2
|
Bečulić H, Spahić D, Begagić E, Pugonja R, Skomorac R, Jusić A, Selimović E, Mašović A, Pojskić M. Breaking Barriers in Cranioplasty: 3D Printing in Low and Middle-Income Settings-Insights from Zenica, Bosnia and Herzegovina. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1732. [PMID: 37893450 PMCID: PMC10608598 DOI: 10.3390/medicina59101732] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/16/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: Cranial defects pose significant challenges in low and middle-income countries (LIMCs), necessitating innovative and cost-effective craniofacial reconstruction strategies. The purpose of this study was to present the Bosnia and Herzegovina model, showcasing the potential of a multidisciplinary team and 3D-based technologies, particularly PMMA implants, to address cranial defects in a resource-limited setting. Materials and Methods: An observational, non-experimental prospective investigation involved three cases of cranioplasty at the Department of Neurosurgery, Cantonal Hospital Zenica, Bosnia and Herzegovina, between 2019 and 2023. The technical process included 3D imaging and modeling with MIMICS software (version 10.01), 3D printing of the prototype, mold construction and intraoperative modification for precise implant fitting. Results: The Bosnia and Herzegovina model demonstrated successful outcomes in cranioplasty, with PMMA implants proving cost-effective and efficient in addressing cranial defects. Intraoperative modification contributed to reduced costs and potential complications, while the multidisciplinary approach and 3D-based technologies facilitated accurate reconstruction. Conclusions: The Bosnia and Herzegovina model showcases a cost-effective and efficient approach for craniofacial reconstruction in LIMICs. Collaborative efforts, 3D-based technologies, and PMMA implants contribute to successful outcomes. Further research is needed to validate sustained benefits and enhance craniofacial reconstruction strategies in resource-constrained settings.
Collapse
Affiliation(s)
- Hakija Bečulić
- Department of Neurosurgery, Cantonal Hospital Zenica, 72000 Zenica, Bosnia and Herzegovina
- Department of Anatomy, School of Medicine, University of Zenica, 72000 Zenica, Bosnia and Herzegovina; (R.S.); (A.M.)
| | - Denis Spahić
- Department of Constructions and CAD Technologies, School of Mechanical Engineering, University of Zenica, 72000 Zenica, Bosnia and Herzegovina;
- iDEAlab, School of Mechanical Engineering, University of Zenica, 72000 Zenica, Bosnia and Herzegovina
| | - Emir Begagić
- Deparment of General Medicine, School of Medicine, University of Zenica, 72000 Zenica, Bosnia and Herzegovina;
| | - Ragib Pugonja
- Deparment of General Medicine, School of Medicine, University of Zenica, 72000 Zenica, Bosnia and Herzegovina;
| | - Rasim Skomorac
- Department of Anatomy, School of Medicine, University of Zenica, 72000 Zenica, Bosnia and Herzegovina; (R.S.); (A.M.)
- Department of Surgery, School of Medicine, University of Zenica, 72000 Zenica, Bosnia and Herzegovina;
| | - Aldin Jusić
- Department of Anatomy, School of Medicine, University of Zenica, 72000 Zenica, Bosnia and Herzegovina; (R.S.); (A.M.)
| | - Edin Selimović
- Department of Surgery, School of Medicine, University of Zenica, 72000 Zenica, Bosnia and Herzegovina;
| | - Anes Mašović
- Department of Anatomy, School of Medicine, University of Zenica, 72000 Zenica, Bosnia and Herzegovina; (R.S.); (A.M.)
