1
|
Tajik Mansoury MA, Sforza D, Wong J, Iordachita I, Rezaee M. Dosimetric commissioning of small animal FLASH radiation research platform. Phys Med Biol 2025; 70:115015. [PMID: 40341277 DOI: 10.1088/1361-6560/add641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 05/08/2025] [Indexed: 05/10/2025]
Abstract
Objective.The FLASH-SARRP, a new small animal radiation research platform has been designed to support conventional, high and ultrahigh dose-rate kV x-rays for preclinical research. This self-shielded system features two high-capacity x-ray sources with rotating-anode technology. This study characterizes the dosimetric and mechanical performances of the system for preclinical FLASH radiation research.Approach.Mechanical alignment of two x-ray tubes was performed using a custom-designed jig by aligning the outlet ports of the tube housings. Alignment of mechanical and radiation centers was evaluated by scanning a highly-collimated slit across the focal-spot. The linearity of the x-ray tube voltage, current and exposure-time was evaluated using silicon diode and ion-chamber detectors. Dosimetric characteristics of beam e.g. output linearity, depth dose-rate and profiles were measured using calibrated radiochromic films, thermoluminescence, and ion-chamber detectors in kV solid-water phantom or air, with and without external energy filtration. Dose-rate uniformity, flatness, symmetry, beam width, and penumbra were assessed for single and parallel-opposed x-ray beams across various field sizes.Results.The x-ray sources were aligned at 0.3 mm accuracy. The radiation beam center was within 1.0 mm of mechanical center. Beam output was highly linear with wide ranges of tube current (5-630 mA) and exposure-time (5-6300 ms), supporting accurate dose-rate and dose adjustments. The FLASH-SARRP supports a wide range of dose-rates from <1 Gy s-1to 100 Gy s-1, depending on field size. The uniformity of the depth and crossbeam dose-rates is ±3.6 Gy s-1and ±1.5 Gy s-1between 5-15 mm phantom depth without and with external filter, respectively.Significance.The FLASH-SARRP provides desirable dosimetric performance for small animal irradiation, supporting both conventional and FLASH dose-rate across field sizes from 5 mm-diameter circular to 20 mm-square apertures. This platform enables comparative studies between FLASH and conventional dose-rates in small animal (e.g. mouse) models.
Collapse
Affiliation(s)
- Mohammad-Ali Tajik Mansoury
- Department of Radiation Oncology and Molecular Radiation Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - Daniel Sforza
- Department of Radiation Oncology and Molecular Radiation Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - John Wong
- Department of Radiation Oncology and Molecular Radiation Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - Iulian Iordachita
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - Mohammad Rezaee
- Department of Radiation Oncology and Molecular Radiation Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| |
Collapse
|
2
|
Taylor ERJF, Tullis IDC, Vojnovic B, Petersson K. Megavoltage photon FLASH for preclinical experiments. Med Phys 2025. [PMID: 40387520 DOI: 10.1002/mp.17891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/20/2025] Open
Abstract
BACKGROUND FLASH radiotherapy using megavoltage (MV) photon beams should enable greater therapeutic efficacy, target deep seated tumors, and provide insights into mechanisms within FLASH. PURPOSE In this study, we aim to show how to facilitate ultra-high dose rates (FLASH) with MV photons over a field size of 12-15 mm, using a 6 MeV (nominal) preclinical electron linear accelerator (linac). Our intention is to utilize this setup to deliver FLASH with MV photons in future preclinical experiments. METHODS: An electron linear accelerator operating at a pulse repetition frequency of 300 Hz, a tungsten target, and a beam hardening filter were used, in conjunction with beam tuning and source-to-surface distance (SSD) reduction. Depth dose curves, beam profiles, and average dose rates were determined using EBT-XD Gafchromic film, and an Advanced Markus ionization chamber was used to measure the photon charge output. RESULTS A 0.55 mm thick tungsten target, in combination with a 6 mm thick copper hardening filter were found to produce photon FLASH dose rates, with minimal electron contamination, delivering dose rates > 40 Gy/s over fields of 12-15 mm. Beam flatness and symmetry were comparable in horizontal and vertical planes. CONCLUSION Ultra-high average dose rate beams have been achieved with MV photons for preclinical irradiation fields, enabling future preclinical FLASH radiation experiments.
Collapse
Affiliation(s)
| | | | | | - Kristoffer Petersson
- Department of Oncology, University of Oxford, Oxford, UK
- Radiation Physics, Department of Haematology, Oncology and Radiation Physics, Skåne University Hospital, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Darafsheh A, Bey A. Implementation of a proton FLASH platform for pre-clinical studies using a gantry-mounted synchrocyclotron. Phys Med Biol 2025; 70:105008. [PMID: 40329915 PMCID: PMC12056584 DOI: 10.1088/1361-6560/add106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/15/2025] [Accepted: 04/25/2025] [Indexed: 05/08/2025]
Abstract
Objective. External beam radiation therapy (RT) at ultra-high dose rate (FLASH RT) has shown promise for improving the therapeutic ratio; exploiting its full potential, however, requires systematic preclinical studies to unravel the underlying radiobiological mechanisms. We demonstrate a proton irradiation platform for pre-clinical FLASH studies using a gantry-mounted proton therapy system in clinical operation.Approach. An accessory comprising a transmission ionization chamber, a tray accommodating beam modifying elements, including range shifting blocks made of boron carbide (B4C) and poly(methyl methacrylate) (PMMA), and brass apertures to shape the beam's lateral extent was attached to the nozzle. A range modulator composed of arrays of holes drilled in a PMMA slab was used to form a spread-out Bragg peak (SOBP). The integral depth dose (IDD) curves, lateral dose profiles, and dose rate were measured using existing dosimeters for different beam modifying material combinations.Results. The range modulator allowed achieving an SOBP with 14 mm modulation. The proton range was gradually reduced through adding B4C and PMMA blocks in the beamline, while the beam spot's size gradually increased and became more symmetric as protons traveled through more material. The commercial scintillator screen showed a dose-rate-independent response for measuring lateral dose profiles. The representative IDDs of the FLASH beam can be measured with a commercial multilayer ionization chamber device at a low dose rate since the IDD did not depend on the dose rate.Significance. This work demonstrated a platform for delivering ∼70 Gy s-1SOBP proton FLASH beams using a gantry-mounted synchrocyclotron clinical system. We showed the evolution of an asymmetric and small single proton spot to a more symmetric and larger spot after ranging and shaping through different components. Using dosimeters commonly employed for quality assurance purposes, we report an efficient method for the characterization of proton FLASH beams.
