1
|
Yamano A, Inoue T, Yagihashi T, Yamanaka M, Matsumoto K, Shimo T, Shirata R, Nitta K, Nagata H, Shiraishi S, Minagawa Y, Omura M, Tokuuye K, Chang W. Impact of interplay effects on spot scanning proton therapy with motion mitigation techniques for lung cancer: SFUD versus robustly optimized IMPT plans utilizing a four-dimensional dynamic dose simulation tool. Radiat Oncol 2024; 19:117. [PMID: 39252032 PMCID: PMC11385833 DOI: 10.1186/s13014-024-02518-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/04/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND The interaction between breathing motion and scanning beams causes interplay effects in spot-scanning proton therapy for lung cancer, resulting in compromised treatment quality. This study investigated the effects and clinical robustness of two types of spot-scanning proton therapy with motion-mitigation techniques for locally advanced non-small cell lung cancer (NSCLC) using a new simulation tool (4DCT-based dose reconstruction). METHODS Three-field single-field uniform dose (SFUD) and robustly optimized intensity-modulated proton therapy (IMPT) plans combined with gating and re-scanning techniques were created using a VQA treatment planning system for 15 patients with locally advanced NSCLC (70 GyRBE/35 fractions). In addition, gating windows of three or five phases around the end-of-expiration phase and two internal gross tumor volumes (iGTVs) were created, and a re-scanning number of four was used. First, the static dose (SD) was calculated using the end-of-expiration computed tomography (CT) images. The four-dimensional dynamic dose (4DDD) was then calculated using the SD plans, 4D-CT images, and the deformable image registration technique on end-of-expiration CT. The target coverage (V98%, V100%), homogeneity index (HI), and conformation number (CN) for the iGTVs and organ-at-risk (OAR) doses were calculated for the SD and 4DDD groups and statistically compared between the SD, 4DDD, SFUD, and IMPT treatment plans using paired t-test. RESULTS In the 3- and 5-phase SFUD, statistically significant differences between the SD and 4DDD groups were observed for V100%, HI, and CN. In addition, statistically significant differences were observed for V98%, V100%, and HI in phases 3 and 5 of IMPT. The mean V98% and V100% in both 3-phase plans were within clinical limits (> 95%) when interplay effects were considered; however, V100% decreased to 89.3% and 94.0% for the 5-phase SFUD and IMPT, respectively. Regarding the significant differences in the deterioration rates of the dose volume histogram (DVH) indices, the 3-phase SFUD plans had lower V98% and CN values and higher V100% values than the IMPT plans. In the 5-phase plans, SFUD had higher deterioration rates for V100% and HI than IMPT. CONCLUSIONS Interplay effects minimally impacted target coverage and OAR doses in SFUD and robustly optimized IMPT with 3-phase gating and re-scanning for locally advanced NSCLC. However, target coverage significantly declined with an increased gating window. Robustly optimized IMPT showed superior resilience to interplay effects, ensuring better target coverage, prescription dose adherence, and homogeneity than SFUD. TRIAL REGISTRATION None.
Collapse
Affiliation(s)
- Akihiro Yamano
- Department of Medical Physics, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa, 247-8533, Japan
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa, Tokyo, 116-8551, Japan
| | - Tatsuya Inoue
- Department of Medical Physics, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa, 247-8533, Japan.