| | - Mirza Pojskić
- Department of Neurosurgery, University Hospital Marburg, Baldinger Str., 35033 Marburg, Germany
| |
Collapse
|
3
|
Lee H, Cheon BW, Feld JW, Grogg K, Perl J, Ramos-Méndez JA, Faddegon B, Min CH, Paganetti H, Schuemann J. TOPAS-imaging: extensions to the TOPAS simulation toolkit for medical imaging systems. Phys Med Biol 2023; 68:10.1088/1361-6560/acc565. [PMID: 36930985 PMCID: PMC10164408 DOI: 10.1088/1361-6560/acc565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/17/2023] [Indexed: 03/19/2023]
Abstract
Objective. The TOol for PArticle Simulation (TOPAS) is a Geant4-based Monte Carlo software application that has been used for both research and clinical studies in medical physics. So far, most users of TOPAS have focused on radiotherapy-related studies, such as modeling radiation therapy delivery systems or patient dose calculation. Here, we present the first set of TOPAS extensions to make it easier for TOPAS users to model medical imaging systems.Approach. We used the extension system of TOPAS to implement pre-built, user-configurable geometry components such as detectors (e.g. flat-panel and multi-planar detectors) for various imaging modalities and pre-built, user-configurable scorers for medical imaging systems (e.g. digitizer chain).Main results. We developed a flexible set of extensions that can be adapted to solve research questions for a variety of imaging modalities. We then utilized these extensions to model specific examples of cone-beam CT (CBCT), positron emission tomography (PET), and prompt gamma (PG) systems. The first of these new geometry components, the FlatImager, was used to model example CBCT and PG systems. Detected signals were accumulated in each detector pixel to obtain the intensity of x-rays penetrating objects or prompt gammas from proton-nuclear interaction. The second of these new geometry components, the RingImager, was used to model an example PET system. Positron-electron annihilation signals were recorded in crystals of the RingImager and coincidences were detected. The simulated data were processed using corresponding post-processing algorithms for each modality and obtained results in good agreement with the expected true signals or experimental measurement.Significance. The newly developed extension is a first step to making it easier for TOPAS users to build and simulate medical imaging systems. Together with existing TOPAS tools, this extension can help integrate medical imaging systems with radiotherapy simulations for image-guided radiotherapy.
Collapse
Affiliation(s)
- Hoyeon Lee
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| | - Bo-Wi Cheon
- Department of Radiation Convergence Engineering, Yonsei University, Wonju, Gangwon-do 26493, Republic of Korea
| | - Joseph W Feld
- Electrical Engineering and Computer Science Department, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Kira Grogg
- The Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| | - Joseph Perl
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025 United States of America
| | - José A Ramos-Méndez
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94115 United States of America
| | - Bruce Faddegon
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94115 United States of America
| | - Chul Hee Min
- Department of Radiation Convergence Engineering, Yonsei University, Wonju, Gangwon-do 26493, Republic of Korea
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| |
Collapse
|
4
|
Niso G, Botvinik-Nezer R, Appelhoff S, De La Vega A, Esteban O, Etzel JA, Finc K, Ganz M, Gau R, Halchenko YO, Herholz P, Karakuzu A, Keator DB, Markiewicz CJ, Maumet C, Pernet CR, Pestilli F, Queder N, Schmitt T, Sójka W, Wagner AS, Whitaker KJ, Rieger JW. Open and reproducible neuroimaging: From study inception to publication. Neuroimage 2022; 263:119623. [PMID: 36100172 PMCID: PMC10008521 DOI: 10.1016/j.neuroimage.2022.119623] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/17/2022] [Accepted: 09/09/2022] [Indexed: 10/31/2022] Open
Abstract
Empirical observations of how labs conduct research indicate that the adoption rate of open practices for transparent, reproducible, and collaborative science remains in its infancy. This is at odds with the overwhelming evidence for the necessity of these practices and their benefits for individual researchers, scientific progress, and society in general. To date, information required for implementing open science practices throughout the different steps of a research project is scattered among many different sources. Even experienced researchers in the topic find it hard to navigate the ecosystem of tools and to make sustainable choices. Here, we provide an integrated overview of community-developed resources that can support collaborative, open, reproducible, replicable, robust and generalizable neuroimaging throughout the entire research cycle from inception to publication and across different neuroimaging modalities. We review tools and practices supporting study inception and planning, data acquisition, research data management, data processing and analysis, and research dissemination. An online version of this resource can be found at https://oreoni.github.io. We believe it will prove helpful for researchers and institutions to make a successful and sustainable move towards open and reproducible science and to eventually take an active role in its future development.