Collapse
Affiliation(s)
- Arash Darafsheh
- Department of Radiation Oncology, WashU Medicine, St. Louis, MO, 63110, United States of America
| | - Anissa Bey
- Department of Radiation Oncology, WashU Medicine, St. Louis, MO, 63110, United States of America
| |
Collapse
|
4
|
Poirier Y, Byrne KE, Hamad G, Therriault-Proulx F, Jiang K, Deng W, Sawant A, Mossahebi S. What's in a Proton FLASH Beam? Characterizing Ultra-High Dose Rate Protons Using a Commercial Plastic Scintillator. Radiat Res 2025; 203:201-213. [PMID: 40073911 DOI: 10.1667/rade-24-00117.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025]
Abstract
While biological studies of the FLASH effect in proton beams have mainly been performed in the plateau region at maximum beam energy and current, this type of delivery has limited clinical applications. Naturally, it is anticipated that plans to treat patients clinically with FLASH-radiotherapy (FLASH-RT) will capitalize on the Bragg peak. However, as the proton spot widens with depth, the time required to deliver the entire dose to any single point increases. This decreases the dose rate, making the ultra-high dose rates required to trigger the FLASH effect harder to achieve over large areas. Importantly, the dose rate is difficult to measure directly. Time and dose linearity of a fast-resolving commercial plastic scintillation detector were characterized against an ionization chamber. The percent depth dose of a 250 MeV proton beam scanned across a small area (3.5 × 3.5 cm2) was measured at depths of 3-40 cm in solid water. The plastic scintillation detector was used to evaluate the instantaneous and voxel-averaged dose rates as a function of depth for conventional (2 nA nozzle current) and ultra-high dose rate (100 nA) beams. The response of the plastic scintillation detector was shown to be linear with time (±2.5 ms) and absorbed dose (±2%). The scintillator and ionization chamber measurements agreed well as a function of depth (and therefore energy) within 2% for depths <34 cm. Beyond 34 cm, expected quenching effects were observed in the plastic scintillation detector. The voxel-averaged dose rate varied from 52.7 Gy/s at the entrance to 29.3 Gy/s at mid-depth, to 70.4 Gy/s near the Bragg peak, while the maximum instantaneous dose rate decreased from 472 Gy/s near the entrance to 236 Gy/s at the Bragg peak. The plastic scintillation detector has proven useful for investigators to evaluate the complex relationship between dose rate and pencil-beam scanning ultra-high dose rate beam characteristics. There is a loss of dose rate near the Bragg peak due to spot widening, which may acutely impact our ability to exploit the FLASH effect for sparing normal tissues upstream of the intended treatment area. A thorough preclinical investigation of whether the FLASH effect is maintained near the Bragg peak is necessary before this technique can begin translation to the clinic.
Collapse
Affiliation(s)
- Yannick Poirier
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kevin E Byrne
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
- Physics, School of Natural Sciences, University of Galway, Ireland
| | - Gulakhshan Hamad
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - Kai Jiang
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Wei Deng
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Amit Sawant
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sina Mossahebi
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
5
|
Rabeya I, Meesungnoen J, Jay-Gerin JP. Oxygen Depletion and the Role of Cellular Antioxidants in FLASH Radiotherapy: Mechanistic Insights from Monte Carlo Radiation-Chemical Modeling. Antioxidants (Basel) 2025; 14:406. [PMID: 40298624 PMCID: PMC12024430 DOI: 10.3390/antiox14040406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/17/2025] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Abstract
FLASH radiotherapy is a novel irradiation modality that employs ultra-high mean dose rates exceeding 40-150 Gy/s, far surpassing the typical ~0.03 Gy/s used in conventional radiotherapy. This advanced technology delivers high doses of radiation within milliseconds, effectively targeting tumors while minimizing damage to the surrounding healthy tissues. However, the precise mechanism that differentiates responses between tumor and normal tissues is not yet understood. This study primarily examines the ROD hypothesis, which posits that oxygen undergoes transient radiolytic depletion following a radiation pulse. We developed a computational model to investigate the effects of dose rate on radiolysis in an aqueous environment that mimics a confined cellular space subjected to instantaneous pulses of energetic protons. This study employed the multi-track chemistry Monte Carlo simulation code, IONLYS-IRT, which has been optimized to model this radiolysis in a homogeneous and aerated medium. This medium is composed primarily of water, alongside carbon-based biological molecules (RH), radiation-induced bio-radicals (R●), glutathione (GSH), ascorbate (AH-), nitric oxide (●NO), and α-tocopherol (TOH). Our model closely monitors the temporal variations in these components, specifically focusing on oxygen consumption, from the initial picoseconds to one second after exposure. Simulations reveal that cellular oxygen is transiently depleted primarily through its reaction with R● radicals, consistent with prior research, but also with glutathione disulfide radical anions (GSSG●-) in roughly equal proportions. Notably, we show that, contrary to some reports, the peroxyl radicals (ROO●) formed are not neutralized by recombination reactions. Instead, these radicals are rapidly neutralized by antioxidants present in irradiated cells, with AH- and ●NO proving to be the most effective in preventing the propagation of harmful peroxidation chain reactions. Moreover, our model identifies a critical dose rate threshold below which the FLASH effect, as predicted by the ROD hypothesis, cannot fully manifest. By comparing our findings with existing experimental data, we determine that the ROD hypothesis alone cannot entirely explain the observed FLASH effect. Our findings indicate that antioxidants might significantly contribute to the FLASH effect by mitigating radiation-induced cellular damage and, in turn, enhancing cellular radioprotection. Additionally, our model lends support to the hypothesis that transient oxygen depletion may partially contribute to the FLASH effect observed in radiotherapy. However, our findings indicate that this mechanism alone is insufficient to fully explain the phenomenon, suggesting the involvement of additional mechanisms or factors and warranting further investigation.
