1
|
Cates ME, Nardini C. Active phase separation: new phenomenology from non-equilibrium physics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2025; 88:056601. [PMID: 40306295 DOI: 10.1088/1361-6633/add278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/30/2025] [Indexed: 05/02/2025]
Abstract
In active systems, whose constituents have non-equilibrium dynamics at local level, fluid-fluid phase separation is widely observed. Examples include the formation of membraneless organelles within cells; the clustering of self-propelled colloidal particles in the absence of attractive forces, and some types of ecological segregation. A schematic understanding of such active phase separation was initially borrowed from what is known for the equilibrium case, in which detailed balance holds at microscopic level. However it has recently become clear that in active systems the absence of detailed balance, although it leave phase separation qualitatively unchanged in some regimes (for example domain growth driven by interfacial tension via Ostwald ripening), can in other regimes radically alter its phenomenology at mechanistic level. For example, microphase separation can be caused by reverse Ostwald ripening, a process that is hard to imagine from an equilibrium perspective. This and other new phenomena arise because, instead of having a single, positive interfacial tension like their equilibrium counterparts, the fluid-fluid interfaces created by active phase separation can have several distinct interfacial tensions governing different properties, some of which can be negative. These phenomena can be broadly understood by studying continuum field theories for a single conserved scalar order parameter (the fluid density), supplemented with a velocity field in cases where momentum conservation is also present. More complex regimes arise in systems described by multiple scalar order parameters (especially with nonreciprocal interactions between these); or when an order parameter undergoes both conserved and non-conserved dynamics (such that the combination breaks detailed balance); or in systems that support orientational long-range order in one or more of the coexisting phases. In this Review, we survey recent progress in understanding the specific role of activity in phase separation, drawing attention to many open questions. We focus primarily on continuum theories, especially those with a single scalar order parameter, reviewing both analytical and numerical work. We compare their predictions with particle-based models, which have mostly been studied numerically although a few have been explicitly coarse-grained to continuum level. We also compare, where possible, with experimental results. In the latter case, qualitative comparisons are broadly encouraging whereas quantitative ones are hindered by the dynamical complexity of most experimental systems relative that of simplified (particle-level or continuum) models of active matter.
Collapse
Affiliation(s)
- M E Cates
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - C Nardini
- Service de Physique de l'Etat Condensé, CEA, CNRS Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, 75005 Paris, France
| |
Collapse
|
2
|
Metzcar J, Duggan BS, Fischer B, Murphy M, Heiland R, Macklin P. A Simple Framework for Agent-Based Modeling with Extracellular Matrix. Bull Math Biol 2025; 87:43. [PMID: 39937344 PMCID: PMC11821717 DOI: 10.1007/s11538-024-01408-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 12/21/2024] [Indexed: 02/13/2025]
Abstract
Extracellular matrix (ECM) is a key component of the cellular microenvironment and critical in multiple disease and developmental processes. Representing ECM and cell-ECM interactions is a challenging multiscale problem as they span molecular-level details to tissue-level dynamics. While several computational frameworks exist for ECM modeling, they often focus on very detailed modeling of individual ECM fibers or represent only a single aspect of the ECM. Using the PhysiCell agent-based modeling platform, we developed a framework of intermediate detail with the ability to capture bidirectional cell-ECM interactions. We represent a small region of ECM, an ECM element, with three variables describing its local microstructure: anisotropy, density, and overall fiber orientation. To spatially model the ECM, we use an array of ECM elements. Cells remodel local ECM microstructure and in turn, local microstructure impacts cellular motility. We demonstrate the utility of this framework and reusability of its core cell-ECM interaction model through examples in cellular invasion, wound healing, basement membrane degradation, and leader-follower collective migration. Despite the relative simplicity of the framework, it is able to capture a broad range of cell-ECM interactions of interest to the modeling community. Furthermore, variables representing the ECM microstructure are accessible through simple programming interfaces. This allows them to impact cell behaviors, such as proliferation and death, without requiring custom code for each interaction, particularly through PhysiCell's modeling grammar, enabling rapid modeling of a diverse range of cell-matrix biology. We make this framework available as a free and open source software package at https://github.com/PhysiCell-Models/collective-invasion .
Collapse
Affiliation(s)
- John Metzcar
- Intelligent Systems Engineering, Indiana University, 700 N. Woodlawn, Bloomington, IN, 47408, USA
- Informatics, Indiana University, 901 E. Tenth Street, Bloomington, IN, 47408, USA
| | - Ben S Duggan
- Computer Science, Indiana University, 700 N. Woodlawn, Bloomington, IN, 47408, USA
| | - Brandon Fischer
- Intelligent Systems Engineering, Indiana University, 700 N. Woodlawn, Bloomington, IN, 47408, USA
| | - Matthew Murphy
- Informatics, Indiana University, 901 E. Tenth Street, Bloomington, IN, 47408, USA
| | - Randy Heiland
- Intelligent Systems Engineering, Indiana University, 700 N. Woodlawn, Bloomington, IN, 47408, USA
| | - Paul Macklin
- Intelligent Systems Engineering, Indiana University, 700 N. Woodlawn, Bloomington, IN, 47408, USA.
| |
Collapse
|
3
|
Lange S, Schmied J, Willam P, Voss-Böhme A. Minimal cellular automaton model with heterogeneous cell sizes predicts epithelial colony growth. J Theor Biol 2024; 592:111882. [PMID: 38944379 DOI: 10.1016/j.jtbi.2024.111882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 07/01/2024]
Abstract
Regulation of cell proliferation is a crucial aspect of tissue development and homeostasis and plays a major role in morphogenesis, wound healing, and tumor invasion. A phenomenon of such regulation is contact inhibition, which describes the dramatic slowing of proliferation, cell migration and individual cell growth when multiple cells are in contact with each other. While many physiological, molecular and genetic factors are known, the mechanism of contact inhibition is still not fully understood. In particular, the relevance of cellular signaling due to interfacial contact for contact inhibition is still debated. Cellular automata (CA) have been employed in the past as numerically efficient mathematical models to study the dynamics of cell ensembles, but they are not suitable to explore the origins of contact inhibition as such agent-based models assume fixed cell sizes. We develop a minimal, data-driven model to simulate the dynamics of planar cell cultures by extending a probabilistic CA to incorporate size changes of individual cells during growth and cell division. We successfully apply this model to previous in-vitro experiments on contact inhibition in epithelial tissue: After a systematic calibration of the model parameters to measurements of single-cell dynamics, our CA model quantitatively reproduces independent measurements of emergent, culture-wide features, like colony size, cell density and collective cell migration. In particular, the dynamics of the CA model also exhibit the transition from a low-density confluent regime to a stationary postconfluent regime with a rapid decrease in cell size and motion. This implies that the volume exclusion principle, a mechanical constraint which is the only inter-cellular interaction incorporated in the model, paired with a size-dependent proliferation rate is sufficient to generate the observed contact inhibition. We discuss how our approach enables the introduction of effective bio-mechanical interactions in a CA framework for future studies.
Collapse
Affiliation(s)
- Steffen Lange
- DataMedAssist Group, HTW Dresden-University of Applied Sciences, Dresden, 01069, Germany; OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, 01307, Germany.
| | - Jannik Schmied
- DataMedAssist Group, HTW Dresden-University of Applied Sciences, Dresden, 01069, Germany; Faculty of Informatics/Mathematics, HTW Dresden-University of Applied Sciences, Dresden, 01069, Germany
| | - Paul Willam
- DataMedAssist Group, HTW Dresden-University of Applied Sciences, Dresden, 01069, Germany
| | - Anja Voss-Böhme
- DataMedAssist Group, HTW Dresden-University of Applied Sciences, Dresden, 01069, Germany; Faculty of Informatics/Mathematics, HTW Dresden-University of Applied Sciences, Dresden, 01069, Germany
| |
Collapse
|
4
|
Crossley RM, Johnson S, Tsingos E, Bell Z, Berardi M, Botticelli M, Braat QJS, Metzcar J, Ruscone M, Yin Y, Shuttleworth R. Modeling the extracellular matrix in cell migration and morphogenesis: a guide for the curious biologist. Front Cell Dev Biol 2024; 12:1354132. [PMID: 38495620 PMCID: PMC10940354 DOI: 10.3389/fcell.2024.1354132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
The extracellular matrix (ECM) is a highly complex structure through which biochemical and mechanical signals are transmitted. In processes of cell migration, the ECM also acts as a scaffold, providing structural support to cells as well as points of potential attachment. Although the ECM is a well-studied structure, its role in many biological processes remains difficult to investigate comprehensively due to its complexity and structural variation within an organism. In tandem with experiments, mathematical models are helpful in refining and testing hypotheses, generating predictions, and exploring conditions outside the scope of experiments. Such models can be combined and calibrated with in vivo and in vitro data to identify critical cell-ECM interactions that drive developmental and homeostatic processes, or the progression of diseases. In this review, we focus on mathematical and computational models of the ECM in processes such as cell migration including cancer metastasis, and in tissue structure and morphogenesis. By highlighting the predictive power of these models, we aim to help bridge the gap between experimental and computational approaches to studying the ECM and to provide guidance on selecting an appropriate model framework to complement corresponding experimental studies.
