of California at Davis, Davis, CA 95616, United States of America
| | - Chih-Chieh Liu
- Department of Biomedical Engineering, University of California at Davis, Davis, CA 95616, United States of America
| | - Jinyi Qi
- Department of Biomedical Engineering, University of California at Davis, Davis, CA 95616, United States of America
| | - Simon R Cherry
- Department of Biomedical Engineering, University of California at Davis, Davis, CA 95616, United States of America
| |
Collapse
|
20
|
Mohammadi A, Inadama N, Nishikido F, Yamaya T. Development of dual-ended depth-of-interaction detectors using laser-induced crystals for small animal PET systems. Phys Med Biol 2021; 66. [PMID: 34325418 DOI: 10.1088/1361-6560/ac18fc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/29/2021] [Indexed: 11/11/2022]
Abstract
Sensitivity and spatial resolution of positron emission tomography (PET) scanners can be improved by using thicker scintillation crystals with depth-of-interaction (DOI) encoding. Subsurface laser engraving (SSLE) can be used to segment crystals of a scintillation detector in order to fabricate a DOI detector. We previously applied SSLE to crystal bars of 3 × 3 × 20 mm3and 1.5 × 1.5 × 20 mm3and developed two dual-ended detectors with DOI segments of 3 mm and 1.5 mm, respectively. To further improve the DOI resolution, our SSLE detector design can be used with smaller pitch crystal bars, making them excellent detector candidates for small animal PET scanners with submillimetre resolution. In the present study, three small crystal bars of 1 × 1 × 20 mm3, 2 × 1 × 20 mm3, and 2 × 1 × 40 mm3were laser engraved to 12, 20 and 40 segments, respectively, by applying SSLE in their height directions. The segmented crystal bars were characterised in three prototype detector arrangements. First, the 1 × 1 × 20 mm3crystal bars were characterised in an 8 × 8 crystal array designed for DOI encoding along crystal height in a conventional small animal PET design. Second, a 4 × 8 crystal array of 2 × 1 × 20 mm3crystal bars was characterised for using the DOI information for crystal interaction positioning along the axial axis of a small animal PET scanner. Finally, the third part of the study was performed on a single 2 × 1 × 40 mm3crystal bar with 40 segments to investigate the feasibility of DOI estimation in longer crystals for application in a system with extended axial length. We evaluated the capability of segment identification and energy resolution of theses detectors. The 3D position maps of the detectors were obtained using the Anger-type calculation and the crystal identification performance was evaluated for each detector. Clear segment separation was obtained for the crystal arrays with 12 (segment pitch of 1.67 mm) and 20 (segment pitch of 1 mm) segments. Mean energy resolutions of 8.8% ± 0.4% and 9.6% ± 0.8% at 511 keV were obtained for the segments in the central regions of the 8 × 8 array with 12 segments and the 4 × 8 array with 20 segments, respectively. Clear segment identification was found to be difficult for the detector with 40 segments, especially for the segments at the middle of the crystal. Energy and interaction positioning characterisation results suggest that both prototype detectors with 12 and 20 segments are well suited for small animal PET scanners with high spatial resolution.