- Department of Radiation Oncology, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Takayuki Yagihashi
- Department of Medical Physics, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa, 247-8533, Japan
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa, Tokyo, 116-8551, Japan
| | - Masashi Yamanaka
- Department of Medical Physics, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa, 247-8533, Japan
- Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, 1-7, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuki Matsumoto
- Department of Medical Physics, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa, 247-8533, Japan
- Doctoral Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Takahiro Shimo
- Department of Medical Physics, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa, 247-8533, Japan
| | - Ryosuke Shirata
- Department of Medical Physics, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa, 247-8533, Japan
| | - Kazunori Nitta
- Department of Medical Physics, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa, 247-8533, Japan
| | - Hironori Nagata
- Department of Medical Physics, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa, 247-8533, Japan
| | - Sachika Shiraishi
- Department of Radiation Oncology, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa, 247-8533, Japan
| | - Yumiko Minagawa
- Department of Radiation Oncology, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa, 247-8533, Japan
| | - Motoko Omura
- Department of Radiation Oncology, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa, 247-8533, Japan
| | - Koichi Tokuuye
- Department of Radiation Oncology, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa, 247-8533, Japan
| | - Weishan Chang
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa, Tokyo, 116-8551, Japan
| |
Collapse
|
2
|
Duetschler A, Safai S, Weber DC, Lomax AJ, Zhang Y. The impact of motion on onboard MRI-guided pencil beam scanned proton therapy treatments. Phys Med Biol 2024; 69:095003. [PMID: 38537287 DOI: 10.1088/1361-6560/ad3885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/26/2024] [Indexed: 04/16/2024]
Abstract
Objective.Online magnetic resonance imaging (MRI) guidance could be especially beneficial for pencil beam scanned (PBS) proton therapy of tumours affected by respiratory motion. For the first time to our knowledge, we investigate the dosimetric impact of respiratory motion on MRI-guided proton therapy compared to the scenario without magnetic field.Approach.A previously developed analytical proton dose calculation algorithm accounting for perpendicular magnetic fields was extended to enable 4D dose calculations. For two geometrical phantoms and three liver and two lung patient cases, static treatment plans were optimised with and without magnetic field (0, 0.5 and 1.5 T). Furthermore, plans were optimised using gantry angle corrections (0.5 T +5° and 1.5 T +15°) to reproduce similar beam trajectories compared to the 0 T reference plans. The effect of motion was then considered using 4D dose calculations without any motion mitigation and simulating 8-times volumetric rescanning, with motion for the patient cases provided by 4DCT(MRI) data sets. Each 4D dose calculation was performed for different starting phases and the CTV dose coverageV95%and homogeneityD5%-D95%were analysed.Main results.For the geometrical phantoms with rigid motion perpendicular to the beam and parallel to the magnetic field, a comparable dosimetric effect was observed independent of the magnetic field. Also for the five 4DCT(MRI) cases, the influence of motion was comparable for all magnetic field strengths with and without gantry angle correction. On average, the motion-induced decrease in CTVV95%from the static plan was 17.0% and 18.9% for 1.5 T and 0.5 T, respectively, and 19.9% without magnetic field.Significance.For the first time, this study investigates the combined impact of magnetic fields and respiratory motion on MR-guided proton therapy. The comparable dosimetric effects irrespective of magnetic field strength indicate that the effects of motion for future MR-guided proton therapy may not be worse than for conventional PBS proton therapy.
Collapse
Affiliation(s)
- Alisha Duetschler
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
- Department of Physics, ETH Zürich, 8092 Zürich, CH, Switzerland
| | - Sairos Safai
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
| | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
- Department of Radiation Oncology, University Hospital of Zürich, 8091 Zürich, CH, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, CH, Switzerland
| | - Antony J Lomax
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
- Department of Physics, ETH Zürich, 8092 Zürich, CH, Switzerland
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
| |
Collapse
|
3
|
Tominaga Y, Suga M, Takeda M, Yamamoto Y, Akagi T, Kato T, Tokumaru S, Yamamoto M, Oita M. Comparing interplay effects in scanned proton therapy of lung cancer: Free breathing with various layer and volume rescanning versus respiratory gating with different gate widths. Phys Med 2024; 120:103323. [PMID: 38461635 DOI: 10.1016/j.ejmp.2024.103323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/07/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024] Open