Collapse
Affiliation(s)
- Rebecca M. Crossley
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Samuel Johnson
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Erika Tsingos
- Computational Developmental Biology Group, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, Netherlands
| | - Zoe Bell
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Massimiliano Berardi
- LaserLab, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Optics11 life, Amsterdam, Netherlands
| | | | - Quirine J. S. Braat
- Department of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven, Netherlands
| | - John Metzcar
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, United States
- Department of Informatics, Indiana University, Bloomington, IN, United States
| | | | - Yuan Yin
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
5
|
DiNapoli KT, Robinson DN, Iglesias PA. A mesoscale mechanical model of cellular interactions. Biophys J 2021; 120:4905-4917. [PMID: 34687718 PMCID: PMC8633826 DOI: 10.1016/j.bpj.2021.10.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/25/2021] [Accepted: 10/18/2021] [Indexed: 01/16/2023] Open
Abstract
Computational models of cell mechanics allow the precise interrogation of cell shape change. These morphological changes are required for cells to survive in diverse tissue environments. Here, we present a mesoscale mechanical model of cell-substrate interactions using the level set method based on experimentally measured parameters. By implementing a viscoelastic mechanical equivalent circuit, we accurately model whole-cell deformations that are important for a variety of cellular processes. To effectively model shape changes as a cell interacts with a substrate, we have included receptor-mediated adhesion, which is governed by catch-slip bond behavior. The effect of adhesion was explored by subjecting cells to a variety of different substrates including flat, curved, and deformable surfaces. Finally, we increased the accuracy of our simulations by including a deformable nucleus in our cells. This model sets the foundation for further exploration into computational analyses of multicellular interactions.
Collapse
Affiliation(s)
- Kathleen T DiNapoli
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Pablo A Iglesias
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Electrical & Computer Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland.
| |
Collapse
|
6
|
Jagirdar RM, Papazoglou ED, Pitaraki E, Kouliou OA, Rouka E, Giannakou L, Giannopoulos S, Sinis SI, Hatzoglou C, Gourgoulianis KI, Zarogiannis SG. Cell and extracellular matrix interaction models in benign mesothelial and malignant pleural mesothelioma cells in 2D and 3D in-vitro. Clin Exp Pharmacol Physiol 2021; 48:543-552. [PMID: 33336399 DOI: 10.1111/1440-1681.13446] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 11/27/2020] [Indexed: 10/22/2022]
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive tumour that grows in the pleural cavity. MPM spheroids released in the pleural fluid can form new tumour foci. Cell-cell, cell-extracellular matrix (ECM) interactions in 2D and 3D impact malignant cell behaviour during cell adhesion, migration, proliferation and epithelial-mesenchymal transition (EMT). In this study, epithelioid, biphasic and sarcomatoid MPM cell types as well as benign mesothelial cells were tested with regards to the above phenotypes. Fibronectin (FN) and homologous cell-derived extracellular matrix (hcd-ECM) treated substratum differentially affected the above phenotypes. 3D MPM spheroid invasion was higher in FN-collagen matrices in the epithelioid and biphasic cells, while 3D cell cultures of epithelioid and sarcomatoid MPM cells in FN-collagen showed a higher contractility compared to hcd-ECM-collagen. Cell aggregates demonstrated invasive behaviour in hcd-ECM matrices alone. Our results suggest that ECM and the dimensionality affect malignant cell behaviour during cell culture studies.
Collapse
Affiliation(s)
- Rajesh M Jagirdar
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Eleftherios D Papazoglou
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Eleanna Pitaraki
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Olympia A Kouliou
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Erasmia Rouka
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Lydia Giannakou
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Stefanos Giannopoulos
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Sotirios I Sinis
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Chrissi Hatzoglou
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
| | | | - Sotirios G Zarogiannis
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
| |
Collapse
|
7
|
Enhanced persistence and collective migration in cooperatively aligning cell clusters. Biophys J 2021; 120:1483-1497. [PMID: 33617837 DOI: 10.1016/j.bpj.2021.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/21/2020] [Accepted: 02/03/2021] [Indexed: 12/26/2022] Open
Abstract
Most cells possess the capacity to locomote. Alone or collectively, this allows them to adapt, to rearrange, and to explore their surroundings. The biophysical characterization of such motile processes, in health and in disease, has so far focused mostly on two limiting cases: single-cell motility on the one hand and the dynamics of confluent tissues such as the epithelium on the other. The in-between regime of clusters, composed of relatively few cells moving as a coherent unit, has received less attention. Such small clusters are, however, deeply relevant in development but also in cancer metastasis. In this work, we use cellular Potts models and analytical active matter theory to understand how the motility of small cell clusters changes with N, the number of cells in the cluster. Modeling and theory reveal our two main findings: cluster persistence time increases with N, whereas the intrinsic diffusivity decreases with N. We discuss a number of settings in which the motile properties of more complex clusters can be analytically understood, revealing that the focusing effects of small-scale cooperation and cell-cell alignment can overcome the increased bulkiness and internal disorder of multicellular clusters to enhance overall migrational efficacy. We demonstrate this enhancement for small-cluster collective durotaxis, which is shown to proceed more effectively than for single cells. Our results may provide some novel, to our knowledge, insights into the connection between single-cell and large-scale collective motion and may point the way to the biophysical origins of the enhanced metastatic potential of small tumor cell clusters.
Collapse
|
8
|
Chang ZM, Zhang R, Yang C, Shao D, Tang Y, Dong WF, Wang Z. Cancer-leukocyte hybrid membrane-cloaked magnetic beads for the ultrasensitive isolation, purification, and non-destructive release of circulating tumor cells. NANOSCALE 2020; 12:19121-19128. [PMID: 32929419 DOI: 10.1039/d0nr04097e] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Most of the current circulating tumor cell (CTC) isolation techniques are based on immunomagnetic beads with antibodies or aptamers that specifically target epithelial cell adhesion molecules (EpCAMs). However, these techniques are unsuitable for the isolation and purification of circulating tumor cells because they fail to recognize EpCAM-negative CTCs and thus lead to the non-specific adsorption of background leucocytes and EpCAM-positive circulating epithelial cells. Moreover, releasing the CTCs from the capture platform without disruption is a big challenge. To address these issues, herein, we developed biomimetic magnetic beads (MBs) by cloaking a cancer cell-leukocyte hybrid membrane on the MBs. These biomimetic MBs inherited homologous CTC binding capability from the cancer cell membrane and less affinity for the background cells from the leukocyte membrane, exhibitng a higher CTC capture efficiency and separation purity than EpCAM-based MBs. Importantly, the captured CTCs could be rapidly released by a facile method i.e. co-incubation with a trypsin-EDTA solution. We demonstrated the excellent performance of these MBs for the highly pure separation and non-destructive release of CTCs in metastatic mammary carcinoma models. Our results indicate that the proposed homologous cancer-leukocyte membrane coating strategy may provide a promising method for the ultrahigh-specific and sensitive detection of CTCs.