Collapse
Affiliation(s)
| | | | - Jean-Paul Jay-Gerin
- Department of Medical Imaging and Radiation Sciences, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12th Avenue Nord, Sherbrooke, QC J1H 5N4, Canada; (I.R.); (J.M.)
| |
Collapse
|
6
|
Fazzari J, Fernandez-Palomo C, Pellicioli P, Day L, Trappetti V, Lucien-Matteoni F, Kim Y, Mutter R, Park S, Grams M, Djonov V. Spatially fractionated minibeam radiation delivered at clinically feasible dose rates induces transient vascular permeability. Sci Rep 2025; 15:8210. [PMID: 40064939 PMCID: PMC11894116 DOI: 10.1038/s41598-025-87395-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/20/2025] [Indexed: 03/14/2025] Open
Abstract
Microbeam Radiation Therapy is a preclinical form of spatially fractionated radiation therapy that utilizes synchrotron X-rays to deliver highly heterogeneous dose distributions at a micrometric scale. This radiation scheme has been shown to facilitate the induction of controlled and reversible vascular permeability, enhancing treatment efficacy of systemic therapeutic agents. Despite the promising preclinical results, translating microbeam SFRT to the clinic has been hindered by a reliance on synchrotron sources that operate at dose rates orders of magnitude greater than what is possible with clinical machines. Without rapid dose delivery, the microbeam geometry is susceptible to blurring due to physiologic motion when delivered at clinical dose rates. Therefore, larger beam widths, spaced further apart (minibeams) were employed to determine whether such effects can be observed with clinically achievable doses and dose rates. Vascular permeability was assessed in the chick chorioallantoic membrane vasculature following minibeam irradiation delivered at peak doses (10 Gy) and dose rates (10 Gy/s and 0.05 Gy/s) approaching clinical relevance. Transient, reversible permeability could be induced at these dose rates beginning 1-2 h post-irradiation. This was followed by temporary vascular occlusion in the beam path that was resolved by 7 h when delivered at 10 Gy/s but persisted longer when delivered at 0.05 Gy/s. Despite these changes, vascular function was maintained at both dose rates by 24 h post-IR, differing only in the degree of regeneration. The induction of permeability was also maintained when using a clinical orthovoltage system further supporting the potential clinical application of minibeam radiation therapy.
Collapse
Affiliation(s)
| | | | - Paolo Pellicioli
- Institute of Anatomy, University of Bern, Bern, Switzerland
- ID17 Biomedical Beamline, European Synchrotron Radiation Facility, Grenoble, France
| | - Liam Day
- Institute of Anatomy, University of Bern, Bern, Switzerland
- ID17 Biomedical Beamline, European Synchrotron Radiation Facility, Grenoble, France
| | | | | | - Yohan Kim
- Department of Urology, Mayo Clinic, Rochester, MN, USA
| | - Robert Mutter
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
- Department of Pharmacology, Mayo Clinic, Rochester, MN, USA
| | - Sean Park
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Michael Grams
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Bern, Switzerland.
| |
Collapse
|
7
|
Sforza D, Bunz F, Wong J, Miles D, Adhikary A, Rezaee M. Effect of Ultrahigh Dose Rate on Biomolecular Radiation Damage. Radiat Res 2024; 202:825-836. [PMID: 39405451 PMCID: PMC11624112 DOI: 10.1667/rade-24-00100.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Dose rate is one of the important parameters in radiation-induced biomolecular damage. The effects of dose rate have been known to modify radiation toxicity in biological systems. The rate and extent of sublethal DNA damage (e.g., base damage and single-strand breaks) repair and those of cell proliferation have been manifested by dose rate. However, the recent preclinical application of ultrahigh dose rate [(UHDR) ca. 40 Gy/s and higher] radiation modalities have been shown to lower the type and extent of radiation damage to biological systems. At these UHDR, radiation-induced physicochemical and chemical processes are expected to differ from those observed after irradiation at conventional dose rates (CONV). It is unclear whether these UHDR conditions can affect the quality (type) and quantity (extent) of biomolecular damage such as DNA lesions. Here, we comparatively study the influence of indirect effects of CONV and UHDR on the formation of DNA strand breaks and clustered damage including densely accumulated lesions in an aerated and an anoxic dilute aqueous solution of a plasmid DNA model under low and high hydroxyl radical (•OH) scavenging conditions. Aqueous solutions of purified supercoiled plasmid DNA (pUC19) were prepared in either air- or nitrogen-saturated conditions, with Tris buffer added as the radiation-produced •OH scavenger at low and high scavenging capacities. These DNA samples were irradiated using kV X-ray systems at CONV (0.1 Gy/s) and high dose rate (HDR, 25 Gy/s) as well as UHDR (55 and 125 Gy/s) under different scavenging and environmental conditions. DNA lesions including strand breaks and clustered damage including densely accumulated lesions were quantified by gel electrophoresis and the yields of these lesions were calculated from the dose-response curve. Non-DSB clustered damage including densely accumulated lesions were evaluated by treating DNAs using bacterial endonuclease enzymes (Fpg and Nth) prior to gel electrophoresis. UHDR of 55 and 125 Gy/s induced lower amounts of both isolated strand breaks and clustered DNA damage including densely accumulated lesions at doses >40 Gy in the presence of oxygen, compared to the abundance of these lesions induced by 0.1 and 25 Gy/s irradiation under the same dose conditions. Overall, the strand break and clustered damage including densely accumulated lesions yields decreased by factors of 1.3-3.5 after UHDR. We did not observe these differences either via •OH scavenging or by removing oxygen from the solution. In addition, our results point out that the inter-track recombination reactions did not contribute to the observed dose-rate effects on DNA damage. The effects of dose rate on DNA damage are highly dependent on the total dose, as expected, but also on the •OH scavenging capacity that is employed in the aqueous DNA solutions. These important variables may be relevant in biological systems as well. On a practical level, our in vitro plasmid DNA model, which permits to precisely vary the •OH scavenging capacity and gassing conditions (air saturated vs. N2 saturated) can help to differentiate dose-rate effects on biomolecular damage. Our results indicate that the radical-radical reactions are important in understanding the dose-rate effect on DNA damage.