Abstract
PURPOSE We investigated interplay effects and treatment time (TT) in scanned proton therapy for lung cancer patients. We compared free-breathing (FB) approaches with multiple rescanning strategies and respiratory-gating (RG) methods with various gating widths to identify the superior irradiation technique. METHODS Plans were created with 4/1, 2/2, and 1/4 layered/volume rescans of FB (L4V1, L2V2, and L1V4), and 50%, 30%, and 10% gating widths of the total respiratory curves (G50, G30, and G10) of the RG plans with L4V1. We calculated 4-dimensional dynamic doses assuming a constant sinusoidal curve for six irradiation methods. The reconstructed doses per fraction were compared with planned doses in terms of dose differences in 99% clinical-target-volume (CTV) (ΔD99%), near-maximum dose differences (ΔD2%) at organs-at-risk (OARs), and TT. RESULTS The mean/minimum CTV ΔD99% values for FB were -1.0%/-4.9%, -0.8%/-4.3%, and -0.1%/-1.0% for L4V1, L2V2, and L1V4, respectively. Those for RG were -0.3%/-1.7%, -0.1%/-1.0%, and 0.0%/-0.5% for G50, G30, and G10, respectively. The CTV ΔD99% of the RGs with less than 50% gate width and the FBs of L1V4 were within the desired tolerance (±3.0%), and the OARs ΔD2% for RG were lower than those for FB. The mean TTs were 90, 326, 824, 158, 203, and 422 s for L4V1, L2V2, L1V4, G50, G30, and G10, respectively. CONCLUSIONS FB (L4V1) is the most efficient treatment, but not necessarily the optimal choice due to interplay effects. To satisfy both TT extensions and interplay, RG with a gate width as large as possible within safety limits is desirable.
Collapse
Affiliation(s)
- Yuki Tominaga
- Department of Radiotherapy, Medical Co. Hakuhokai, Osaka Proton Therapy Clinic, 27-9 Kasugadenaka, Konohana-ku, Osaka 554-0022, Japan.
| | - Masaki Suga
- Hyogo Ion Beam Medical Center, 1-2-1, Kouto, Shingucho, Tatsuno, Hyogo 679-5165, Japan
| | - Mikuni Takeda
- Hyogo Ion Beam Medical Center, 1-2-1, Kouto, Shingucho, Tatsuno, Hyogo 679-5165, Japan
| | - Yuki Yamamoto
- Hyogo Ion Beam Medical Center, 1-2-1, Kouto, Shingucho, Tatsuno, Hyogo 679-5165, Japan
| | - Takashi Akagi
- Hyogo Ion Beam Medical Support, 1-2-1, Kouto, Shingucho, Tatsuno, Hyogo 679-5165, Japan
| | - Takahiro Kato
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, 1 Hikariga-oka, Fukushima 960-1295, Japan; Department of Radiation Physics and Technology, Southern Tohoku Proton Therapy Center, Fukushima 172, Yatsuyamada 7 Chome, Koriyama, Fukushima 963-8052, Japan
| | - Sunao Tokumaru
- Hyogo Ion Beam Medical Center, 1-2-1, Kouto, Shingucho, Tatsuno, Hyogo 679-5165, Japan
| | - Michinori Yamamoto
- Department of Radiotherapy, Medical Co. Hakuhokai, Osaka Proton Therapy Clinic, 27-9 Kasugadenaka, Konohana-ku, Osaka 554-0022, Japan
| | - Masataka Oita
- Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
4
|
Duetschler A, Winterhalter C, Meier G, Safai S, Weber DC, Lomax AJ, Zhang Y. A fast analytical dose calculation approach for MRI-guided proton therapy. Phys Med Biol 2023; 68:195020. [PMID: 37750045 DOI: 10.1088/1361-6560/acf90d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023]
Abstract
Objective.Magnetic resonance (MR) is an innovative technology for online image guidance in conventional radiotherapy and is also starting to be considered for proton therapy as well. For MR-guided therapy, particularly for online plan adaptations, fast dose calculation is essential. Monte Carlo (MC) simulations, however, which are considered the gold standard for proton dose calculations, are very time-consuming. To address the need for an efficient dose calculation approach for MRI-guided proton therapy, we have developed a fast GPU-based modification of an analytical dose calculation algorithm incorporating beam deflections caused by magnetic fields.Approach.Proton beams (70-229 MeV) in orthogonal magnetic fields (0.5/1.5 T) were simulated using TOPAS-MC and central beam trajectories were extracted to generate look-up tables (LUTs) of incremental rotation angles as a function of water-equivalent depth. Beam trajectories are then reconstructed using these LUTs for the modified ray casting dose calculation. The algorithm was validated against MC in water, different materials and for four example patient cases, whereby it has also been fully incorporated into a treatment plan optimisation regime.Main results.Excellent agreement between analytical and MC dose distributions could be observed with sub-millimetre range deviations and differences in lateral shifts <2 mm even for high densities (1000 HU). 2%/2 mm gamma pass rates were comparable to the 0 T scenario and above 94.5% apart for the lung case. Further, comparable treatment plan quality could be achieved regardless of magnetic field strength.Significance.A new method for accurate and fast proton dose calculation in magnetic fields has been developed and successfully implemented for treatment plan optimisation.