Collapse
Affiliation(s)
- Zhi-Min Chang
- Academy for Engineering & Technology, Fudan University, Shanghai 200433, China and CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
| | - Rui Zhang
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
| | - Chao Yang
- Institutes of Life Sciences, School of Biomedical Sciences and Engineering and National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou International Campus, Guangzhou, 510006, China.
| | - Dan Shao
- Institutes of Life Sciences, School of Biomedical Sciences and Engineering and National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou International Campus, Guangzhou, 510006, China.
| | - Yuguo Tang
- Academy for Engineering & Technology, Fudan University, Shanghai 200433, China and CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
| | - Wen-Fei Dong
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
| | - Zheng Wang
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
| |
Collapse
|
9
|
Kim Y, Lee D, Lawler S. Collective invasion of glioma cells through OCT1 signalling and interaction with reactive astrocytes after surgery. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190390. [PMID: 32713306 DOI: 10.1098/rstb.2019.0390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive form of brain cancer with a short median survival time. GBM is characterized by the hallmarks of aggressive proliferation and cellular infiltration of normal brain tissue. miR-451 and its downstream molecules are known to play a pivotal role in regulation of the balance of proliferation and aggressive invasion in response to metabolic stress in the tumour microenvironment (TME). Surgery-induced transition in reactive astrocyte populations can play a significant role in tumour dynamics. In this work, we develop a multi-scale mathematical model of miR-451-LKB1-AMPK-OCT1-mTOR pathway signalling and individual cell dynamics of the tumour and reactive astrocytes after surgery. We show how the effects of fluctuating glucose on tumour cells need to be reprogrammed by taking into account the recent history of glucose variations and an AMPK/miR-451 reciprocal feedback loop. The model shows how variations in glucose availability significantly affect the activity of signalling molecules and, in turn, lead to critical cell migration. The model also predicts that microsurgery of a primary tumour induces phenotypical changes in reactive astrocytes and stem cell-like astrocytes promoting tumour cell proliferation and migration by Cxcl5. Finally, we investigated a new anti-tumour strategy by Cxcl5-targeting drugs. This article is part of the theme issue 'Multi-scale analysis and modelling of collective migration in biological systems'.
Collapse
Affiliation(s)
- Yangjin Kim
- Department of Mathematics, Konkuk University, Seoul 05029, Republic of Korea.,Mathematical Biosciences Institute, Ohio State University, Columbus, OH 43210, USA
| | - Donggu Lee
- Department of Mathematics, Konkuk University, Seoul 05029, Republic of Korea
| | - Sean Lawler
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Khataee H, Czirok A, Neufeld Z. Multiscale modelling of motility wave propagation in cell migration. Sci Rep 2020; 10:8128. [PMID: 32424155 PMCID: PMC7235313 DOI: 10.1038/s41598-020-63506-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022] Open
Abstract
The collective motion of cell monolayers within a tissue is a fundamental biological process that occurs during tissue formation, wound healing, cancerous invasion, and viral infection. Experiments have shown that at the onset of migration, the motility is self-generated as a polarisation wave starting from the leading edge of the monolayer and progressively propagates into the bulk. However, it is unclear how the propagation of this motility wave is influenced by cellular properties. Here, we investigate this question using a computational model based on the Potts model coupled to the dynamics of intracellular polarisation. The model captures the propagation of the polarisation wave and suggests that the cells cortex can regulate the migration modes: strongly contractile cells may depolarise the monolayer, whereas less contractile cells can form swirling movement. Cortical contractility is further found to limit the cells motility, which (i) decelerates the wave speed and the leading edge progression, and (ii) destabilises the leading edge. Together, our model describes how different mechanical properties of cells can contribute to the regulation of collective cell migration.
Collapse
Affiliation(s)
- Hamid Khataee
- School of Mathematics and Physics, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.
| | - Andras Czirok
- Department of Biological Physics, Eotvos University, Budapest, 1053, Hungary.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Zoltan Neufeld
- School of Mathematics and Physics, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
11
|
Kumar S, Das A, Barai A, Sen S. MMP Secretion Rate and Inter-invadopodia Spacing Collectively Govern Cancer Invasiveness. Biophys J 2019; 114:650-662. [PMID: 29414711 DOI: 10.1016/j.bpj.2017.11.3777] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 11/11/2017] [Accepted: 11/20/2017] [Indexed: 01/10/2023] Open
Abstract
Invadopodia are micron-sized invasive structures that mediate extracellular matrix (ECM) degradation through a combination of membrane-bound and soluble matrix metalloproteinases (MMPs). However, how such localized degradation is converted into pores big enough for cancer cells to invade, and the relative contributions of membrane-bound versus soluble MMPs to this process remain unclear. In this article, we address these questions by combining experiments and simulations. We show that in MDA-MB-231 cells, an increase in ECM density enhances invadopodia-mediated ECM degradation and decreases inter-invadopodia spacing. ECM degradation is mostly mediated by soluble MMPs, which are activated by membrane-bound MT1-MMP. We present a computational model of invadopodia-mediated ECM degradation, which recapitulates the above observations and identifies MMP secretion rate as an important regulator of invadopodia stability. Simulations with multiple invadopodia suggest that inter-invadopodia spacing and MMP secretion rate collectively dictate the size of the degraded zones. Taken together, our results suggest that for creating pores conducive for cancer invasion, cells must tune inter-invadopodia spacing and MMP secretion rate in an ECM density-dependent manner, thereby striking a balance between invadopodia penetration and ECM degradation.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Alakesh Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Amlan Barai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Shamik Sen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
12
|
Lakatos D, Somfai E, Méhes E, Czirók A. Soluble VEGFR1 signaling guides vascular patterns into dense branching morphologies. J Theor Biol 2018; 456:261-278. [PMID: 30086288 PMCID: PMC6292526 DOI: 10.1016/j.jtbi.2018.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 01/27/2023]
Abstract
Vascular patterning is a key process during development and disease. The diffusive decoy receptor sVEGFR1 (sFlt1) is a known regulator of endothelial cell behavior, yet the mechanism by which it controls vascular structure is little understood. We propose computational models to shed light on how vascular patterning is guided by self-organized gradients of the VEGF/sVEGFR1 factors. We demonstrate that a diffusive inhibitor can generate structures with a dense branching morphology in models where the activator elicits directed growth. Inadequate presence of the inhibitor leads to compact growth, while excessive production of the inhibitor blocks expansion and stabilizes existing structures. Model predictions were compared with time-resolved experimental data obtained from endothelial sprout kinetics in fibrin gels. In the presence of inhibitory antibodies against VEGFR1 vascular sprout density increases while the speed of sprout expansion remains unchanged. Thus, the rate of secretion and stability of extracellular sVEGFR1 can modulate vascular sprout density.
Collapse
Affiliation(s)
- Dóra Lakatos
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary.
| | - Ellák Somfai
- Institute for Solid State Physics and Optics, Wigner Research Center for Physics, Hungarian Academy of Sciences, Budapest, Hungary
| | - Előd Méhes
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
| | - András Czirók
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary; Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
13
|
Kim Y, Kang H, Powathil G, Kim H, Trucu D, Lee W, Lawler S, Chaplain M. Role of extracellular matrix and microenvironment in regulation of tumor growth and LAR-mediated invasion in glioblastoma. PLoS One 2018; 13:e0204865. [PMID: 30286133 PMCID: PMC6171904 DOI: 10.1371/journal.pone.0204865] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/14/2018] [Indexed: 02/06/2023] Open
Abstract
The cellular dispersion and therapeutic control of glioblastoma, the most aggressive type of primary brain cancer, depends critically on the migration patterns after surgery and intracellular responses of the individual cancer cells in response to external biochemical cues in the microenvironment. Recent studies have shown that miR-451 regulates downstream molecules including AMPK/CAB39/MARK and mTOR to determine the balance between rapid proliferation and invasion in response to metabolic stress in the harsh tumor microenvironment. Surgical removal of the main tumor is inevitably followed by recurrence of the tumor due to inaccessibility of dispersed tumor cells in normal brain tissue. In order to address this complex process of cell proliferation and invasion and its response to conventional treatment, we propose a mathematical model that analyzes the intracellular dynamics of the miR-451-AMPK- mTOR-cell cycle signaling pathway within a cell. The model identifies a key mechanism underlying the molecular switches between proliferative phase and migratory phase in response to metabolic stress in response to fluctuating glucose levels. We show how up- or down-regulation of components in these pathways affects the key cellular decision to infiltrate or proliferate in a complex microenvironment in the absence and presence of time delays and stochastic noise. Glycosylated chondroitin sulfate proteoglycans (CSPGs), a major component of the extracellular matrix (ECM) in the brain, contribute to the physical structure of the local brain microenvironment but also induce or inhibit glioma invasion by regulating the dynamics of the CSPG receptor LAR as well as the spatiotemporal activation status of resident astrocytes and tumor-associated microglia. Using a multi-scale mathematical model, we investigate a CSPG-induced switch between invasive and non-invasive tumors through the coordination of ECM-cell adhesion and dynamic changes in stromal cells. We show that the CSPG-rich microenvironment is associated with non-invasive tumor lesions through LAR-CSGAG binding while the absence of glycosylated CSPGs induce the critical glioma invasion. We illustrate how high molecular weight CSPGs can regulate the exodus of local reactive astrocytes from the main tumor lesion, leading to encapsulation of non-invasive tumor and inhibition of tumor invasion. These different CSPG conditions also change the spatial profiles of ramified and activated microglia. The complex distribution of CSPGs in the tumor microenvironment can determine the nonlinear invasion behaviors of glioma cells, which suggests the need for careful therapeutic strategies.
