1
|
Girona T, Drymoni K. Abnormal low-magnitude seismicity preceding large-magnitude earthquakes. Nat Commun 2024; 15:7429. [PMID: 39198420 PMCID: PMC11358139 DOI: 10.1038/s41467-024-51596-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Unraveling the precursory signals of potentially destructive earthquakes is crucial to understand the Earth's crust dynamics and to provide reliable seismic warnings. Earthquake precursors are ambiguous, but recent experimental studies suggest that robust warning signs may precede large seismic events in the short (day-to-months) term. Here, we show that the M6.4-M7.1 2019 Ridgecrest sequence (California) and the M7.1 2018 Anchorage earthquake (Alaska) were preceded by up to ~3 months of tectonic unrest on regional scales, as evidenced by abnormal low-magnitude seismicity spreading over the ~15-25% of Southern California and Southcentral Alaska. This precursory unrest has been discovered with an algorithm that integrates an innovative random forest machine learning approach and statistical features built from earthquake catalogs. Supported by a novel suite of finite element solid mechanics models, we propose that precursory, abnormal, low-magnitude seismicity arises if the pore fluid pressure within large fault segments escalates significantly as they approach failure, which leads to major uneven changes in the regional stress field. Our findings and method may open up new perspectives for surveillance agencies to anticipate when a region approaches an earthquake of great magnitude weeks to months before it occurs.
Collapse
Affiliation(s)
- Társilo Girona
- Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, USA.
| | - Kyriaki Drymoni
- Earth and Environmental Sciences, Ludwig-Maximilians-Universität in Munich, Munich, Germany
| |
Collapse
|
2
|
Lehnertz K. Time-series-analysis-based detection of critical transitions in real-world non-autonomous systems. CHAOS (WOODBURY, N.Y.) 2024; 34:072102. [PMID: 38985967 DOI: 10.1063/5.0214733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024]
Abstract
Real-world non-autonomous systems are open, out-of-equilibrium systems that evolve in and are driven by temporally varying environments. Such systems can show multiple timescale and transient dynamics together with transitions to very different and, at times, even disastrous dynamical regimes. Since such critical transitions disrupt the systems' intended or desired functionality, it is crucial to understand the underlying mechanisms, to identify precursors of such transitions, and to reliably detect them in time series of suitable system observables to enable forecasts. This review critically assesses the various steps of investigation involved in time-series-analysis-based detection of critical transitions in real-world non-autonomous systems: from the data recording to evaluating the reliability of offline and online detections. It will highlight pros and cons to stimulate further developments, which would be necessary to advance understanding and forecasting nonlinear behavior such as critical transitions in complex systems.
Collapse
|
3
|
Motuzas CA, Shcherbakov R. Viscoelastic Slider Blocks as a Model for a Seismogenic Fault. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1419. [PMID: 37895540 PMCID: PMC10606542 DOI: 10.3390/e25101419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
In this work, a model is proposed to examine the role of viscoelasticity in the generation of simulated earthquake-like events. This model serves to investigate how nonlinear processes in the Earth's crust affect the triggering and decay patterns of earthquake sequences. These synthetic earthquake events are numerically simulated using a slider-block model containing viscoelastic standard linear solid (SLS) elements to reproduce the dynamics of an earthquake fault. The simulated system exhibits elements of self-organized criticality, and results in the generation of avalanches that behave similarly to naturally occurring seismic events. The model behavior is analyzed using the Epidemic-Type Aftershock Sequence (ETAS) model, which suitably represents the observed triggering and decay patterns; however, parameter estimates deviate from those resulting from natural aftershock sequences. Simulated aftershock sequences from this model are characterized by slightly larger p-values, indicating a faster-than-normal decay of aftershock rates within the system. The ETAS fit, along with realistic simulated frequency-size distributions, supports the inclusion of viscoelastic rheology to model the seismogenic fault dynamics.
Collapse
Affiliation(s)
- Charlotte A. Motuzas
- Department of Earth Sciences, Western University, London, ON N6A 5B7, Canada
- Department of Physics and Astronomy, Western University, London, ON N6A 3K7, Canada
| | - Robert Shcherbakov
- Department of Earth Sciences, Western University, London, ON N6A 5B7, Canada
- Department of Physics and Astronomy, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
4
|
Klein W, Gould H, Matin S. Cluster scaling and critical points: A cautionary tale. Phys Rev E 2023; 108:034119. [PMID: 37849133 DOI: 10.1103/physreve.108.034119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 07/21/2023] [Indexed: 10/19/2023]
Abstract
Many systems in nature are conjectured to exist at a critical point, including the brain and earthquake faults. The primary reason for this conjecture is that the distribution of clusters (avalanches of firing neurons in the brain or regions of slip in earthquake faults) can be described by a power law. Because there are other mechanisms such as 1/f noise that can produce power laws, other criteria that the cluster critical exponents must satisfy can be used to conclude whether or not the observed power-law behavior indicates an underlying critical point rather than an alternate mechanism. We show how a possible misinterpretation of the cluster scaling data can lead one to incorrectly conclude that the measured critical exponents do not satisfy these criteria. Examples of the possible misinterpretation of the data for one-dimensional random site percolation and the one-dimensional Ising model are presented. We stress that the interpretation of a power-law cluster distribution indicating the presence of a critical point is subtle and its misinterpretation might lead to the abandonment of a promising area of research.