Collapse
Affiliation(s)
- Daniel Sforza
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Fred Bunz
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21231, USA
| | - John Wong
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Devin Miles
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Amitava Adhikary
- Department of Chemistry, 146 Library Drive, Oakland University, Rochester, MI 48309, USA
| | - Mohammad Rezaee
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21231, USA
| |
Collapse
|
8
|
Bustillo JPO, Paino J, Barnes M, Cayley J, de Rover V, Cameron M, Engels EEM, Tehei M, Beirne S, Wallace GG, Rosenfeld AB, Lerch MLF. Design, construction, and dosimetry of 3D printed heterogeneous phantoms for synchrotron brain cancer radiation therapy quality assurance. Phys Med Biol 2024; 69:145003. [PMID: 38914107 DOI: 10.1088/1361-6560/ad5b48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/24/2024] [Indexed: 06/26/2024]
Abstract
Objective.This study aims to design, manufacture, and test 3D printed quality assurance (QA) dosimetry phantoms for synchrotron brain cancer radiation therapy at the Australian synchrotron.Approach.Fabricated 3D printed phantoms from simple slab phantoms, a preclinical rat phantom, and an anthropomorphic head phantom were fabricated and characterized. Attenuation measurements of various polymers, ceramics and metals were acquired using synchrotron monochromatic micro-computed tomography (CT) imaging. Polylactic acid plus, VeroClear, Durable resin, and tricalcium phosphate were used in constructing the phantoms. Furthermore, 3D printed bone equivalent materials were compared relative to ICRU bone and hemihydrate plaster. Homogeneous and heterogeneous rat phantoms were designed and fabricated using tissue-equivalent materials. Geometric accuracy, CT imaging, and consistency were considered. Moreover, synchrotron broad-beam x-rays were delivered using a 3 Tesla superconducting multipole wiggler field for four sets of synchrotron radiation beam qualities. Dose measurements were acquired using a PinPoint ionization chamber and compared relative to a water phantom and a RMI457 Solid Water phantom. Experimental depth doses were compared relative to calculated doses using a Geant4 Monte Carlo simulation.Main results.Polylactic acid (PLA+) shows to have a good match with the attenuation coefficient of ICRU water, while both tricalcium phosphate and hydroxyapatite have good attenuation similarity with ICRU bone cortical. PLA+ material can be used as substitute to RMI457 slabs for reference dosimetry with a maximum difference of 1.84%. Percent depth dose measurement also shows that PLA+ has the best match with water and RMI457 within ±2.2% and ±1.6%, respectively. Overall, PLA+ phantoms match with RMI457 phantoms within ±3%.Significance and conclusion.The fabricated phantoms are excellent tissue equivalent equipment for synchrotron radiation dosimetry QA measurement. Both the rat and the anthropomorphic head phantoms are useful in synchrotron brain cancer radiotherapy dosimetry, experiments, and future clinical translation of synchrotron radiotherapy and imaging.
Collapse
Affiliation(s)
- John Paul O Bustillo
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
- Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Ermita, Manila City 1000 Metro Manila, The Philippines
| | - Jason Paino
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
| | - Micah Barnes
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
- Imaging and Medical Beamline, Australian Nuclear Science and Technology Organisation- Australian Synchrotron, Kulin Nation, Clayton, VIC 3168, Australia
| | - James Cayley
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
| | - Vincent de Rover
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
| | - Matthew Cameron
- Imaging and Medical Beamline, Australian Nuclear Science and Technology Organisation- Australian Synchrotron, Kulin Nation, Clayton, VIC 3168, Australia
| | - Elette E M Engels
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
- Imaging and Medical Beamline, Australian Nuclear Science and Technology Organisation- Australian Synchrotron, Kulin Nation, Clayton, VIC 3168, Australia
| | - Moeava Tehei
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
| | - Stephen Beirne
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Gordon G Wallace
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Anatoly B Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
| | - Michael L F Lerch
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
| |
Collapse
|
9
|
Cengel KA, Kim MM, Diffenderfer ES, Busch TM. FLASH Radiotherapy: What Can FLASH's Ultra High Dose Rate Offer to the Treatment of Patients With Sarcoma? Semin Radiat Oncol 2024; 34:218-228. [PMID: 38508786 DOI: 10.1016/j.semradonc.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
FLASH is an emerging treatment paradigm in radiotherapy (RT) that utilizes ultra-high dose rates (UHDR; >40 Gy)/s) of radiation delivery. Developing advances in technology support the delivery of UHDR using electron and proton systems, as well as some ion beam units (eg, carbon ions), while methods to achieve UHDR with photons are under investigation. The major advantage of FLASH RT is its ability to increase the therapeutic index for RT by shifting the dose response curve for normal tissue toxicity to higher doses. Numerous preclinical studies have been conducted to date on FLASH RT for murine sarcomas, alongside the investigation of its effects on relevant normal tissues of skin, muscle, and bone. The tumor control achieved by FLASH RT of sarcoma models is indistinguishable from that attained by treatment with standard RT to the same total dose. FLASH's high dose rates are able to mitigate the severity or incidence of RT side effects on normal tissues as evaluated by endpoints ranging from functional sparing to histological damage. Large animal studies and clinical trials of canine patients show evidence of skin sparing by FLASH vs. standard RT, but also caution against delivery of high single doses with FLASH that exceed those safely applied with standard RT. Also, a human clinical trial has shown that FLASH RT can be delivered safely to bone metastasis. Thus, data to date support continued investigations of clinical translation of FLASH RT for the treatment of patients with sarcoma. Toward this purpose, hypofractionated irradiation schemes are being investigated for FLASH effects on sarcoma and relevant normal tissues.