Collapse
Affiliation(s)
- Yangjin Kim
- Department of Mathematics, Konkuk University, Seoul, Republic of Korea
- Mathematical Biosciences Institute, Ohio State University, Columbus, Ohio, United States of America
| | - Hyunji Kang
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Gibin Powathil
- Department of Mathematics, Swansea University, Swansea, United Kingdom
| | - Hyeongi Kim
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Dumitru Trucu
- Division of Mathematics, University of Dundee, Dundee, United Kingdom
| | - Wanho Lee
- National Institute for Mathematical Sciences, Daejeon, Republic of Korea
| | - Sean Lawler
- Department of neurosurgery, Brigham and Women’s Hospital & Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mark Chaplain
- School of Mathematics and Statistics, Mathematical Institute, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
14
|
Alfonso JCL, Talkenberger K, Seifert M, Klink B, Hawkins-Daarud A, Swanson KR, Hatzikirou H, Deutsch A. The biology and mathematical modelling of glioma invasion: a review. J R Soc Interface 2018; 14:rsif.2017.0490. [PMID: 29118112 DOI: 10.1098/rsif.2017.0490] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022] Open
Abstract
Adult gliomas are aggressive brain tumours associated with low patient survival rates and limited life expectancy. The most important hallmark of this type of tumour is its invasive behaviour, characterized by a markedly phenotypic plasticity, infiltrative tumour morphologies and the ability of malignant progression from low- to high-grade tumour types. Indeed, the widespread infiltration of healthy brain tissue by glioma cells is largely responsible for poor prognosis and the difficulty of finding curative therapies. Meanwhile, mathematical models have been established to analyse potential mechanisms of glioma invasion. In this review, we start with a brief introduction to current biological knowledge about glioma invasion, and then critically review and highlight future challenges for mathematical models of glioma invasion.
Collapse
Affiliation(s)
- J C L Alfonso
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Centre for Information Services and High Performance Computing, Technische Universität Dresden, Germany
| | - K Talkenberger
- Centre for Information Services and High Performance Computing, Technische Universität Dresden, Germany
| | - M Seifert
- Institute for Medical Informatics and Biometry, Technische Universität Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany
| | - B Klink
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany.,German Cancer Consortium (DKTK), partner site, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - A Hawkins-Daarud
- Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, USA
| | - K R Swanson
- Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, USA
| | - H Hatzikirou
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Centre for Information Services and High Performance Computing, Technische Universität Dresden, Germany
| | - A Deutsch
- Centre for Information Services and High Performance Computing, Technische Universität Dresden, Germany
| |
Collapse
|
15
|
Kumar S, Das A, Sen S. Multicompartment cell-based modeling of confined migration: regulation by cell intrinsic and extrinsic factors. Mol Biol Cell 2018; 29:1599-1610. [PMID: 29718766 PMCID: PMC6080655 DOI: 10.1091/mbc.e17-05-0313] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Though cell and nuclear deformability are expected to influence efficiency of confined migration, their individual and collective influence on migration efficiency remains incompletely understood. In addition to cell intrinsic properties, the relevance of cell extrinsic factors on confined migration, if any, has not been adequately explored. Here we address these questions using a statistical mechanics-based stochastic modeling approach where cell/nuclear dimensions and their deformability are explicitly taken into consideration. In addition to demonstrating the importance of cell softness in sustaining confined migration, our results suggest that dynamic tuning of cell and nuclear properties at different stages of migration is essential for maximizing migration efficiency. Our simulations also implicate confinement shape and confinement history as two important cell extrinsic regulators of cell invasiveness. Together, our findings illustrate the strength of a multicompartment model in dissecting the contributions of multiple factors that collectively influence confined cell migration.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400 076, India
| | - Alakesh Das
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400 076, India
| | - Shamik Sen
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400 076, India
| |
Collapse
|
16
|
Hallou A, Jennings J, Kabla AJ. Tumour heterogeneity promotes collective invasion and cancer metastatic dissemination. ROYAL SOCIETY OPEN SCIENCE 2017; 4:161007. [PMID: 28878958 PMCID: PMC5579073 DOI: 10.1098/rsos.161007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 07/12/2017] [Indexed: 05/31/2023]
Abstract
Heterogeneity within tumour cell populations is commonly observed in most cancers. However, its impact on metastatic dissemination, one of the primary determinants of the disease prognosis, remains poorly understood. Working with a simplified numerical model of tumour spheroids, we investigated the impact of mechanical heterogeneity on the onset of tumour invasion into surrounding tissues. Our work establishes a positive link between tumour heterogeneity and metastatic dissemination, and recapitulates a number of invasion patterns identified in vivo, such as multicellular finger-like protrusions. Two complementary mechanisms are at play in heterogeneous tumours. A small proportion of stronger cells are able to initiate and lead the escape of cells, while collective effects in the bulk of the tumour provide the coordination required to sustain the invasive process through multicellular streaming. This suggests that the multicellular dynamics observed during metastasis is a generic feature of mechanically heterogeneous cell populations and might rely on a limited and generic set of attributes.
Collapse
|
17
|
The Molecular Basis of Radial Intercalation during Tissue Spreading in Early Development. Dev Cell 2017; 37:213-25. [PMID: 27165554 PMCID: PMC4865533 DOI: 10.1016/j.devcel.2016.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/18/2016] [Accepted: 04/08/2016] [Indexed: 02/08/2023]
Abstract
Radial intercalation is a fundamental process responsible for the thinning of multilayered tissues during large-scale morphogenesis; however, its molecular mechanism has remained elusive. Using amphibian epiboly, the thinning and spreading of the animal hemisphere during gastrulation, here we provide evidence that radial intercalation is driven by chemotaxis of cells toward the external layer of the tissue. This role of chemotaxis in tissue spreading and thinning is unlike its typical role associated with large-distance directional movement of cells. We identify the chemoattractant as the complement component C3a, a factor normally linked with the immune system. The mechanism is explored by computational modeling and tested in vivo, ex vivo, and in vitro. This mechanism is robust against fluctuations of chemoattractant levels and expression patterns and explains expansion during epiboly. This study provides insight into the fundamental process of radial intercalation and could be applied to a wide range of morphogenetic events.
Collapse
|
18
|
Hirashima T, Rens EG, Merks RMH. Cellular Potts modeling of complex multicellular behaviors in tissue morphogenesis. Dev Growth Differ 2017; 59:329-339. [DOI: 10.1111/dgd.12358] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 03/24/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Tsuyoshi Hirashima
- Institute for Frontier Life and Medical Sciences Kyoto University 53 Kawahara, Shogoin, Sakyo‐ku Kyoto 606‐8507 Japan
| | - Elisabeth G. Rens
- Centrum Wiskunde & Informatica Life Sciences Group Science Park 123 1098 XG Amsterdam the Netherlands
- Mathematical Institute Leiden University Niels Bohrweg 1 2333 CA Leiden the Netherlands
| | - Roeland M. H. Merks
- Centrum Wiskunde & Informatica Life Sciences Group Science Park 123 1098 XG Amsterdam the Netherlands
- Mathematical Institute Leiden University Niels Bohrweg 1 2333 CA Leiden the Netherlands
| |
Collapse
|
19
|
Xia J, Cheng Y, Zhang H, Li R, Hu Y, Liu B. The role of adhesions between homologous cancer cells in tumor progression and targeted therapy. Expert Rev Anticancer Ther 2017; 17:517-526. [DOI: 10.1080/14737140.2017.1322511] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
20
|
Ahmadzadeh H, Webster MR, Behera R, Jimenez Valencia AM, Wirtz D, Weeraratna AT, Shenoy VB. Modeling the two-way feedback between contractility and matrix realignment reveals a nonlinear mode of cancer cell invasion. Proc Natl Acad Sci U S A 2017; 114:E1617-E1626. [PMID: 28196892 PMCID: PMC5338523 DOI: 10.1073/pnas.1617037114] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cancer cell invasion from primary tumors is mediated by a complex interplay between cellular adhesions, actomyosin-driven contractility, and the physical characteristics of the extracellular matrix (ECM). Here, we incorporate a mechanochemical free-energy-based approach to elucidate how the two-way feedback loop between cell contractility (induced by the activity of chemomechanical interactions such as Ca2+ and Rho signaling pathways) and matrix fiber realignment and strain stiffening enables the cells to polarize and develop contractile forces to break free from the tumor spheroids and invade into the ECM. Interestingly, through this computational model, we are able to identify a critical stiffness that is required by the matrix to break intercellular adhesions and initiate cell invasion. Also, by considering the kinetics of the cell movement, our model predicts a biphasic invasiveness with respect to the stiffness of the matrix. These predictions are validated by analyzing the invasion of melanoma cells in collagen matrices of varying concentration. Our model also predicts a positive correlation between the elongated morphology of the invading cells and the alignment of fibers in the matrix, suggesting that cell polarization is directly proportional to the stiffness and alignment of the matrix. In contrast, cells in nonfibrous matrices are found to be rounded and not polarized, underscoring the key role played by the nonlinear mechanics of fibrous matrices. Importantly, our model shows that mechanical principles mediated by the contractility of the cells and the nonlinearity of the ECM behavior play a crucial role in determining the phenotype of the cell invasion.