Collapse
Affiliation(s)
- Guiomar Niso
- Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA; Universidad Politecnica de Madrid, Madrid and CIBER-BBN, Spain; Instituto Cajal, CSIC, Madrid, Spain.
| | - Rotem Botvinik-Nezer
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA.
| | - Stefan Appelhoff
- Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany
| | | | - Oscar Esteban
- Dept. of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Department of Psychology, Stanford University, Stanford, CA, USA
| | - Joset A Etzel
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Karolina Finc
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Melanie Ganz
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark; Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Rémi Gau
- Institute of Psychology, Université catholique de Louvain, Louvain la Neuve, Belgium
| | - Yaroslav O Halchenko
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Peer Herholz
- Montreal Neurological Institute-Hospital, McGill University, Montréal, Quebec, Canada
| | - Agah Karakuzu
- Biomedical Engineering Institute, Polytechnique Montréal, Montréal, Quebec, Canada; Montréal Heart Institute, Montréal, Quebec, Canada
| | - David B Keator
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | | | - Camille Maumet
- Inria, Univ Rennes, CNRS, Inserm - IRISA UMR 6074, Empenn ERL U 1228, Rennes, France
| | - Cyril R Pernet
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark
| | - Franco Pestilli
- Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA; Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Nazek Queder
- Montreal Neurological Institute-Hospital, McGill University, Montréal, Quebec, Canada; Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Tina Schmitt
- Neuroimaging Unit, Carl-von-Ossietzky Universität, Oldenburg, Germany
| | - Weronika Sójka
- Faculty of Philosophy and Social Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Adina S Wagner
- Institute for Neuroscience and Medicine, Research Centre Juelich, Germany
| | | | - Jochem W Rieger
- Neuroimaging Unit, Carl-von-Ossietzky Universität, Oldenburg, Germany; Department of Psychology, Carl-von-Ossietzky Universität, Oldenburg, Germany.
| |
Collapse
|
5
|
Borys D, Baran J, Brzezinski KW, Gajewski J, Chug N, Coussat A, Czerwiński E, Dadgar M, Dulski K, Eliyan KV, Gajos A, Kacprzak K, Kapłon Ł, Klimaszewski K, Konieczka P, Kopec R, Korcyl G, Kozik T, Krzemień W, Kumar D, Lomax AJ, McNamara K, Niedźwiecki S, Olko P, Panek D, Parzych S, Del Río EP, Raczyński L, Sharma S, Shivani S, Shopa RY, Skóra T, Skurzok M, Stasica P, Stępień E, Tayefi Ardebili K, Tayefi F, Weber DC, Winterhalter C, Wiślicki W, Moskal P, Rucinski A. ProTheRaMon - a GATE simulation framework for proton therapy range monitoring using PET imaging. Phys Med Biol 2022; 67:224002. [PMID: 36137551 DOI: 10.1088/1361-6560/ac944c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE This paper reports on the implementation and shows examples of the use of the ProTheRaMon framework for simulating the delivery of proton therapy treatment plans and range monitoring using positron emission tomography (PET). ProTheRaMon offers complete processing of proton therapy treatment plans, patient CT geometries, and intra-treatment PET imaging, taking into account therapy and imaging coordinate systems and activity decay during the PET imaging protocol specific to a given proton therapy facility. We present the ProTheRaMon framework and illustrate its potential use case and data processing steps for a patient treated at the Cyclotron Centre Bronowice (CCB) proton therapy center in Krakow, Poland. APPROACH The ProTheRaMon framework is based on GATE Monte Carlo software, the CASToR reconstruction package and in-house developed Python and bash scripts. The framework consists of five separated simulation and data processing steps, that can be further optimized according to the user's needs and specific settings of a given proton therapy facility and PET scanner design. MAIN RESULTS ProTheRaMon is presented using example data from a patient treated at CCB and the J-PET scanner to demonstrate the application of the framework for proton therapy range monitoring. The output of each simulation and data processing stage is described and visualized. SIGNIFICANCE We demonstrate that the ProTheRaMon simulation platform is a high-performance tool, capable of running on a computational cluster and suitable for multi-parameter studies, with databases consisting of large number of patients, as well as different PET scanner geometries and settings for range monitoring in a clinical environment. Due to its modular structure, the ProTheRaMon framework can be adjusted for different proton therapy centers and/or different PET detector geometries. It is available to the community via github.