Collapse
Affiliation(s)
- Keith A Cengel
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania..
| | - Michele M Kim
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Eric S Diffenderfer
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Theresa M Busch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Cetnar AJ, Jain S, Gupta N, Chakravarti A. Technical note: Commissioning of a linear accelerator producing ultra-high dose rate electrons. Med Phys 2024; 51:1415-1420. [PMID: 38159300 DOI: 10.1002/mp.16925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Ultra-high dose rate radiation (UHDR) is being explored by researchers in promise of advancing radiation therapy treatments. PURPOSE This work presents the commissioning of Varian's Flash Extension for research (FLEX) conversion of a Clinac to deliver UHDR electrons. METHODS A Varian Clinac iX with the FLEX conversion was commissioned for non-clinical research use with 16 MeV UHDR (16H) energy. This involved addition of new hardware, optimizing the electron gun voltages, radiofrequency (RF) power, and steering coils in order to maximize the accelerated electron beam current, sending the beam through custom scattering foils to produce the UHDR with 16H beam. Profiles and percent depth dose (PDD) measurements for 16H were obtained using radiochromic film in a custom vertical film holder and were compared to 16 MeV conventional electrons (16C). Dose rate and dose per pulse (DPP) were calculated from measured dose in film. Linearity and stability were assessed using an Advanced Markus ionization chamber. RESULTS Energies for 16H and 16C had similar beam quality based on PDD measurements. Measurements at the head of the machine (61.3 cm SSD) with jaws set to 10×10 cm2 showed the FWHM of the profile as 7.2 cm, with 3.4 Gy as the maximum DPP and instantaneous dose rate of 8.1E5 Gy/s. Measurements at 100 cm SSD with 10 cm standard cone showed the full width at half max (FWHM) of the profile as 10.5 cm, 1.08 Gy as the maximum DPP and instantaneous dose rate of 2.E5 Gy/s. Machine output with number of pulses was linear (R = 1) from 1 to 99 delivered pulses. Output stability was measured within ±1% within the same session and within ±2% for daily variations. CONCLUSIONS The FLEX conversion of the Clinac is able to generate UHDR electron beams which are reproducible with beam properties similar to clinically used electrons at 16 MeV. Having a platform which can quickly transition between UHDR and conventional modes (<1 min) can be advantageous for future research applications.
Collapse
Affiliation(s)
- Ashley J Cetnar
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Sagarika Jain
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Nilendu Gupta
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Arnab Chakravarti
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
11
|
Esplen N, Egoriti L, Planche T, Rädel S, Koay HW, Humphries B, Ren X, Ford N, Hoehr C, Gottberg A, Bazalova-Carter M. Dosimetric characterization of a novel UHDR megavoltage X-ray source for FLASH radiobiological experiments. Sci Rep 2024; 14:822. [PMID: 38191885 PMCID: PMC10774358 DOI: 10.1038/s41598-023-50412-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024] Open
Abstract
A first irradiation platform capable of delivering 10 MV X-ray beams at ultra-high dose rates (UHDR) has been developed and characterized for FLASH radiobiological research at TRIUMF. Delivery of both UHDR (FLASH mode) and low dose-rate conventional (CONV mode) irradiations was demonstrated using a common source and experimental setup. Dose rates were calculated using film dosimetry and a non-intercepting beam monitoring device; mean values for a 100 μA pulse (peak) current were nominally 82.6 and 4.40 × 10-2 Gy/s for UHDR and CONV modes, respectively. The field size for which > 40 Gy/s could be achieved exceeded 1 cm down to a depth of 4.1 cm, suitable for total lung irradiations in mouse models. The calculated delivery metrics were used to inform subsequent pre-clinical treatments. Four groups of 6 healthy male C57Bl/6J mice were treated using thoracic irradiations to target doses of either 15 or 30 Gy using both FLASH and CONV modes. Administration of UHDR X-ray irradiation to healthy mouse models was demonstrated for the first time at the clinically-relevant beam energy of 10 MV.
Collapse
Affiliation(s)
- Nolan Esplen
- Physics and Astronomy, University of Victoria, Victoria, V8P 5C2, Canada
| | - Luca Egoriti
- TRIUMF, Vancouver, V6T 2A3, Canada
- Chemistry, University of British Columbia, Vancouver, V6T 1Z1, Canada
| | | | | | | | | | - Xi Ren
- Physics and Astronomy, University of British Columbia, Vancouver, V6T 1Z1, Canada
| | - Nancy Ford
- Physics and Astronomy, University of British Columbia, Vancouver, V6T 1Z1, Canada
- Oral Biological and Medical Sciences, University of British Columbia, Vancouver, V6T 1Z1, Canada
| | - Cornelia Hoehr
- Physics and Astronomy, University of Victoria, Victoria, V8P 5C2, Canada
- TRIUMF, Vancouver, V6T 2A3, Canada
| | - Alexander Gottberg
- Physics and Astronomy, University of Victoria, Victoria, V8P 5C2, Canada
- TRIUMF, Vancouver, V6T 2A3, Canada
| | | |
Collapse
|
12
|
Tan Y, Zhou S, Haefner J, Chen Q, Mazur TR, Darafsheh A, Zhang T. Simulation study of a novel small animal FLASH irradiator (SAFI) with integrated inverse-geometry CT based on circularly distributed kV X-ray sources. Sci Rep 2023; 13:20181. [PMID: 37978269 PMCID: PMC10656503 DOI: 10.1038/s41598-023-47421-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
Ultra-high dose rate (UHDR) radiotherapy (RT) or FLASH-RT can potentially reduce normal tissue toxicity. A small animal irradiator that can deliver FLASH-RT treatments similar to clinical RT treatments is needed for pre-clinical studies of FLASH-RT. We designed and simulated a novel small animal FLASH irradiator (SAFI) based on distributed x-ray source technology. The SAFI system comprises a distributed x-ray source with 51 focal spots equally distributed on a 20 cm diameter ring, which are used for both FLASH-RT and onboard micro-CT imaging. Monte Carlo simulation was performed to estimate the dosimetric characteristics of the SAFI treatment beams. The maximum dose rate, which is limited by the power density of the tungsten target, was estimated based on finite-element analysis (FEA). The maximum DC electron beam current density is 2.6 mA/mm2, limited by the tungsten target's linear focal spot power density. At 160 kVp, 51 focal spots, each with a dimension of [Formula: see text] mm2 and 10° anode angle, can produce up to 120 Gy/s maximum DC irradiation at the center of a cylindrical water phantom. We further demonstrate forward and inverse FLASH-RT planning, as well as inverse-geometry micro-CT with circular source array imaging via numerical simulations.