Collapse
Affiliation(s)
- Hossein Ahmadzadeh
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
| | - Marie R Webster
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104
| | - Reeti Behera
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104
| | - Angela M Jimenez Valencia
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218
- Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218
- Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218
- Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218
- Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218
- Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD 21218
- Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, MD 21218
| | - Ashani T Weeraratna
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104
| | - Vivek B Shenoy
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104;
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
21
|
Camley BA, Rappel WJ. Physical models of collective cell motility: from cell to tissue. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2017; 50:113002. [PMID: 28989187 PMCID: PMC5625300 DOI: 10.1088/1361-6463/aa56fe] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In this article, we review physics-based models of collective cell motility. We discuss a range of techniques at different scales, ranging from models that represent cells as simple self-propelled particles to phase field models that can represent a cell's shape and dynamics in great detail. We also extensively review the ways in which cells within a tissue choose their direction, the statistics of cell motion, and some simple examples of how cell-cell signaling can interact with collective cell motility. This review also covers in more detail selected recent works on collective cell motion of small numbers of cells on micropatterns, in wound healing, and the chemotaxis of clusters of cells.
Collapse
|
22
|
3D hybrid modelling of vascular network formation. J Theor Biol 2016; 414:254-268. [PMID: 27890575 DOI: 10.1016/j.jtbi.2016.11.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 09/06/2016] [Accepted: 11/16/2016] [Indexed: 12/13/2022]
Abstract
We develop an off-lattice, agent-based model to describe vasculogenesis, the de novo formation of blood vessels from endothelial progenitor cells during development. The endothelial cells that comprise our vessel network are viewed as linearly elastic spheres that move in response to the forces they experience. We distinguish two types of endothelial cells: vessel elements are contained within the network and tip cells are located at the ends of vessels. Tip cells move in response to mechanical forces caused by interactions with neighbouring vessel elements and the local tissue environment, chemotactic forces and a persistence force which accounts for their tendency to continue moving in the same direction. Vessel elements are subject to similar mechanical forces but are insensitive to chemotaxis. An angular persistence force representing interactions with the local tissue is introduced to stabilise buckling instabilities caused by cell proliferation. Only vessel elements proliferate, at rates which depend on their degree of stretch: elongated elements have increased rates of proliferation, and compressed elements have reduced rates. Following division, the fate of the new cell depends on the local mechanical environment: the probability of forming a new sprout is increased if the parent vessel is highly compressed and the probability of being incorporated into the parent vessel increased if the parent is stretched. Simulation results reveal that our hybrid model can reproduce the key qualitative features of vasculogenesis. Extensive parameter sensitivity analyses show that significant changes in network size and morphology are induced by varying the chemotactic sensitivity of tip cells, and the sensitivities of the proliferation rate and the sprouting probability to mechanical stretch. Varying the chemotactic sensitivity directly influences the directionality of the networks. The degree of branching, and thereby the density of the networks, is influenced by the sprouting probability. Glyphs that simultaneously depict several network properties are introduced to show how these and other network quantities change over time and also as model parameters vary. We also show how equivalent glyphs constructed from in vivo data could be used to discriminate between normal and tumour vasculature and, in the longer term, for model validation. We conclude that our biomechanical hybrid model can generate vascular networks that are qualitatively similar to those generated from in vitro and in vivo experiments.
Collapse
|
23
|
Jimenez Valencia AM, Wu PH, Yogurtcu ON, Rao P, DiGiacomo J, Godet I, He L, Lee MH, Gilkes D, Sun SX, Wirtz D. Collective cancer cell invasion induced by coordinated contractile stresses. Oncotarget 2016; 6:43438-51. [PMID: 26528856 PMCID: PMC4791242 DOI: 10.18632/oncotarget.5874] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/20/2015] [Indexed: 12/17/2022] Open
Abstract
The physical underpinnings of fibrosarcoma cell dissemination from a tumor in a surrounding collagen-rich matrix are poorly understood. Here we show that a tumor spheroid embedded in a 3D collagen matrix exerts large contractile forces on the matrix before invasion. Cell invasion is accompanied by complex spatially and temporally dependent patterns of cell migration within and at the surface of the spheroids that are fundamentally different from migratory patterns of individual fibrosarcoma cells homogeneously distributed in the same type of matrix. Cells display a continuous transition from a round morphology at the spheroid core, to highly aligned elongated morphology at the spheroid periphery, which depends on both β1-integrin-based cell-matrix adhesion and myosin II/ROCK-based cell contractility. This isotropic-to-anisotropic transition corresponds to a shift in migration, from a slow and unpolarized movement at the core, to a fast, polarized and persistent one at the periphery. Our results also show that the ensuing collective invasion of fibrosarcoma cells is induced by anisotropic contractile stresses exerted on the surrounding matrix.
Collapse
Affiliation(s)
- Angela M Jimenez Valencia
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, 21218, USA.,Physical Sciences-Oncology Center and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Pei-Hsun Wu
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, 21218, USA.,Physical Sciences-Oncology Center and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Osman N Yogurtcu
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Pranay Rao
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Josh DiGiacomo
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Inês Godet
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Lijuan He
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, 21218, USA.,Physical Sciences-Oncology Center and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Meng-Horng Lee
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, 21218, USA.,Physical Sciences-Oncology Center and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Daniele Gilkes
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, 21218, USA.,Physical Sciences-Oncology Center and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Sean X Sun
- Physical Sciences-Oncology Center and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, 21218, USA.,Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, 21218, USA.,Physical Sciences-Oncology Center and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, 21218, USA.,Department of Oncology and Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, Maryland, 21218, USA
| |
Collapse
|
24
|
Albert PJ, Schwarz US. Modeling cell shape and dynamics on micropatterns. Cell Adh Migr 2016; 10:516-528. [PMID: 26838278 PMCID: PMC5079397 DOI: 10.1080/19336918.2016.1148864] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/26/2016] [Indexed: 12/29/2022] Open
Abstract
Adhesive micropatterns have become a standard tool to study cells under defined conditions. Applications range from controlling the differentiation and fate of single cells to guiding the collective migration of cell sheets. In long-term experiments, single cell normalization is challenged by cell division. For all of these setups, mathematical models predicting cell shape and dynamics can guide pattern design. Here we review recent advances in predicting and explaining cell shape, traction forces and dynamics on micropatterns. Starting with contour models as the simplest approach to explain concave cell shapes, we move on to network and continuum descriptions as examples for static models. To describe dynamic processes, cellular Potts, vertex and phase field models can be used. Different types of model are appropriate to address different biological questions and together, they provide a versatile tool box to predict cell behavior on micropatterns.
