1
|
Sun Y, Tayagui A, Sale S, Sarkar D, Nock V, Garrill A. Platforms for High-Throughput Screening and Force Measurements on Fungi and Oomycetes. MICROMACHINES 2021; 12:mi12060639. [PMID: 34070887 PMCID: PMC8227076 DOI: 10.3390/mi12060639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/19/2023]
Abstract
Pathogenic fungi and oomycetes give rise to a significant number of animal and plant diseases. While the spread of these pathogenic microorganisms is increasing globally, emerging resistance to antifungal drugs is making associated diseases more difficult to treat. High-throughput screening (HTS) and new developments in lab-on-a-chip (LOC) platforms promise to aid the discovery of urgently required new control strategies and anti-fungal/oomycete drugs. In this review, we summarize existing HTS and emergent LOC approaches in the context of infection strategies and invasive growth exhibited by these microorganisms. To aid this, we introduce key biological aspects and review existing HTS platforms based on both conventional and LOC techniques. We then provide an in-depth discussion of more specialized LOC platforms for force measurements on hyphae and to study electro- and chemotaxis in spores, approaches which have the potential to aid the discovery of alternative drug targets on future HTS platforms. Finally, we conclude with a brief discussion of the technical developments required to improve the uptake of these platforms into the general laboratory environment.
Collapse
Affiliation(s)
- Yiling Sun
- Biomolecular Interaction Centre, Department of Electrical and Computer Engineering, University of Canterbury, Christchurch 8041, New Zealand; (Y.S.); (A.T.); (S.S.); (D.S.)
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Ayelen Tayagui
- Biomolecular Interaction Centre, Department of Electrical and Computer Engineering, University of Canterbury, Christchurch 8041, New Zealand; (Y.S.); (A.T.); (S.S.); (D.S.)
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
| | - Sarah Sale
- Biomolecular Interaction Centre, Department of Electrical and Computer Engineering, University of Canterbury, Christchurch 8041, New Zealand; (Y.S.); (A.T.); (S.S.); (D.S.)
- School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
| | - Debolina Sarkar
- Biomolecular Interaction Centre, Department of Electrical and Computer Engineering, University of Canterbury, Christchurch 8041, New Zealand; (Y.S.); (A.T.); (S.S.); (D.S.)
- School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
| | - Volker Nock
- Biomolecular Interaction Centre, Department of Electrical and Computer Engineering, University of Canterbury, Christchurch 8041, New Zealand; (Y.S.); (A.T.); (S.S.); (D.S.)
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- Correspondence: (V.N.); (A.G.)
| | - Ashley Garrill
- Biomolecular Interaction Centre, Department of Electrical and Computer Engineering, University of Canterbury, Christchurch 8041, New Zealand; (Y.S.); (A.T.); (S.S.); (D.S.)
- School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
- Correspondence: (V.N.); (A.G.)
| |
Collapse
|
2
|
Ashok PC, Dholakia K. Optical trapping for analytical biotechnology. Curr Opin Biotechnol 2012; 23:16-21. [DOI: 10.1016/j.copbio.2011.11.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 11/08/2011] [Accepted: 11/08/2011] [Indexed: 10/14/2022]
|
3
|
Lichius A, Berepiki A, Read ND. Form follows function – The versatile fungal cytoskeleton. Fungal Biol 2011; 115:518-40. [DOI: 10.1016/j.funbio.2011.02.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 02/15/2011] [Accepted: 02/17/2011] [Indexed: 12/11/2022]
|
4
|
Antkowiak M, Torres-Mapa ML, Gunn-Moore F, Dholakia K. Application of dynamic diffractive optics for enhanced femtosecond laser based cell transfection. JOURNAL OF BIOPHOTONICS 2010; 3:696-705. [PMID: 20583035 DOI: 10.1002/jbio.201000052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We demonstrate the advantages of a dynamic diffractive optical element, namely a spatial light modulator (SLM) for the controlled and enhanced optoinjection and phototransfection of mammalian cells with a femtosecond light source. The SLM provides full control over the lateral and axial positioning of the beam with sub-micron precision. Fast beam translation enables time-sequenced irradiation, which is shown to enhance the optoinjection efficiency and alleviate the problem of exact beam positioning on the cell membrane. We show that irradiation in three axial positions doubles the number of viably optoinjected cells when compared with a single dose. The presented system also enables untargeted raster scan irradiation which provides a higher throughput transfection of adherent cells at the rate of 1 cell per second. Additionally, fluorescent imaging is used to demonstrate cell selective two-step gene therapy.