Collapse
Affiliation(s)
- Yuewen Tan
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
- Department of Physics, Washington University in St. Louis, St. Louis, MO, 63130, USA
- Center for Radiological Research, Columbia University, New York, NY, 10032, USA
| | - Shuang Zhou
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Jonathan Haefner
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Qinghao Chen
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Thomas R Mazur
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Arash Darafsheh
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Tiezhi Zhang
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
13
|
Miles D, Sforza D, Wong JW, Gabrielson K, Aziz K, Mahesh M, Coulter JB, Siddiqui I, Tran PT, Viswanathan AN, Rezaee M. FLASH Effects Induced by Orthovoltage X-Rays. Int J Radiat Oncol Biol Phys 2023; 117:1018-1027. [PMID: 37364800 PMCID: PMC11189000 DOI: 10.1016/j.ijrobp.2023.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/16/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023]
Abstract
PURPOSE This work describes the first implementation and in vivo study of ultrahigh-dose-rate radiation (>37 Gy/s; FLASH) effects induced by kilovoltage (kV) x-ray from a rotating-anode x-ray source. METHODS AND MATERIALS A high-capacity rotating-anode x-ray tube with an 80-kW generator was implemented for preclinical FLASH radiation research. A custom 3-dimensionally printed immobilization and positioning tool was developed for reproducible irradiation of a mouse hind limb. Calibrated Gafchromic (EBT3) film and thermoluminescent dosimeters (LiF:Mg,Ti) were used for in-phantom and in vivo dosimetry. Healthy FVB/N and FVBN/C57BL/6 outbred mice were irradiated on 1 hind leg to doses up to 43 Gy at FLASH (87 Gy/s) and conventional (CONV; <0.05 Gy/s) dose rates. The radiation doses were delivered using a single pulse with the widths up to 500 ms and 15 minutes at FLASH and CONV dose rates. Histologic assessment of radiation-induced skin damage was performed at 8 weeks posttreatment. Tumor growth suppression was assessed using a B16F10 flank tumor model in C57BL6J mice irradiated to 35 Gy at both FLASH and CONV dose rates. RESULTS FLASH-irradiated mice experienced milder radiation-induced skin injuries than CONV-irradiated mice, visible by 4 weeks posttreatment. At 8 weeks posttreatment, normal tissue injury was significantly reduced in FLASH-irradiated animals compared with CONV-irradiated animals for histologic endpoints including inflammation, ulceration, hyperplasia, and fibrosis. No difference in tumor growth response was observed between FLASH and CONV irradiations at 35 Gy. The normal tissue sparing effects of FLASH irradiations were observed only for high-severity endpoint of ulceration at 43 Gy, which suggests the dependency of biologic endpoints to FLASH radiation dose. CONCLUSIONS Rotating-anode x-ray sources can achieve FLASH dose rates in a single pulse with dosimetric properties suitable for small-animal experiments. We observed FLASH normal tissue sparing of radiation toxicities in mouse skin irradiated at 35 Gy with no sacrifice to tumor growth suppression. This study highlights an accessible new modality for laboratory study of the FLASH effect.
Collapse
Affiliation(s)
- Devin Miles
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniel Sforza
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John W Wong
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kathleen Gabrielson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Khaled Aziz
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mahadevappa Mahesh
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jonathan B Coulter
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ismaeel Siddiqui
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Phuoc T Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Akila N Viswanathan
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mohammad Rezaee
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
14
|
Schulte R, Johnstone C, Boucher S, Esarey E, Geddes CGR, Kravchenko M, Kutsaev S, Loo BW, Méot F, Mustapha B, Nakamura K, Nanni EA, Obst-Huebl L, Sampayan SE, Schroeder CB, Sheng K, Snijders AM, Snively E, Tantawi SG, Van Tilborg J. Transformative Technology for FLASH Radiation Therapy. APPLIED SCIENCES (BASEL, SWITZERLAND) 2023; 13:5021. [PMID: 38240007 PMCID: PMC10795821 DOI: 10.3390/app13085021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
The general concept of radiation therapy used in conventional cancer treatment is to increase the therapeutic index by creating a physical dose differential between tumors and normal tissues through precision dose targeting, image guidance, and radiation beams that deliver a radiation dose with high conformality, e.g., protons and ions. However, the treatment and cure are still limited by normal tissue radiation toxicity, with the corresponding side effects. A fundamentally different paradigm for increasing the therapeutic index of radiation therapy has emerged recently, supported by preclinical research, and based on the FLASH radiation effect. FLASH radiation therapy (FLASH-RT) is an ultra-high-dose-rate delivery of a therapeutic radiation dose within a fraction of a second. Experimental studies have shown that normal tissues seem to be universally spared at these high dose rates, whereas tumors are not. While dose delivery conditions to achieve a FLASH effect are not yet fully characterized, it is currently estimated that doses delivered in less than 200 ms produce normal-tissue-sparing effects, yet effectively kill tumor cells. Despite a great opportunity, there are many technical challenges for the accelerator community to create the required dose rates with novel compact accelerators to ensure the safe delivery of FLASH radiation beams.