Collapse
Affiliation(s)
- Philipp J. Albert
- Institute for Theoretical Physics and BioQuant, Heidelberg University, Heidelberg, Germany
| | - Ulrich S. Schwarz
- Institute for Theoretical Physics and BioQuant, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
25
|
Camley BA, Zimmermann J, Levine H, Rappel WJ. Collective Signal Processing in Cluster Chemotaxis: Roles of Adaptation, Amplification, and Co-attraction in Collective Guidance. PLoS Comput Biol 2016; 12:e1005008. [PMID: 27367541 PMCID: PMC4930173 DOI: 10.1371/journal.pcbi.1005008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 05/30/2016] [Indexed: 11/30/2022] Open
Abstract
Single eukaryotic cells commonly sense and follow chemical gradients, performing chemotaxis. Recent experiments and theories, however, show that even when single cells do not chemotax, clusters of cells may, if their interactions are regulated by the chemoattractant. We study this general mechanism of "collective guidance" computationally with models that integrate stochastic dynamics for individual cells with biochemical reactions within the cells, and diffusion of chemical signals between the cells. We show that if clusters of cells use the well-known local excitation, global inhibition (LEGI) mechanism to sense chemoattractant gradients, the speed of the cell cluster becomes non-monotonic in the cluster's size-clusters either larger or smaller than an optimal size will have lower speed. We argue that the cell cluster speed is a crucial readout of how the cluster processes chemotactic signals; both amplification and adaptation will alter the behavior of cluster speed as a function of size. We also show that, contrary to the assumptions of earlier theories, collective guidance does not require persistent cell-cell contacts and strong short range adhesion. If cell-cell adhesion is absent, and the cluster cohesion is instead provided by a co-attraction mechanism, e.g. chemotaxis toward a secreted molecule, collective guidance may still function. However, new behaviors, such as cluster rotation, may also appear in this case. Co-attraction and adaptation allow for collective guidance that is robust to varying chemoattractant concentrations while not requiring strong cell-cell adhesion.
Collapse
Affiliation(s)
- Brian A. Camley
- Department of Physics, University of California, San Diego, La Jolla, California, United States of America
| | - Juliane Zimmermann
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
| | - Wouter-Jan Rappel
- Department of Physics, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
26
|
Schreiber C, Segerer FJ, Wagner E, Roidl A, Rädler JO. Ring-Shaped Microlanes and Chemical Barriers as a Platform for Probing Single-Cell Migration. Sci Rep 2016; 6:26858. [PMID: 27242099 PMCID: PMC4886529 DOI: 10.1038/srep26858] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/05/2016] [Indexed: 01/06/2023] Open
Abstract
Quantification and discrimination of pharmaceutical and disease-related effects on cell migration requires detailed characterization of single-cell motility. In this context, micropatterned substrates that constrain cells within defined geometries facilitate quantitative readout of locomotion. Here, we study quasi-one-dimensional cell migration in ring-shaped microlanes. We observe bimodal behavior in form of alternating states of directional migration (run state) and reorientation (rest state). Both states show exponential lifetime distributions with characteristic persistence times, which, together with the cell velocity in the run state, provide a set of parameters that succinctly describe cell motion. By introducing PEGylated barriers of different widths into the lane, we extend this description by quantifying the effects of abrupt changes in substrate chemistry on migrating cells. The transit probability decreases exponentially as a function of barrier width, thus specifying a characteristic penetration depth of the leading lamellipodia. Applying this fingerprint-like characterization of cell motion, we compare different cell lines, and demonstrate that the cancer drug candidate salinomycin affects transit probability and resting time, but not run time or run velocity. Hence, the presented assay allows to assess multiple migration-related parameters, permits detailed characterization of cell motility, and has potential applications in cell biology and advanced drug screening.
Collapse
Affiliation(s)
- Christoph Schreiber
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, D-80539 Munich, Germany
| | - Felix J Segerer
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, D-80539 Munich, Germany
| | - Ernst Wagner
- Department of Pharmacy, Center for System-based Drug Research, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Building D, 81377 Munich, Germany
| | - Andreas Roidl
- Department of Pharmacy, Center for System-based Drug Research, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Building D, 81377 Munich, Germany
| | - Joachim O Rädler
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, D-80539 Munich, Germany
| |
Collapse
|
27
|
Szabó A, Melchionda M, Nastasi G, Woods ML, Campo S, Perris R, Mayor R. In vivo confinement promotes collective migration of neural crest cells. J Cell Biol 2016; 213:543-55. [PMID: 27241911 PMCID: PMC4896058 DOI: 10.1083/jcb.201602083] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/12/2016] [Indexed: 12/11/2022] Open
Abstract
Collective cell migration is fundamental throughout development and in many diseases. Spatial confinement using micropatterns has been shown to promote collective cell migration in vitro, but its effect in vivo remains unclear. Combining computational and experimental approaches, we show that the in vivo collective migration of neural crest cells (NCCs) depends on such confinement. We demonstrate that confinement may be imposed by the spatiotemporal distribution of a nonpermissive substrate provided by versican, an extracellular matrix molecule previously proposed to have contrasting roles: barrier or promoter of NCC migration. We resolve the controversy by demonstrating that versican works as an inhibitor of NCC migration and also acts as a guiding cue by forming exclusionary boundaries. Our model predicts an optimal number of cells in a given confinement width to allow for directional migration. This optimum coincides with the width of neural crest migratory streams analyzed across different species, proposing an explanation for the highly conserved nature of NCC streams during development.
Collapse
Affiliation(s)
- András Szabó
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, England, UK
| | - Manuela Melchionda
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, England, UK
| | - Giancarlo Nastasi
- Department of Biochemical and Dental Sciences and Morphofunctional Images, School of Medicine, University of Messina, 98122 Messina, Italy
| | - Mae L Woods
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, England, UK
| | - Salvatore Campo
- Department of Biochemical and Dental Sciences and Morphofunctional Images, School of Medicine, University of Messina, 98122 Messina, Italy
| | - Roberto Perris
- Center for Molecular and Translational Oncology, University of Parma, 43121 Parma, Italy
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, England, UK
| |
Collapse
|
28
|
Albert PJ, Schwarz US. Dynamics of Cell Ensembles on Adhesive Micropatterns: Bridging the Gap between Single Cell Spreading and Collective Cell Migration. PLoS Comput Biol 2016; 12:e1004863. [PMID: 27054883 PMCID: PMC4824460 DOI: 10.1371/journal.pcbi.1004863] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 03/11/2016] [Indexed: 12/20/2022] Open
Abstract
The collective dynamics of multicellular systems arise from the interplay of a few fundamental elements: growth, division and apoptosis of single cells; their mechanical and adhesive interactions with neighboring cells and the extracellular matrix; and the tendency of polarized cells to move. Micropatterned substrates are increasingly used to dissect the relative roles of these fundamental processes and to control the resulting dynamics. Here we show that a unifying computational framework based on the cellular Potts model can describe the experimentally observed cell dynamics over all relevant length scales. For single cells, the model correctly predicts the statistical distribution of the orientation of the cell division axis as well as the final organisation of the two daughters on a large range of micropatterns, including those situations in which a stable configuration is not achieved and rotation ensues. Large ensembles migrating in heterogeneous environments form non-adhesive regions of inward-curved arcs like in epithelial bridge formation. Collective migration leads to swirl formation with variations in cell area as observed experimentally. In each case, we also use our model to predict cell dynamics on patterns that have not been studied before.
Collapse
Affiliation(s)
- Philipp J. Albert
- Institute for Theoretical Physics and BioQuant, Heidelberg University, Heidelberg, Germany
| | - Ulrich S. Schwarz
- Institute for Theoretical Physics and BioQuant, Heidelberg University, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
29
|
Kumar S, Kapoor A, Desai S, Inamdar MM, Sen S. Proteolytic and non-proteolytic regulation of collective cell invasion: tuning by ECM density and organization. Sci Rep 2016; 6:19905. [PMID: 26832069 PMCID: PMC4735823 DOI: 10.1038/srep19905] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/18/2015] [Indexed: 12/30/2022] Open
Abstract
Cancer cells manoeuvre through extracellular matrices (ECMs) using different invasion modes, including single cell and collective cell invasion. These modes rely on MMP-driven ECM proteolysis to make space for cells to move. How cancer-associated alterations in ECM influence the mode of invasion remains unclear. Further, the sensitivity of the two invasion modes to MMP dynamics remains unexplored. In this paper, we address these open questions using a multiscale hybrid computational model combining ECM density-dependent MMP secretion, MMP diffusion, ECM degradation by MMP and active cell motility. Our results demonstrate that in randomly aligned matrices, collective cell invasion is more efficient than single cell invasion. Although increase in MMP secretion rate enhances invasiveness independent of cell-cell adhesion, sustenance of collective invasion in dense matrices requires high MMP secretion rates. However, matrix alignment can sustain both single cell and collective cell invasion even without ECM proteolysis. Similar to our in-silico observations, increase in ECM density and MMP inhibition reduced migration of MCF-7 cells embedded in sandwich gels. Together, our results indicate that apart from cell intrinsic factors (i.e., high cell-cell adhesion and MMP secretion rates), ECM density and organization represent two important extrinsic parameters that govern collective cell invasion and invasion plasticity.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | - Aastha Kapoor
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | - Sejal Desai
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | | | - Shamik Sen
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| |
Collapse
|
30
|
A cellular Potts model analyzing differentiated cell behavior during in vivo vascularization of a hypoxic tissue. Comput Biol Med 2015; 63:143-56. [DOI: 10.1016/j.compbiomed.2015.05.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 05/25/2015] [Accepted: 05/26/2015] [Indexed: 02/07/2023]
|
31
|
Daub JT, Merks RMH. Cell-based computational modeling of vascular morphogenesis using Tissue Simulation Toolkit. Methods Mol Biol 2015; 1214:67-127. [PMID: 25468600 DOI: 10.1007/978-1-4939-1462-3_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Computational modeling has become a widely used tool for unraveling the mechanisms of higher level cooperative cell behavior during vascular morphogenesis. However, experimenting with published simulation models or adding new assumptions to those models can be daunting for novice and even for experienced computational scientists. Here, we present a step-by-step, practical tutorial for building cell-based simulations of vascular morphogenesis using the Tissue Simulation Toolkit (TST). The TST is a freely available, open-source C++ library for developing simulations with the two-dimensional cellular Potts model, a stochastic, agent-based framework to simulate collective cell behavior. We will show the basic use of the TST to simulate and experiment with published simulations of vascular network formation. Then, we will present step-by-step instructions and explanations for building a recent simulation model of tumor angiogenesis. Demonstrated mechanisms include cell-cell adhesion, chemotaxis, cell elongation, haptotaxis, and haptokinesis.