Collapse
Affiliation(s)
- Alisha Duetschler
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
- Department of Physics, ETH Zürich, 8092 Zürich, CH, Switzerland
| | - Carla Winterhalter
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
| | - Gabriel Meier
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
| | - Sairos Safai
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
| | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
- Department of Radiation Oncology, University Hospital of Zürich, 8091 Zürich, CH, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, CH, Switzerland
| | - Antony J Lomax
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
- Department of Physics, ETH Zürich, 8092 Zürich, CH, Switzerland
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
| |
Collapse
|
5
|
Lebbink F, Stocchiero S, Fossati P, Engwall E, Georg D, Stock M, Knäusl B. Parameter based 4D dose calculations for proton therapy. Phys Imaging Radiat Oncol 2023; 27:100473. [PMID: 37520640 PMCID: PMC10374597 DOI: 10.1016/j.phro.2023.100473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023] Open
Abstract
Background and purpose Retrospective log file-based analysis provides the actual dose delivered based on the patient's breathing and the daily beam-delivery dynamics. To predict the motion sensitivity of the treatment plan on a patient-specific basis before treatment start a prospective tool is required. Such a parameter-based tool has been investigated with the aim to be used in clinical routine. Materials and Methods 4D dose calculations (4DDC) were performed for seven cancer patients with small breathing motion treated with scanned pulsed proton beams. Validation of the parameter-based 4DDC (p-4DDC) method was performed with an anthropomorphic phantom and patient data employing measurements and a log file-based 4DDC tool. The dose volume histogram parameters (Dx%) were investigated for the target and the organs at risk, compared to static and the file-based approach. Results The difference between the measured and the p-4DDC dose was within the deviation of the measurements. The maximum deviation was 0.4Gy. For the planning target volume D98% varied up to 15% compared to the static scenario, while the results from the log file and p-4DDC agreed within 2%. For the liver patients, D33%liver deviated up to 35% compared to static and 10% comparing the two 4DDC tools, while for the pancreas patients the D1%stomach varied up to 45% and 11%, respectively. Conclusion The results showed that p-4DDC could be used prospectively. The next step will be the clinical implementation of the p-4DDC tool, which can support a decision to either adapt the treatment plan or apply motion mitigation strategies.