Collapse
Affiliation(s)
- Maciej Antkowiak
- SULSA, School of Biology, University of St Andrews, St Andrews KY169TS, UK.
| | | | | | | |
Collapse
|
5
|
Stevenson DJ, Gunn-Moore F, Dholakia K. Light forces the pace: optical manipulation for biophotonics. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:041503. [PMID: 20799781 DOI: 10.1117/1.3475958] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The biomedical sciences have benefited immensely from photonics technologies in the last 50 years. This includes the application of minute forces that enable the trapping and manipulation of cells and single molecules. In terms of the area of biophotonics, optical manipulation has made a seminal contribution to our understanding of the dynamics of single molecules and the microrheology of cells. Here we present a review of optical manipulation, emphasizing its impact on the areas of single-molecule studies and single-cell biology, and indicating some of the key experiments in the fields.
Collapse
Affiliation(s)
- David James Stevenson
- University of St Andrews, Scottish Universities Physics Alliance, School of Physics and Astronomy, North Haugh, Fife, United Kingdom.
| | | | | |
Collapse
|
6
|
Ambrosio LA, Hernández-Figueroa HE. Inversion of gradient forces for high refractive index particles in optical trapping. OPTICS EXPRESS 2010; 18:5802-5808. [PMID: 20389597 DOI: 10.1364/oe.18.005802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The unexpected fact that a spherical dielectric particle with refractive index higher than the surrounding medium will not always be attracted towards high intensity regions of the trapping beam is fully demonstrated here using a simple ray optics approach. This unusual situation may happen due to the inversion of gradient forces, as shown here. Therefore, conventional schemes, such the one based on the use of two counter-propagating beams to cancel the scattering forces, will fail to trap the particle. However, effective trapping still can be obtained by adopting suitable incident laser beams.
Collapse
Affiliation(s)
- L A Ambrosio
- School of Electrical and Computer Engineering (FEEC),University of Campinas (Unicamp), Department of Microwave and Optics (DMO), 13083-970 - Campinas/SP, Brazil.
| | | |
Collapse
|
7
|
Carnegie DJ, Cizmár T, Baumgartl J, Gunn-Moore FJ, Dholakia K. Automated laser guidance of neuronal growth cones using a spatial light modulator. JOURNAL OF BIOPHOTONICS 2009; 2:682-92. [PMID: 19705368 DOI: 10.1002/jbio.200910043] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The growth cone of a developing neuron can be guided using a focused infra-red (IR) laser beam [1]. In previous setups this process has required a significant amount of user intervention to adjust continuously the laser beam to guide the growing neuron. Previously, a system using an acousto-optical deflector (AOD) has been developed to steer the beam [2]. However, to enhance the controllability of this system, here we demonstrate the use of a computer controlled spatial light modulator (SLM) to steer and manipulate the shape of a laser beam for use in guided neuronal growth. This new experimental setup paves the way to enable a comprehensive investigation into beam shaping effects on neuronal growth and we show neuronal growth initiated by a Bessel light mode. This is a robust platform to explore the biochemistry of this novel phenomenon.
Collapse
Affiliation(s)
- David J Carnegie
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK.
| | | | | | | | | |
Collapse
|
8
|
Biener G, Vrotsos E, Sugaya K, Dogariu A. Optical torques guiding cell motility. OPTICS EXPRESS 2009; 17:9724-32. [PMID: 19506622 DOI: 10.1364/oe.17.009724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The main mechanism responsible for cell motility is the stochastic generation and breakup of actin filaments forming the cytoskeleton. However, the role of environmental factors in the migration and differentiation of cells is yet to be fully understood. Here we demonstrate that polarized optical fields can exert controllable torques on the actin network and therefore influence the treadmilling process responsible for cells motility. Through systematic experiments and stochastic modeling we demonstrate that actively guiding the dynamics of large groups of cells is possible in a noninvasive manner.
Collapse
Affiliation(s)
- Gabriel Biener
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL 32816, USA
| | | | | | | |
Collapse
|
9
|
Zhang H, Liu KK. Optical tweezers for single cells. J R Soc Interface 2008; 5:671-90. [PMID: 18381254 PMCID: PMC2408388 DOI: 10.1098/rsif.2008.0052] [Citation(s) in RCA: 396] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 03/17/2008] [Accepted: 03/17/2008] [Indexed: 11/12/2022] Open
Abstract
Optical tweezers (OT) have emerged as an essential tool for manipulating single biological cells and performing sophisticated biophysical/biomechanical characterizations. Distinct advantages of using tweezers for these characterizations include non-contact force for cell manipulation, force resolution as accurate as 100aN and amiability to liquid medium environments. Their wide range of applications, such as transporting foreign materials into single cells, delivering cells to specific locations and sorting cells in microfluidic systems, are reviewed in this article. Recent developments of OT for nanomechanical characterization of various biological cells are discussed in terms of both their theoretical and experimental advancements. The future trends of employing OT in single cells, especially in stem cell delivery, tissue engineering and regenerative medicine, are prospected. More importantly, current limitations and future challenges of OT for these new paradigms are also highlighted in this review.
Collapse
Affiliation(s)
| | - Kuo-Kang Liu
- Institute for Science and Technology in Medicine, Keele UniversityStoke-on-Trent ST4 7QB, UK
| |
Collapse
|