Collapse
Affiliation(s)
- W Klein
- Department of Physics, Boston University, Boston, Massachusetts 02215, USA and Center for Computational Science, Boston University, Boston, Massachusetts 02215, USA
| | - Harvey Gould
- Department of Physics, Boston University, Boston, Massachusetts 02215, USA and Department of Physics, Clark University, Worcester, Massachusetts 01610, USA
| | - Sakib Matin
- Department of Physics, Boston University, Boston, Massachusetts 02215, USA; Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87546, USA; and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87546, USA
| |
Collapse
|
5
|
Chouliaras G, Skordas ES, Sarlis NV. Earthquake Nowcasting: Retrospective Testing in Greece. ENTROPY (BASEL, SWITZERLAND) 2023; 25:379. [PMID: 36832745 PMCID: PMC9955490 DOI: 10.3390/e25020379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/01/2023]
Abstract
Earthquake nowcasting (EN) is a modern method of estimating seismic risk by evaluating the progress of the earthquake (EQ) cycle in fault systems. EN evaluation is based on a new concept of time, termed 'natural time'. EN employs natural time, and uniquely estimates seismic risk by means of the earthquake potential score (EPS), which has been found to have useful applications both regionally and globally. Amongst these applications, here we focused on Greece since 2019, for the estimation of the EPS for the largest-magnitude events, MW(USGS) ≥ 6, that occurred during our study period: for example, the MW= 6.0 WNW-of-Kissamos EQ on 27 November 2019, the MW= 6.5 off-shore Southern Crete EQ on 2 May 2020, the MW= 7.0 Samos EQ on 30 October 2020, the MW= 6.3 Tyrnavos EQ on 3 March 2021, the MW= 6.0 Arkalohorion Crete EQ on 27 September 2021, and the MW= 6.4 Sitia Crete EQ on 12 October 2021. The results are promising, and reveal that the EPS provides useful information on impending seismicity.
Collapse
Affiliation(s)
| | - Efthimios S. Skordas
- Section of Condensed Matter Physics and Solid Earth Physics Institute, Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis Zografos, 157 84 Athens, Greece
| | - Nicholas V. Sarlis
- Section of Condensed Matter Physics and Solid Earth Physics Institute, Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis Zografos, 157 84 Athens, Greece
| |
Collapse
|
6
|
Rundle JB, Yazbeck J, Donnellan A, Fox G, Ludwig LG, Heflin M, Crutchfield J. Optimizing Earthquake Nowcasting With Machine Learning: The Role of Strain Hardening in the Earthquake Cycle. EARTH AND SPACE SCIENCE (HOBOKEN, N.J.) 2022; 9:e2022EA002343. [PMID: 36583191 PMCID: PMC9787018 DOI: 10.1029/2022ea002343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/27/2022] [Accepted: 10/02/2022] [Indexed: 06/17/2023]
Abstract
Nowcasting is a term originating from economics, finance, and meteorology. It refers to the process of determining the uncertain state of the economy, markets or the weather at the current time by indirect means. In this paper, we describe a simple two-parameter data analysis that reveals hidden order in otherwise seemingly chaotic earthquake seismicity. One of these parameters relates to a mechanism of seismic quiescence arising from the physics of strain-hardening of the crust prior to major events. We observe an earthquake cycle associated with major earthquakes in California, similar to what has long been postulated. An estimate of the earthquake hazard revealed by this state variable time series can be optimized by the use of machine learning in the form of the Receiver Operating Characteristic skill score. The ROC skill is used here as a loss function in a supervised learning mode. Our analysis is conducted in the region of 5° × 5° in latitude-longitude centered on Los Angeles, a region which we used in previous papers to build similar time series using more involved methods (Rundle & Donnellan, 2020, https://doi.org/10.1029/2020EA001097; Rundle, Donnellan et al., 2021, https://doi.org/10.1029/2021EA001757; Rundle, Stein et al., 2021, https://doi.org/10.1088/1361-6633/abf893). Here we show that not only does the state variable time series have forecast skill, the associated spatial probability densities have skill as well. In addition, use of the standard ROC and Precision (PPV) metrics allow probabilities of current earthquake hazard to be defined in a simple, straightforward, and rigorous way.