Collapse
Affiliation(s)
- Franciska Lebbink
- Medical University of Vienna, Department of Radiation Oncology, Vienna, Austria
- MedAustron Ion Therapy Centre, Wiener Neustadt, Austria
| | - Silvia Stocchiero
- Medical University of Vienna, Department of Radiation Oncology, Vienna, Austria
- MedAustron Ion Therapy Centre, Wiener Neustadt, Austria
| | - Piero Fossati
- MedAustron Ion Therapy Centre, Wiener Neustadt, Austria
- Karl Landsteiner University of Health Sciences, Wiener Neustadt, Austria
| | | | - Dietmar Georg
- Medical University of Vienna, Department of Radiation Oncology, Vienna, Austria
- MedAustron Ion Therapy Centre, Wiener Neustadt, Austria
| | - Markus Stock
- MedAustron Ion Therapy Centre, Wiener Neustadt, Austria
- Karl Landsteiner University of Health Sciences, Wiener Neustadt, Austria
| | - Barbara Knäusl
- Medical University of Vienna, Department of Radiation Oncology, Vienna, Austria
- MedAustron Ion Therapy Centre, Wiener Neustadt, Austria
| |
Collapse
|
6
|
Knäusl B, Lebbink F, Fossati P, Engwall E, Georg D, Stock M. Patient Breathing Motion and Delivery Specifics Influencing the Robustness of a Proton Pancreas Irradiation. Cancers (Basel) 2023; 15:cancers15092550. [PMID: 37174016 PMCID: PMC10177445 DOI: 10.3390/cancers15092550] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Motion compensation strategies in particle therapy depend on the anatomy, motion amplitude and underlying beam delivery technology. This retrospective study on pancreas patients with small moving tumours analysed existing treatment concepts and serves as a basis for future treatment strategies for patients with larger motion amplitudes as well as the transition towards carbon ion treatments. The dose distributions of 17 hypofractionated proton treatment plans were analysed using 4D dose tracking (4DDT). The recalculation of clinical treatment plans employing robust optimisation for mitigating different organ fillings was performed on phased-based 4D computed tomography (4DCT) data considering the accelerator (pulsed scanned pencil beams delivered by a synchrotron) and the breathing-time structure. The analysis confirmed the robustness of the included treatment plans concerning the interplay of beam and organ motion. The median deterioration of D50% (ΔD50%) for the clinical target volume (CTV) and the planning target volume (PTV) was below 2%, while the only outlier was observed for ΔD98% with -35.1%. The average gamma pass rate over all treatment plans (2%/ 2 mm) was 88.8% ± 8.3, while treatment plans for motion amplitudes larger than 1 mm performed worse. For organs at risk (OARs), the median ΔD2% was below 3%, but for single patients, essential changes, e.g., up to 160% for the stomach were observed. The hypofractionated proton treatment for pancreas patients based on robust treatment plan optimisation and 2 to 4 horizontal and vertical beams showed to be robust against intra-fractional movements up to 3.7 mm. It could be demonstrated that the patient's orientation did not influence the motion sensitivity. The identified outliers showed the need for continuous 4DDT calculations in clinical practice to identify patient cases with more significant deviations.
Collapse
Affiliation(s)
- Barbara Knäusl
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria
- MedAustron Ion Therapy Centre, Medical Physics, 2700 Wiener Neustadt, Austria
| | - Franciska Lebbink
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria
- MedAustron Ion Therapy Centre, Medical Physics, 2700 Wiener Neustadt, Austria
| | - Piero Fossati
- MedAustron Ion Therapy Centre, Medical Physics, 2700 Wiener Neustadt, Austria
- Division Medical Physics, Karl Landsteiner University of Health Sciences, 2700 Wiener Neustadt, Austria
| | | | - Dietmar Georg
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Markus Stock
- MedAustron Ion Therapy Centre, Medical Physics, 2700 Wiener Neustadt, Austria
- Division Medical Physics, Karl Landsteiner University of Health Sciences, 2700 Wiener Neustadt, Austria
| |
Collapse
|
7
|
Zhang Y, Trnkova P, Toshito T, Heijmen B, Richter C, Aznar M, Albertini F, Bolsi A, Daartz J, Bertholet J, Knopf A. A survey of practice patterns for real-time intrafractional motion-management in particle therapy. Phys Imaging Radiat Oncol 2023; 26:100439. [PMID: 37124167 PMCID: PMC10133874 DOI: 10.1016/j.phro.2023.100439] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
Background and purpose Organ motion compromises accurate particle therapy delivery. This study reports on the practice patterns for real-time intrafractional motion-management in particle therapy to evaluate current clinical practice and wishes and barriers to implementation. Materials and methods An institutional questionnaire was distributed to particle therapy centres worldwide (7/2020-6/2021) asking which type(s) of real-time respiratory motion management (RRMM) methods were used, for which treatment sites, and what were the wishes and barriers to implementation. This was followed by a three-round DELPHI consensus analysis (10/2022) to define recommendations on required actions and future vision. With 70 responses from 17 countries, response rate was 100% for Europe (23/23 centres), 96% for Japan (22/23) and 53% for USA (20/38). Results Of the 68 clinically operational centres, 85% used RRMM, with 41% using both rescanning and active methods. Sixty-four percent used active-RRMM for at least one treatment site, mostly with gating guided by an external marker. Forty-eight percent of active-RRMM users wished to expand or change their RRMM technique. The main barriers were technical limitations and limited resources. From the DELPHI analysis, optimisation of rescanning parameters, improvement of motion models, and pre-treatment 4D evaluation were unanimously considered clinically important future focus. 4D dose calculation was identified as the top requirement for future commercial treatment planning software. Conclusion A majority of particle therapy centres have implemented RRMM. Still, further development and clinical integration were desired by most centres. Joint industry, clinical and research efforts are needed to translate innovation into efficient workflows for broad-scale implementation.