Collapse
Affiliation(s)
- Akram Mohammadi
- Institute of Quantum Medical Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Naoko Inadama
- Institute of Quantum Medical Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Fumihiko Nishikido
- Institute of Quantum Medical Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Taiga Yamaya
- Institute of Quantum Medical Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| |
Collapse
|
21
|
Meng F, Shi Y, Li C, Li L, Qin W, Zhu S. Hybrid model of photon propagation based on the analytical and Monte Carlo methods for a dual-head PET system. Phys Med Biol 2021; 66. [PMID: 34330106 DOI: 10.1088/1361-6560/ac195b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 07/30/2021] [Indexed: 11/12/2022]
Abstract
The construction of photon propagation has a close relationship with the quality of reconstructed images. The classical Monte Carlo (MC) based method can model the photon propagation precisely, but it is time-consuming. The analytical method can often quickly construct a model, but its precision is a problem. How to fully exploit the advantages of the MC simulation and analytical model is an open problem. Inspired by the characteristics of the depth of interaction (DOI) detectors, which can help confirm the deposited position of a photon with DOI-encoding technology, we virtually discretize each crystal into several subcrystals to obtain the statistical distribution by MC-based simulation. Then, the statistical distribution is combined with a spatially variant solid-angle model. This combination strategy provides a hybrid model to describe photon propagation with relatively high accuracy and low computational cost. Three discretization schemes are compared to optimize the constructed photon propagation model. Several experiments are carried out to evaluate the performance of the proposed hybrid method. The metrics of full width at half maximum (FWHM), contrast recovery (CR), and coefficient of variation (COV) are adopted to quantitate the imaging results. The classical MC-based method is compared as a gold-standard reference. When a crystal is divided into two discretized positions, the convergent tendencies of CRs and COVs are consistent with that based on MC simulation method, respectively. In terms of FWHMs, the resolutions of using the MC-based model and the proposed hybrid model are 0.71 mm and 0.68 mm in the direction parallel to the detector head, respectively. This indicates the potential of the proposed method in positron emission tomography imaging.
Collapse
Affiliation(s)
- Fanzhen Meng
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, People's Republic of China
| | - Yu Shi
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, People's Republic of China
| | - Chenfeng Li
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, People's Republic of China
| | - Lei Li
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, People's Republic of China
| | - Wei Qin
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, People's Republic of China
| | - Shouping Zhu
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, People's Republic of China
| |
Collapse
|
22
|
Zeng T, Zheng J, Xia X, Chen X, Wang B, Zhang S, Chandler A, Cao T, Hu L, Chen Q, Chu X. Design and system evaluation of a dual-panel portable PET (DP-PET). EJNMMI Phys 2021; 8:47. [PMID: 34117943 PMCID: PMC8197684 DOI: 10.1186/s40658-021-00392-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/03/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Integrated whole-body PET/MR technology continues to mature and is now extensively used in clinical settings. However, due to the special design architecture, integrated whole-body PET/MR comes with a few inherent limitations. Firstly, whole-body PET/MR lacks sensitivity and resolution for focused organs. Secondly, broader clinical access of integrated PET/MR has been significantly restricted due to its prohibitively high cost. The MR-compatible PET insert is an independent and removable PET scanner which can be placed within an MRI bore. However, the mobility and configurability of all existing MR-compatible PET insert prototypes remain limited. METHODS An MR-compatible portable PET insert prototype, dual-panel portable PET (DP-PET), has been developed for simultaneous PET/MR imaging. Using SiPM, digital readout electronics, novel carbon fiber shielding, phase-change cooling, and MRI compatible battery power, DP-PET was designed to achieve high-sensitivity and high-resolution with compatibility with a clinical 3-T MRI scanner. A GPU-based reconstruction method with resolution modeling (RM) has been developed for the DP-PET reconstruction. We evaluated the system performance on PET resolution, sensitivity, image quality, and the PET/MR interference. RESULTS The initial results reveal that the DP-PET prototype worked as expected in the MRI bore and caused minimal compromise to the MRI image quality. The PET performance was measured to show a spatial resolution ≤ 2.5 mm (parallel to the detector panels), maximum sensitivity = 3.6% at the center of FOV, and energy resolution = 12.43%. MR pulsing introduces less than 2% variation to the PET performance measurement results. CONCLUSIONS We developed a MR-compatible PET insert prototype and performed several studies to begin to characterize the performance of the proposed DP-PET. The results showed that the proposed DP-PET performed well in the MRI bore and would cause little influence on the MRI images. The Derenzo phantom test showed that the proposed reconstruction method could obtain high-quality images using DP-PET.