Collapse
Affiliation(s)
- John B. Rundle
- Department of PhysicsUniversity of CaliforniaDavisCAUSA
- Santa Fe InstituteSanta FeNMUSA
- Department of Earth and Planetary ScienceUniversity of CaliforniaDavisCAUSA
- Program in Public HealthUniversity of CaliforniaIrvineCAUSA
| | - Joe Yazbeck
- Department of PhysicsUniversity of CaliforniaDavisCAUSA
| | - Andrea Donnellan
- Jet Propulsion Laboratory California Institute of TechnologyPasadenaCAUSA
| | | | | | - Michael Heflin
- Jet Propulsion Laboratory California Institute of TechnologyPasadenaCAUSA
| | | |
Collapse
|
7
|
Natural Time Analysis of Global Seismicity. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Natural time analysis enables the introduction of an order parameter for seismicity, which is just the variance of natural time χ, κ1=⟨χ2⟩−⟨χ⟩2. During the last years, there has been significant progress in the natural time analysis of seismicity. Milestones in this progress are the identification of clearly distiguishable minima of the fluctuations of the order parameter κ1 of seismicity both in the regional and global scale, the emergence of an interrelation between the time correlations of the earthquake (EQ) magnitude time series and these minima, and the introduction by Turcotte, Rundle and coworkers of EQ nowcasting. Here, we apply all these recent advances in the global seismicity by employing the Global Centroid Moment Tensor (GCMT) catalog. We show that the combination of the above three milestones may provide useful precursory information for the time of occurrence and epicenter location of strong EQs with M≥8.5 in GCMT. This can be achieved with high statistical significance (p-values of the order of 10−5), while the epicentral areas lie within a region covering only 4% of that investigated.
Collapse
|
8
|
Order Parameter and Entropy of Seismicity in Natural Time before Major Earthquakes: Recent Results. GEOSCIENCES 2022. [DOI: 10.3390/geosciences12060225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
A lot of work in geosciences has been completed during the last decade on the analysis in the new concept of time, termed natural time, introduced in 2001. The main advances are presented, including, among others, the following: First, the direct experimental verification of the interconnection between a Seismic Electric Signals (SES) activity and seismicity, i.e., the order parameter fluctuations of seismicity exhibit a clearly detectable minimum when an SES activity starts. These two phenomena are also linked closely in space. Second, the identification of the epicentral area and the occurrence time of an impending major earthquake (EQ) by means of the order parameter of seismicity and the entropy change of seismicity under time reversal as well as the extrema of their fluctuations. An indicative example is the M9 Tohoku EQ in Japan on 11 March 2011. Third, to answer the crucial question—when a magnitude 7 class EQ occurs—whether it is a foreshock or a mainshock. This can be answered by means of the key quantities already mentioned, i.e., the order parameter of seismicity and the entropy change of seismicity under time reversal along with their fluctuations. The explanation of the experimental findings identified before major EQs is given in a unified way on the basis of a physical model already proposed in the 1980s.
Collapse
|
9
|
Perez-Oregon J, Varotsos PK, Skordas ES, Sarlis NV. Estimating the Epicenter of a Future Strong Earthquake in Southern California, Mexico, and Central America by Means of Natural Time Analysis and Earthquake Nowcasting. ENTROPY (BASEL, SWITZERLAND) 2021; 23:1658. [PMID: 34945964 PMCID: PMC8700728 DOI: 10.3390/e23121658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022]
Abstract
It has recently been shown in the Eastern Mediterranean that by combining natural time analysis of seismicity with earthquake networks based on similar activity patterns and earthquake nowcasting, an estimate of the epicenter location of a future strong earthquake can be obtained. This is based on the construction of average earthquake potential score maps. Here, we propose a method of obtaining such estimates for a highly seismically active area that includes Southern California, Mexico and part of Central America, i.e., the area N1035W80120. The study includes 28 strong earthquakes of magnitude M ≥7.0 that occurred during the time period from 1989 to 2020. The results indicate that there is a strong correlation between the epicenter of a future strong earthquake and the average earthquake potential score maps. Moreover, the method is also applied to the very recent 7 September 2021 Guerrero, Mexico, M7 earthquake as well as to the 22 September 2021 Jiquilillo, Nicaragua, M6.5 earthquake with successful results. We also show that in 28 out of the 29 strong M ≥7.0 EQs studied, their epicenters lie close to an estimated zone covering only 8.5% of the total area.
Collapse
Affiliation(s)
- Jennifer Perez-Oregon
- Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, UP Zacatenco C.P., Mexico City 07738, Mexico;
- Solid Earth Physics Institute, Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis Zografos, 157 84 Athens, Greece;
| | - Panayiotis K. Varotsos
- Section of Geophysics and Geothermy, Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimiopolis Zografos, 157 84 Athens, Greece;
| | - Efthimios S. Skordas
- Solid Earth Physics Institute, Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis Zografos, 157 84 Athens, Greece;
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis Zografos, 157 84 Athens, Greece
| | - Nicholas V. Sarlis
- Solid Earth Physics Institute, Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis Zografos, 157 84 Athens, Greece;
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis Zografos, 157 84 Athens, Greece
| |
Collapse
|