Collapse
Affiliation(s)
- Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Petra Trnkova
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Toshiyuki Toshito
- Nagoya Proton Therapy Center, Nagoya City University West Medical Center, Nagoya, Japan
| | - Ben Heijmen
- Department of Radiotherapy, Erasmus University Medical Center (Erasmus MC), Rotterdam, the Netherlands
| | - Christian Richter
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Marianne Aznar
- Faculty of Biology, Medicine and Health, Division of Cancer Sciences, University of Manchester, United Kingdom
| | | | - Alexandra Bolsi
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Juliane Daartz
- F. Burr Proton Therapy, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Jenny Bertholet
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Antje Knopf
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
- Institute for Medical Engineering and Medical Informatics, School of Life Science FHNW, Muttenz, Switzerland
| |
Collapse
|
8
|
Zhao R, Wang X, Wei H. Accuracy and Feasibility of Synthetic CT for Lung Adaptive Radiotherapy: A Phantom Study. Technol Cancer Res Treat 2023; 22:15330338231218161. [PMID: 38037343 PMCID: PMC10693223 DOI: 10.1177/15330338231218161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/22/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
OBJECTIVES The respiratory variations will lead to inconsistency between the actual delivery dose and the planning dose. How the minor interfractional amplitude changes affect the geometry and dose delivery accuracy remains to be investigated in the context of lung adaptive radiotherapy. METHODS Planning 4-dimensional-computed tomography and kV-cone beam computed tomography were scanned based on the Computerized Imaging Reference Systems phantom, which was employed to simulate the minor interfractional amplitude variations. The corresponding synthetic computed tomography for a particular motion pattern can be generated from Velocity program. Then a clinically meaningful synthetic computed tomography was analyzed through the geometrical and dosimetric assessment. RESULTS The image quality of synthetic computed tomography was improved obviously compared with cone beam computed tomography. Mean absolute error was minimized when no significant interfractional motion occurs and Velocity can be qualified for dealing with the regular breathing motion patterns. The mean percent hounsfield unit difference of the synthetic hounsfield unit values per organ relative to the planning 4-dimensional-computed tomography image was 22.3%. Under the same conditions, the mean percent hounsfield unit difference of the cone beam computed tomography hounsfield unit values per organ, relative to the planning 4-dimensional-computed tomography image was 83.9%. Overall, the accuracy of hounsfield unit in synthetic computed tomography was improved obviously and the variability of the synthetic image correlates with the planning 4-dimensional-computed tomography image variability. Meanwhile, the dose-volume histograms between planning 4-dimensional-computed tomography and synthetic computed tomography almost coincided each other, which indicates that Velocity program can qualify lung adaptive radiotherapy well when there were no interfractional respiratory variations. However, for cases with obvious interfractional amplitude change, the volume covered at least by 100% of the prescription dose was only 59.6% for that synthetic image. CONCLUSION The synthetic computed tomography images generated from Velocity were close to the real images in anatomy and dosimetry, which can make clinical lung adaptive radiotherapy possible based on the actual patient anatomy during treatment.
Collapse
Affiliation(s)
- Ruifeng Zhao
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xingliu Wang
- Application, Varian Medical System, Beijing, China
| | - Huanhai Wei
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|