Collapse
Affiliation(s)
- Josephine T Daub
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | | |
Collapse
|
32
|
van Oers RFM, Rens EG, LaValley DJ, Reinhart-King CA, Merks RMH. Mechanical cell-matrix feedback explains pairwise and collective endothelial cell behavior in vitro. PLoS Comput Biol 2014; 10:e1003774. [PMID: 25121971 PMCID: PMC4133044 DOI: 10.1371/journal.pcbi.1003774] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 06/20/2014] [Indexed: 12/14/2022] Open
Abstract
In vitro cultures of endothelial cells are a widely used model system of the collective behavior of endothelial cells during vasculogenesis and angiogenesis. When seeded in an extracellular matrix, endothelial cells can form blood vessel-like structures, including vascular networks and sprouts. Endothelial morphogenesis depends on a large number of chemical and mechanical factors, including the compliancy of the extracellular matrix, the available growth factors, the adhesion of cells to the extracellular matrix, cell-cell signaling, etc. Although various computational models have been proposed to explain the role of each of these biochemical and biomechanical effects, the understanding of the mechanisms underlying in vitro angiogenesis is still incomplete. Most explanations focus on predicting the whole vascular network or sprout from the underlying cell behavior, and do not check if the same model also correctly captures the intermediate scale: the pairwise cell-cell interactions or single cell responses to ECM mechanics. Here we show, using a hybrid cellular Potts and finite element computational model, that a single set of biologically plausible rules describing (a) the contractile forces that endothelial cells exert on the ECM, (b) the resulting strains in the extracellular matrix, and (c) the cellular response to the strains, suffices for reproducing the behavior of individual endothelial cells and the interactions of endothelial cell pairs in compliant matrices. With the same set of rules, the model also reproduces network formation from scattered cells, and sprouting from endothelial spheroids. Combining the present mechanical model with aspects of previously proposed mechanical and chemical models may lead to a more complete understanding of in vitro angiogenesis.
Collapse
Affiliation(s)
- René F. M. van Oers
- Life Sciences group, Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
- Netherlands Consortium for System Biology - Netherlands Institute for Systems Biology, Amsterdam, The Netherlands
| | - Elisabeth G. Rens
- Life Sciences group, Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
- Netherlands Consortium for System Biology - Netherlands Institute for Systems Biology, Amsterdam, The Netherlands
| | - Danielle J. LaValley
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
| | - Cynthia A. Reinhart-King
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
| | - Roeland M. H. Merks
- Life Sciences group, Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
- Netherlands Consortium for System Biology - Netherlands Institute for Systems Biology, Amsterdam, The Netherlands
- Mathematical Institute, Leiden University, Leiden, The Netherlands
| |
Collapse
|
33
|
Camley BA, Rappel WJ. Velocity alignment leads to high persistence in confined cells. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:062705. [PMID: 25019812 PMCID: PMC4458368 DOI: 10.1103/physreve.89.062705] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Indexed: 05/23/2023]
Abstract
Many cell types display random motility on two-dimensional substrates but crawl persistently in a single direction when confined in a microchannel or on an adhesive micropattern. Does this imply that the motility mechanism of confined cells is fundamentally different from that of unconfined cells? We argue that both free- and confined-cell migration may be described by a generic model of cells as "velocity-aligning" active Brownian particles previously proposed to solve a completely separate problem in collective cell migration. Our model can be mapped to a diffusive escape over a barrier and analytically solved to determine the cell's orientation distribution and repolarization rate. In quasi-one-dimensional confinement, velocity-aligning cells maintain their direction for times that can be exponentially larger than their persistence time in the absence of confinement. Our results suggest an important connection between single- and collective-cell migration: high persistence in confined cells corresponds with fast alignment of velocity to cell-cell forces.
Collapse
Affiliation(s)
- Brian A Camley
- Department of Physics and Center for Theoretical Biological Physics, University of California, San Diego, La Jolla, California 92093, USA
| | - Wouter-Jan Rappel
- Department of Physics and Center for Theoretical Biological Physics, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
34
|
Boas SEM, Merks RMH. Synergy of cell-cell repulsion and vacuolation in a computational model of lumen formation. J R Soc Interface 2014; 11:20131049. [PMID: 24430123 PMCID: PMC3899873 DOI: 10.1098/rsif.2013.1049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A key step in blood vessel development (angiogenesis) is lumen formation: the hollowing of vessels for blood perfusion. Two alternative lumen formation mechanisms are suggested to function in different types of blood vessels. The vacuolation mechanism is suggested for lumen formation in small vessels by coalescence of intracellular vacuoles, a view that was extended to extracellular lumen formation by exocytosis of vacuoles. The cell–cell repulsion mechanism is suggested to initiate extracellular lumen formation in large vessels by active repulsion of adjacent cells, and active cell shape changes extend the lumen. We used an agent-based computer model, based on the cellular Potts model, to compare and study both mechanisms separately and combined. An extensive sensitivity analysis shows that each of the mechanisms on its own can produce lumens in a narrow region of parameter space. However, combining both mechanisms makes lumen formation much more robust to the values of the parameters, suggesting that the mechanisms may work synergistically and operate in parallel, rather than in different vessel types.
Collapse
Affiliation(s)
- Sonja E M Boas
- Life Sciences Group, Centrum Wiskunde and Informatica (CWI), , Amsterdam, The Netherlands
| | | |
Collapse
|
35
|
Czirok A. Endothelial cell motility, coordination and pattern formation during vasculogenesis. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2013; 5:587-602. [PMID: 23857825 DOI: 10.1002/wsbm.1233] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 05/24/2013] [Accepted: 05/28/2013] [Indexed: 01/13/2023]
Abstract
How vascular networks assemble is a fundamental problem of developmental biology that also has medical importance. To explain the organizational principles behind vascular patterning, we must understand how can tissue level structures be controlled through cell behavior patterns like motility and adhesion that, in turn, are determined by biochemical signal transduction processes? We discuss the various ideas that have been proposed as mechanisms for vascular network assembly: cell motility guided by extracellular matrix alignment (contact guidance), chemotaxis guided by paracrine and autocrine morphogens, and multicellular sprouting guided by cell-cell contacts. All of these processes yield emergent patterns, thus endothelial cells can form an interconnected structure autonomously, without guidance from an external pre-pattern.
Collapse
Affiliation(s)
- Andras Czirok
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA; Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
36
|
Czirók A, Varga K, Méhes E, Szabó A. Collective cell streams in epithelial monolayers depend on cell adhesion. NEW JOURNAL OF PHYSICS 2013; 15:10.1088/1367-2630/15/7/075006. [PMID: 24363603 PMCID: PMC3866308 DOI: 10.1088/1367-2630/15/7/075006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We report a spontaneously emerging, randomly oriented, collective streaming behavior within a monolayer culture of a human keratinocyte cell line, and explore the effect of modulating cell adhesions by perturbing the function of calcium-dependent cell adhesion molecules. We demonstrate that decreasing cell adhesion induces narrower and more anisotropic cell streams, reminiscent of decreasing the Taylor scale of turbulent liquids. To explain our empirical findings, we propose a cell-based model that represents the dual nature of cell-cell adhesions. Spring-like connections provide mechanical stability, while a cellular Potts model formalism represents surface-tension driven attachment. By changing the relevance and persistence of mechanical links between cells, we are able to explain the experimentally observed changes in emergent flow patterns.