Collapse
Affiliation(s)
- Reinhard Schulte
- Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, CA 92350, USA
| | - Carol Johnstone
- Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
| | - Salime Boucher
- RadiaBeam Technologies, LLC, Santa Monica, CA 90404, USA
| | - Eric Esarey
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | - Sergey Kutsaev
- RadiaBeam Technologies, LLC, Santa Monica, CA 90404, USA
| | - Billy W. Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - François Méot
- Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | - Kei Nakamura
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Emilio A. Nanni
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | - Stephen E. Sampayan
- Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
- Opcondys, Inc., Manteca, CA 95336, USA
| | | | - Ke Sheng
- Department of Radiation Oncology, University of California, San Francisco, CA 94115, USA
| | | | - Emma Snively
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Sami G. Tantawi
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | |
Collapse
|
15
|
Silvestre Patallo I, Subiel A, Carter R, Flynn S, Schettino G, Nisbet A. Characterization of Inorganic Scintillator Detectors for Dosimetry in Image-Guided Small Animal Radiotherapy Platforms. Cancers (Basel) 2023; 15:987. [PMID: 36765943 PMCID: PMC9913621 DOI: 10.3390/cancers15030987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
The purpose of the study was to characterize a detection system based on inorganic scintillators and determine its suitability for dosimetry in preclinical radiation research. Dose rate, linearity, and repeatability of the response (among others) were assessed for medium-energy X-ray beam qualities. The response's variation with temperature and beam angle incidence was also evaluated. Absorbed dose quality-dependent calibration coefficients, based on a cross-calibration against air kerma secondary standard ionization chambers, were determined. Relative output factors (ROF) for small, collimated fields (≤10 mm × 10 mm) were measured and compared with Gafchromic film and to a CMOS imaging sensor. Independently of the beam quality, the scintillator signal repeatability was adequate and linear with dose. Compared with EBT3 films and CMOS, ROF was within 5% (except for smaller circular fields). We demonstrated that when the detector is cross-calibrated in the user's beam, it is a useful tool for dosimetry in medium-energy X-rays with small fields delivered by Image-Guided Small Animal Radiotherapy Platforms. It supports the development of procedures for independent "live" dose verification of complex preclinical radiotherapy plans with the possibility to insert the detectors in phantoms.
Collapse
Affiliation(s)
- Ileana Silvestre Patallo
- Medical Radiation Physics and Science Groups, National Physical Laboratory (NPL), Guilford TW11 0LW, UK
| | - Anna Subiel
- Medical Radiation Physics and Science Groups, National Physical Laboratory (NPL), Guilford TW11 0LW, UK
| | - Rebecca Carter
- Cancer Institute, University College London, London WC1E 6DD, UK
| | - Samuel Flynn
- Medical Radiation Physics and Science Groups, National Physical Laboratory (NPL), Guilford TW11 0LW, UK
- School of Physics and Astronomy, University of Birmingham, Edgbaston Campus, Birmingham B15 2TT, UK
| | - Giuseppe Schettino
- Medical Radiation Physics and Science Groups, National Physical Laboratory (NPL), Guilford TW11 0LW, UK
- Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Andrew Nisbet
- Department of Medical Physics & Biomedical Engineering, University College London, Mallet Place Engineering Building, London WC1E 6BT, UK
| |
Collapse
|
16
|
Espinosa-Rodriguez A, Villa-Abaunza A, Díaz N, Pérez-Díaz M, Sánchez-Parcerisa D, Udías J, Ibáñez P. Design of an X-ray irradiator based on a standard imaging X-ray tube with FLASH dose-rate capabilities for preclinical research. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2023.110760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
17
|
Vozenin MC, Bourhis J, Durante M. Towards clinical translation of FLASH radiotherapy. Nat Rev Clin Oncol 2022; 19:791-803. [DOI: 10.1038/s41571-022-00697-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2022] [Indexed: 11/09/2022]
|
18
|
Gao Y, Liu R, Chang C, Charyyev S, Zhou J, Bradley JD, Liu T, Yang X. A potential revolution in cancer treatment: A topical review of FLASH radiotherapy. J Appl Clin Med Phys 2022; 23:e13790. [PMID: 36168677 PMCID: PMC9588273 DOI: 10.1002/acm2.13790] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/08/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022] Open
Abstract
FLASH radiotherapy (RT) is a novel technique in which the ultrahigh dose rate (UHDR) (≥40 Gy/s) is delivered to the entire treatment volume. Recent outcomes of in vivo studies show that the UHDR RT has the potential to spare normal tissue without sacrificing tumor control. There is a growing interest in the application of FLASH RT, and the ultrahigh dose irradiation delivery has been achieved by a few experimental and modified linear accelerators. The underlying mechanism of FLASH effect is yet to be fully understood, but the oxygen depletion in normal tissue providing extra protection during FLASH irradiation is a hypothesis that attracts most attention currently. Monte Carlo simulation is playing an important role in FLASH, enabling the understanding of its dosimetry calculations and hardware design. More advanced Monte Carlo simulation tools are under development to fulfill the challenge of reproducing the radiolysis and radiobiology processes in FLASH irradiation. FLASH RT may become one of standard treatment modalities for tumor treatment in the future. This paper presents the history and status of FLASH RT studies with a focus on FLASH irradiation delivery modalities, underlying mechanism of FLASH effect, in vivo and vitro experiments, and simulation studies. Existing challenges and prospects of this novel technique are discussed in this manuscript.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Ruirui Liu
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Chih‐Wei Chang
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Serdar Charyyev
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Jeffrey D. Bradley
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
19
|