Collapse
Affiliation(s)
- Damian Borys
- Department of Systems Biology and Engineering, Silesian University of Technology, ul. Akademicka 16, Gliwice, 44-100, POLAND
| | - Jakub Baran
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Karol W Brzezinski
- Institute of Nuclear Physics Polish Academy of Science, Radzikowskiego 152, Krakow, Krakow, Malopolska, 31-342, POLAND
| | - Jan Gajewski
- Institute of Nuclear Physics Polish Academy of Science, Radzikowskiego 152, Krakow, Krakow, Malopolska, 31-342, POLAND
| | - Neha Chug
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, 30-348, POLAND
| | - Aurelien Coussat
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Eryk Czerwiński
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Meysam Dadgar
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Kamil Dulski
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Kavya Valsan Eliyan
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Aleksander Gajos
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Krzysztof Kacprzak
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Łukasz Kapłon
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University in Krakow, Lojasiewicza 11, Krakow, Malopolskie, 31-007, POLAND
| | - Konrad Klimaszewski
- National Centre for Nuclear Research, 7 Andrzeja Sołtana str., Otwock, 05-400, POLAND
| | - Paweł Konieczka
- Department of Complex Systems, National Centre for Nuclear Research, 7 Andrzeja Sołtana str., Otwock, 05-400, POLAND
| | - Renata Kopec
- Institute of Nuclear Physics Polish Academy of Science, Radzikowskiego 152, Krakow, 31-342, POLAND
| | - Grzegorz Korcyl
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Tomasz Kozik
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Wojciech Krzemień
- National Centre for Nuclear Research, 7 Andrzeja Sołtana str., Otwock, 05-400, POLAND
| | - Deepak Kumar
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Antony John Lomax
- Department of Radiation Medicine, Paul Scherrer Institute, CH-5232 Villigen PSI, Villigen, 5232, SWITZERLAND
| | - Keegan McNamara
- Center for Proton Therapy, Paul Scherrer Institute PSI, Forschungsstrasse 111, Villigen, Aargau, 5232, SWITZERLAND
| | - Szymon Niedźwiecki
- Institute of Physics, Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Pawel Olko
- PAN, Institute of Nuclear Physics Polish Academy of Science, ul Radzikowskiego 152, Krakow, Kraków, 31-342, POLAND
| | - Dominik Panek
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Szymon Parzych
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Elena Pérez Del Río
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Lech Raczyński
- National Centre for Nuclear Research, 7 Andrzeja Sołtana str., Otwock, 05-400, POLAND
| | - Sushil Sharma
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Shivani Shivani
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Roman Y Shopa
- National Centre for Nuclear Research, 7 Andrzeja Sołtana str., Otwock, 05-400, POLAND
| | - Tomasz Skóra
- Radiotherapy, Maria Sklodowska-Curie National Research Institute of Oncology in Warsaw, Krakow Branch, Walerego Eljasza, Radzikowskiego 152, Kraków, 31-342, POLAND
| | - Magdalena Skurzok
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Paulina Stasica
- Institute of Nuclear Physics Polish Academy of Science, Radzikowskiego 152, Krakow, PL 31-342, POLAND
| | - Ewa Stępień
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Keyvan Tayefi Ardebili
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Faranak Tayefi
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Damien Charles Weber
- Center for Proton Therapy, Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, SWITZERLAND
| | - Carla Winterhalter
- Paul Scherrer Institute PSI, Forschungsstrasse 111, Villigen, Aargau, 5232, SWITZERLAND
| | - Wojciech Wiślicki
- National Centre for Nuclear Research, 7 Andrzeja Sołtana str., Otwock, 05-400, POLAND
| | - Pawel Moskal
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Antoni Rucinski
- Institute of Nuclear Physics PAS, Radzikowskiego 152, Krakow, 31-342, POLAND
| |
Collapse
|