Collapse
Affiliation(s)
- András Czirók
- Dept. of Anatomy and Cell Biology; University of Kansas Medical Center; Kansas City, KS, USA
- Dept. of Biological Physics; Eotvos University; Budapest, Hungary
- Corresponding author:
| | - Katalin Varga
- Dept. of Biological Physics; Eotvos University; Budapest, Hungary
| | - Előd Méhes
- Dept. of Biological Physics; Eotvos University; Budapest, Hungary
| | - András Szabó
- Dept. of Biological Physics; Eotvos University; Budapest, Hungary
| |
Collapse
|
37
|
Leong MC, Vedula SRK, Lim CT, Ladoux B. Geometrical constraints and physical crowding direct collective migration of fibroblasts. Commun Integr Biol 2013; 6:e23197. [PMID: 23750300 PMCID: PMC3609846 DOI: 10.4161/cib.23197] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Migrating cells constantly interact with their immediate microenvironment and neighbors. Although studies on single cell migration offer us insights into the molecular and biochemical signaling pathways, they cannot predict the influence of cell crowding and geometrical cues. Using microfabrication techniques, we examine the influence of cell density and geometrical constraints on migrating fibroblasts. Fibroblasts were allowed to migrate on fibronectin strips of different widths. Under such conditions, cells experience various physical guidance cues including boundary effect, confinement and contact inhibition from neighboring cells. Fibroblasts migrating along the edge of the fibronectin pattern exhibit spindle-like morphology, reminiscent of migrating cells within confined space and high cell density are associated with increased alignment and higher speed in migrating fibroblasts.
Collapse
Affiliation(s)
- Man Chun Leong
- NUS Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore
| | | | | | | |
Collapse
|
38
|
Szabó A, Merks RMH. Cellular potts modeling of tumor growth, tumor invasion, and tumor evolution. Front Oncol 2013; 3:87. [PMID: 23596570 PMCID: PMC3627127 DOI: 10.3389/fonc.2013.00087] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/02/2013] [Indexed: 12/28/2022] Open
Abstract
Despite a growing wealth of available molecular data, the growth of tumors, invasion of tumors into healthy tissue, and response of tumors to therapies are still poorly understood. Although genetic mutations are in general the first step in the development of a cancer, for the mutated cell to persist in a tissue, it must compete against the other, healthy or diseased cells, for example by becoming more motile, adhesive, or multiplying faster. Thus, the cellular phenotype determines the success of a cancer cell in competition with its neighbors, irrespective of the genetic mutations or physiological alterations that gave rise to the altered phenotype. What phenotypes can make a cell "successful" in an environment of healthy and cancerous cells, and how? A widely used tool for getting more insight into that question is cell-based modeling. Cell-based models constitute a class of computational, agent-based models that mimic biophysical and molecular interactions between cells. One of the most widely used cell-based modeling formalisms is the cellular Potts model (CPM), a lattice-based, multi particle cell-based modeling approach. The CPM has become a popular and accessible method for modeling mechanisms of multicellular processes including cell sorting, gastrulation, or angiogenesis. The CPM accounts for biophysical cellular properties, including cell proliferation, cell motility, and cell adhesion, which play a key role in cancer. Multiscale models are constructed by extending the agents with intracellular processes including metabolism, growth, and signaling. Here we review the use of the CPM for modeling tumor growth, tumor invasion, and tumor progression. We argue that the accessibility and flexibility of the CPM, and its accurate, yet coarse-grained and computationally efficient representation of cell and tissue biophysics, make the CPM the method of choice for modeling cellular processes in tumor development.
Collapse
Affiliation(s)
- András Szabó
- Biomodeling and Biosystems Analysis, Life Sciences Group, Centrum Wiskunde and InformaticaAmsterdam, Netherlands
- Netherlands Consortium for Systems BiologyAmsterdam, Netherlands
- Netherlands Institute for Systems BiologyAmsterdam, Netherlands
| | - Roeland M. H. Merks
- Biomodeling and Biosystems Analysis, Life Sciences Group, Centrum Wiskunde and InformaticaAmsterdam, Netherlands
- Netherlands Consortium for Systems BiologyAmsterdam, Netherlands
- Netherlands Institute for Systems BiologyAmsterdam, Netherlands
- Mathematical Institute, Leiden University, LeidenAmsterdam, Netherlands
| |
Collapse
|
39
|
Lee RM, Kelley DH, Nordstrom KN, Ouellette NT, Losert W. Quantifying stretching and rearrangement in epithelial sheet migration. NEW JOURNAL OF PHYSICS 2013; 15:025036. [PMID: 23599682 PMCID: PMC3626170 DOI: 10.1088/1367-2630/15/2/025036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Although understanding the collective migration of cells, such as that seen in epithelial sheets, is essential for understanding diseases such as metastatic cancer, this motion is not yet as well characterized as individual cell migration. Here we adapt quantitative metrics used to characterize the flow and deformation of soft matter to contrast different types of motion within a migrating sheet of cells. Using a Finite-Time Lyapunov Exponent (FTLE) analysis, we find that - in spite of large fluctuations - the flow field of an epithelial cell sheet is not chaotic. Stretching of a sheet of cells (i.e., positive FTLE) is localized at the leading edge of migration and increases when the cells are more highly stimulated. By decomposing the motion of the cells into affine and non-affine components using the metric D2min , we quantify local plastic rearrangements and describe the motion of a group of cells in a novel way. We find an increase in plastic rearrangements with increasing cell densities, whereas inanimate systems tend to exhibit less non-affine rearrangements with increasing density.
Collapse
Affiliation(s)
- Rachel M Lee
- Department of Physics and Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD, USA
| | | | | | | | | |
Collapse
|
40
|
The mechanics of metastasis: insights from a computational model. PLoS One 2012; 7:e44281. [PMID: 23028513 PMCID: PMC3460953 DOI: 10.1371/journal.pone.0044281] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 07/31/2012] [Indexed: 01/29/2023] Open
Abstract
Although it may seem obvious that mechanical forces are required to drive metastatic cell movements, understanding of the mechanical aspects of metastasis has lagged far behind genetic and biochemical knowledge. The goal of this study is to learn about the mechanics of metastasis using a cell-based finite element model that proved useful for advancing knowledge about the forces that drive embryonic cell and tissue movements. Metastasis, the predominant cause of cancer-related deaths, involves a series of mechanical events in which one or more cells dissociate from a primary tumour, migrate through normal tissue, traverse in and out of a multi-layer circulatory system vessel and resettle. The present work focuses on the dissemination steps, from dissociation to circulation. The model shows that certain surface tension relationships must be satisfied for cancerous cells to dissociate from a primary tumour and that these equations are analogous to those that govern dissociation of embryonic cells. For a dissociated cell to then migrate by invadopodium extension and contraction and exhibit the shapes seen in experiments, the invadopodium must generate a contraction equal to approximately twice that produced by the interfacial tension associated with surrounding cells. Intravasation through the wall of a vessel is governed by relationships akin to those in the previous two steps, while release from the vessel wall is governed by equations that involve surface and interfacial tensions. The model raises a number of potential research questions. It also identifies how specific mechanical properties and the sub-cellular structural components that give rise to them might be changed so as to thwart particular metastatic steps and thereby block the spread of cancer.
Collapse
|
41
|
Czirok A, Little CD. Pattern formation during vasculogenesis. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2012; 96:153-62. [PMID: 22692888 PMCID: PMC3465733 DOI: 10.1002/bdrc.21010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vasculogenesis, the assembly of the first vascular network, is an intriguing developmental process that yields the first functional organ system of the embryo. In addition to being a fundamental part of embryonic development, vasculogenic processes also have medical importance. To explain the organizational principles behind vascular patterning, we must understand how morphogenesis of tissue level structures can be controlled through cell behavior patterns that, in turn, are determined by biochemical signal transduction processes. Mathematical analyses and computer simulations can help conceptualize how to bridge organizational levels and thus help in evaluating hypotheses regarding the formation of vascular networks. Here, we discuss the ideas that have been proposed to explain the formation of the first vascular pattern: cell motility guided by extracellular matrix alignment (contact guidance), chemotaxis guided by paracrine and autocrine morphogens, and sprouting guided by cell-cell contacts.
Collapse
Affiliation(s)
- Andras Czirok
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| | | |
Collapse
|