Wei S, Lin H, Isabelle Choi J, Shi C, Simone CB, Kang M. Advanced pencil beam scanning Bragg peak FLASH-RT delivery technique can enhance lung cancer planning treatment outcomes compared to conventional multiple-energy proton PBS techniques. Radiother Oncol 2022; 175:238-247. [PMID: 35961583 DOI: 10.1016/j.radonc.2022.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 12/25/2022]
Abstract
PURPOSE To investigate the dosimetric characteristics between an advanced proton pencil beam scanning (PBS) Bragg peak FLASH technique and conventional PBS planning technique in lung tumors. To evaluate the "FLASHness" of single-field in a multiple-field delivery scheme for a hypofractionation regimen and move a step forward to clinical application. METHODS Single-energy PBS Bragg peak FLASH treatment plans were optimized based on a novel Bragg peak tracking technique to enable Bragg peaks to stop at the distal edge of the target. Inverse treatment planning using multiple-field optimization (MFO) can achieve sufficient FLASH dose rate and intensity-modulated proton therapy (IMPT)-equivalent dosimetric quality. The dose rate of organs-at-risk (OARs) and the target were calculated under FLASH machine parameters. A group of 10 consecutive lung SBRT patients was optimized to 34 Gy/fraction using a standard treatment of PBS technique with multiple energy layers as references to the Bragg peak plans. The dosimetric quality was compared between Bragg peak FLASH and conventional plans based on RTOG0915 dose metrics. FLASH dose rate ratios (V40Gy/s) were calculated as a metric of the FLASH-sparing effect. RESULTS For higher dose thresholds, the Bragg peak plans achieved greater V40Gy/s FLASH coverage for all major OARs. The V40Gy/s was close to 100% for all OARs when the dose thresholds were > 5 Gy for full plan and single beam evaluations. The less "FLASHness" region was associated with a low dose distribution, mainly occurring in the PBS field penumbra region. The conventional IMPT treatment plans yielded slightly superior target dose uniformity with a D2%(%) of 108.02% versus that of Bragg peak 300 MU plans of 111.81% (p < 0.01) and that of Bragg peak 1200 MU plans of 115.95% (p < 0.01). No significant difference in dose metrics was found between Bragg peak and IMPT treatment plans for the spinal cord, esophagus, heart, or lung-GTV (all p > 0.05). CONCLUSION Hypofractionated lung Bragg peak plans can maintain comparable plan quality to conventional PBS while achieving sufficient FLASH dose rate coverage for major OARs for each field under the multiple-field delivery scheme. The novel Bragg peak FLASH technique has the potential to enhance lung cancer planning treatment outcomes compared to standard PBS treatment techniques.
Collapse
Affiliation(s)
- Shouyi Wei
- New York Proton Center, New York, NY 10035, USA
| | - Haibo Lin
- New York Proton Center, New York, NY 10035, USA.
| | | | - Chengyu Shi
- City of Hope, Orange County, Irvine, CA 92618, USA
| | | | - Minglei Kang
- New York Proton Center, New York, NY 10035, USA.
| |
Collapse
|
20
|
Zhang H, Zhou W. Low-energy X-ray irradiation: A novel non-thermal microbial inactivation technology. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 100:287-328. [PMID: 35659355 DOI: 10.1016/bs.afnr.2022.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Over the last several decades, food irradiation technology has been proven neither to reduce the nutritional value of foods more than other preservation technologies, nor to make foods radioactive or dangerous to eat. Furthermore, food irradiation is a non-thermal food processing technology that helps preserve more heat sensitive nutrients than those found in thermally processed foods. Conventional food irradiation technologies, including γ-ray, electron beam and high energy X-ray, have certain limitations and drawbacks, such as involving radioactive isotopes, low penetration ability, and economical unfeasibility, respectively. Owing to the recent developments in instrumentation technology, more compact and cheaper tabletop low-energy X-ray sources have become available. The generation of low-energy X-ray, unlike γ-ray, does not involve radioactive isotopes and the cost is lower than high energy X-ray. Furthermore, low-energy X-ray possesses unique advantages, i.e., high linear energy transfer (LET) value and high relative biological effect (RBE) value. The advantages allow low-energy X-ray irradiation to provide a higher microbial inactivation efficacy than γ-ray and high energy X-ray irradiation. In the last few years, various applications reported in the literature indicate that low-energy X-ray irradiation has a great potential to become an alternative food preservation technique. This chapter discusses the technical advances of low-energy X-ray irradiation, microbial inactivation mechanism, factors influencing its efficiency, current applications, consumer acceptance, and limitations.
Collapse
Affiliation(s)
- Hongfei Zhang
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
21
|
Compact and very high dose-rate plasma focus radiation sources for medical applications. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Montay-Gruel P, Corde S, Laissue JA, Bazalova-Carter M. FLASH radiotherapy with photon beams. Med Phys 2021; 49:2055-2067. [PMID: 34519042 DOI: 10.1002/mp.15222] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/12/2021] [Accepted: 08/30/2021] [Indexed: 12/16/2022] Open
Abstract
Ultra-high-dose rate "FLASH" radiotherapy (FLASH-RT) has been shown to drastically reduce normal tissue toxicities while being as efficacious as conventional dose rate radiotherapy to treat tumors. A large number of preclinical studies describing this so-called FLASH effect have led to the clinical translation of FLASH-RT using ultra-high-dose rate electron and proton beams. Although the vast majority of radiation therapy treatments are delivered using X-rays, few preclinical data using ultra-high-dose rate X-ray irradiation have been published. This review focuses on different methods that can be used to generate ultra-high-dose rate X-rays and their beam characteristics along with their effect on the biological tissues and the perspectives for the development of FLASH-RT with X-rays.
Collapse
Affiliation(s)
- Pierre Montay-Gruel
- Department of Radiation Oncology, University of California, Irvine, California, USA.,Department of Radiotherapy, Iridium Network, Antwerp, Belgium
| | - Stéphanie Corde
- Department of Radiation Oncology, Prince of Wales Hospital, Randwick, NSW, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Jean A Laissue
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | |
Collapse
|