Collapse
Affiliation(s)
- Tianyi Zeng
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaxu Zheng
- Shanghai United Imaging Healthcare Co., Ltd., Shanghai, 201807, China
| | - Xinyuan Xia
- Shanghai United Imaging Healthcare Co., Ltd., Shanghai, 201807, China
| | - Xin Chen
- Shanghai United Imaging Healthcare Co., Ltd., Shanghai, 201807, China
| | - Beien Wang
- Shanghai United Imaging Healthcare Co., Ltd., Shanghai, 201807, China
| | - Shuangyue Zhang
- Shanghai United Imaging Healthcare Co., Ltd., Shanghai, 201807, China
| | - Adam Chandler
- United Imaging Healthcare, America, Houston, TX, 77054, USA
| | - Tuoyu Cao
- Shanghai United Imaging Healthcare Co., Ltd., Shanghai, 201807, China
| | - Lingzhi Hu
- United Imaging Healthcare, America, Houston, TX, 77054, USA.
| | - Qun Chen
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
- Shanghai United Imaging Healthcare Co., Ltd., Shanghai, 201807, China
| | - Xu Chu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
- Shanghai United Imaging Healthcare Co., Ltd., Shanghai, 201807, China
| |
Collapse
|
23
|
Kang HG, Nishikido F, Yamaya T. A staggered 3-layer DOI PET detector using BaSO4 reflector for enhanced crystal identification and inter-crystal scattering event discrimination capability. Biomed Phys Eng Express 2021; 7. [DOI: 10.1088/2057-1976/abf6a8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/09/2021] [Indexed: 01/22/2023]
|
24
|
Lai Y, Wang Q, Zhou S, Xie Z, Qi J, Cherry SR, Jin M, Chi Y, Du J. H 2RSPET: a 0.5 mm resolution high-sensitivity small-animal PET scanner, a simulation study. Phys Med Biol 2021; 66:065016. [PMID: 33571980 PMCID: PMC8353984 DOI: 10.1088/1361-6560/abe558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
With the goal of developing a total-body small-animal PET system with a high spatial resolution of ∼0.5 mm and a high sensitivity >10% for mouse/rat studies, we simulated four scanners using the graphical processing unit-based Monte Carlo simulation package (gPET) and compared their performance in terms of spatial resolution and sensitivity. We also investigated the effect of depth-of-interaction (DOI) resolution on the spatial resolution. All the scanners are built upon 128 DOI encoding dual-ended readout detectors with lutetium yttrium oxyorthosilicate (LYSO) arrays arranged in 8 detector rings. The solid angle coverages of the four scanners are all ∼0.85 steradians. Each LYSO element has a cross-section of 0.44 × 0.44 mm2 and the pitch size of the LYSO arrays are all 0.5 mm. The four scanners can be divided into two groups: (1) H2RS110-C10 and H2RS110-C20 with 40 × 40 LYSO arrays, a ring diameter of 110 mm and axial length of 167 mm, and (2) H2RS160-C10 and H2RS160-C20 with 60 × 60 LYSO arrays, a diameter of 160 mm and axial length of 254 mm. C10 and C20 denote the crystal thickness of 10 and 20 mm, respectively. The simulation results show that all scanners have a spatial resolution better than 0.5 mm at the center of the field-of-view (FOV). The radial resolution strongly depends on the DOI resolution and radial offset, but not the axial resolution and tangential resolution. Comparing the C10 and C20 designs, the former provides better resolution, especially at positions away from the center of the FOV, whereas the latter has 2× higher sensitivity (∼10% versus ∼20%). This simulation study provides evidence that the 110 mm systems are a good choice for total-body mouse studies at a lower cost, whereas the 160 mm systems are suited for both total-body mouse and rat studies.
Collapse
Affiliation(s)
- Youfang Lai
- Department of Physics, University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Qian Wang
- Department of Biomedical Engineering, University of California at Davis, Davis, CA 95616, United States of America
| | - Shiwei Zhou
- Department of Physics, University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Zhaoheng Xie
- Department of Biomedical Engineering, University of California at Davis, Davis, CA 95616, United States of America
| | - Jinyi Qi
- Department of Biomedical Engineering, University of California at Davis, Davis, CA 95616, United States of America
| | - Simon R Cherry
- Department of Biomedical Engineering, University of California at Davis, Davis, CA 95616, United States of America
| | - Mingwu Jin
- Department of Physics, University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Yujie Chi
- Department of Physics, University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Junwei Du
- Department of Biomedical Engineering, University of California at Davis, Davis, CA 95616, United States of America
| |
Collapse
|